跟踪练习2
三角函数图像2:周期性

周期函数如果现在是早上9点钟,问你:24小时以后是几点钟?你会毫不犹豫地回答:还是早上9点钟.因为你很清楚,0点、1点、2点、3点……23点,每隔24小时就重复出现一次.如果今天是星期一,问你:7天以后是星期几?你也会回答:还是星期一.因为你很清楚,星期一、星期二……星期天,每隔7天就重复出现一次.相同的间隔而重复出现的现象称为周期现象,如“24小时1天”、“7天1星期”、“365天1年”就是我们所熟悉的周期现象.自然界中有很多周期现象,如日出日落、月圆月缺、四季交替,等等.正弦函数、余弦函数是否有这样的周期性呢?1.周期函数(1)周期函数条件①对于函数f(x),存在一个__非零__常数T②当x取定义域内的每一个值时,都有__f(x+T)=f(x)__结论函数f(x)叫做__周期函数__,__非零常数T__叫做这个函数的__周期__(2)最小正周期条件周期函数f(x)的所有周期中存在一个最小的__正数__结论这个最小__正数__叫做f(x)的最小正周期2.正弦函数、余弦函数的周期性和奇偶性函数y=sin x y=cos x周期2kπ(k∈Z且k≠0)2kπ(k∈Z且k≠0)最小正周期2π__2π__奇偶性__奇函数____偶函数__[知识点拨]1.对周期函数的两点说明(1)并不是每一个函数都是周期函数,若函数具有周期性,则其周期也不一定唯一.(2)在周期函数y=f(x)中,若x∈D,则x+nT∈D(x∈Z).从而要求周期函数的定义域一定为无限集,且无上下界.2.对函数最小正周期的两点说明(1)最小正周期是指能使函数值重复出现的自变量x 要加上的那个最小正数,这个正数是对x 而言的,如y =sin2x 的最小正周期是π,因为y =sin(2x +2π)=sin [2(x +π)],即π是使函数值重复出现的自变量x 加上的最小正数,π是对x 而言的,而非2x .(2)并不是所有的周期函数都有最小正周期,譬如,常数函数f (x )=c ,任意一个正实数都是它的周期,因而不存在最小正周期.3.正弦函数、余弦函数的奇偶性(1)正弦函数是奇函数,余弦函数是偶函数,反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.(2)正弦曲线、余弦曲线既是中心对称图形又是轴对称图形. 预习自测1.函数f (x )=-2sin(πx +π3)的最小正周期为( D )A .6B .2πC .πD .22.下列函数中,周期为π2的是( D )A .y =sin x2B .y =sin2xC .y =cos x4D .y =cos(-4x ) 3.设函数f (x )=sin(2x -π2),x ∈R ,则f (x )是( B )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数4.若f (x )(x ∈R )为奇函数,且f (x +2)=f (x ),则f (4)=__0__.命题方向1 ⇨三角函数的周期 典例1 求下列函数的周期. (1)y =sin 12x ;(2)y =2sin(x 3-π6).[思路分析] 可以根据周期函数的定义求解,也可以用公式T =2π|ω|直接求解.[解析] 解法1:(1)令u =12x ,则y =sin u 是周期函数,且周期为2π.∴sin(12x +2π)=sin 12x ,即sin[12(x +4π)]=sin 12x .∴y =sin 12x 的周期是4π.(2)∵2sin(x 3-π6+2π)=2sin(x 3-π6),∴2sin[13(x +6π)-π6]=2sin(x 3-π6),∴y =2sin(x 3-π6)的周期是6π.解法2:(1)∵ω=12,∴T =2π12=4π.(2)∵ω=13,∴T =2π13=6π.『规律总结』 求三角函数周期的方法(1)定义法:紧扣周期函数的定义,寻求对定义域内的任意实数x 都满足f (x +T )=f (x )的非零常数T .该方法主要适用于抽象函数.(2)公式法:对形如y =A sin(ωx +φ)和y =A cos(ωx +φ)(其中A ,ω,φ是常数,且A ≠0,ω≠0),可利用T =2π|ω|来求.(3)图象法:可画出函数的图象,借助于图象判断函数的周期,特别是对于含绝对值的函数一般可采用此法.〔跟踪练习1〕求下列函数的最小正周期. (1)y =sin(3x +π3);(2)y =|cos(2x +π6)|;(3)y =sin(2πx -π4).[解析] (1)∵ω=3,T =2π3.(2)∵函数y =cos(2x +π6)的最小正周期为π,而函数y =|cos(2x +π6)|的图象是将函数y =cos(2x +π6)的图象在x 轴下方的部分对折到x 轴上方,并且保留在x 轴上方图象而得到的,由此可知所求函数的最小正周期为T =π2.(3)∵ω=2π,∴T =2π2π=π2.命题方向2 ⇨三角函数奇偶性的判断 典例2 判断下列函数的奇偶性: (1)f (x )=|sin x |+cos x ; (2)f (x )=sin(3x 4+3π2);(3)f (x )=1+sin x -cos 2x1+sin x.[思路分析] 先求函数的定义域,判断函数定义域是否关于原点对称,再判断f (-x )与f (x )的关系,最终确定奇偶性.[解析] (1)函数的定义域为R .∵f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ), ∴函数f (x )是偶函数.(2)f (x )=sin(3x 4+3π2)=-cos 3x4,x ∈R .∵f (-x )=-cos(-3x 4)=-cos 3x4=f (x ),∴函数f (x )=sin(3x 4+3π2)是偶函数.(3)函数应满足1+sin x ≠0,则函数f (x )=1+sin x -cos 2x1+sin x 的定义域为{x ∈R |x ≠2k π+3π2,k ∈Z }.显然定义域不关于原点对称,故函数f (x )=1+sin x -cos 2x1+sin x 为非奇非偶函数.『规律总结』 1.判断函数奇偶性的常用方法:(1)定义法,即从f (-x )的解析式中拼凑出f (x )的解析式,再看f (-x )=-f (x )或f (-x )=f (x )是否成立.(2)图象法,即作出函数的图象,由图象的对称性确定其奇偶性. (3)验证法,即验证f (-x )+f (x )=0或f (-x )-f (x )=0(或f (-x )f (x )=±1)是否成立.此法通常用于函数是非奇非偶的情形.2.判断函数奇偶性时,必须先判断其定义域是否关于原点对称.如果是,再验证f (-x )是否等于-f (x )或f (x ),进而再判断函数的奇偶性;如果不是,则该函数是非奇非偶数.〔跟踪练习2〕判断下列函数的奇偶性. (1)f (x )=x cos(π+x );(2)f (x )=sin(cos x ).[解析] (1)函数f (x )的定义域为R , ∵f (x )=x ·cos(π+x )=-x ·cos x ,∴f (-x )=-(-x )·cos(-x )=x ·cos x =-f (x ). ∴f (x )为奇函数.(2)函数f (x )的定义域为R .∵f (-x )=sin [cos(-x )]=sin(cos x )=f (x ). ∴f (x )为偶函数.三角函数奇偶性与周期性的综合运用典例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x ,求f (5π3)的值.[思路分析] 利用周期性与奇偶性将5π3化到[0,π2]内再求值.[解析] ∵f (x )的最小正周期为π,∴f (5π3)=f (2π3+π)=f (2π3)=f (π-π3)=f (-π3).又f (x )是偶函数.∴f (-π3)=f (π3)=sin π3=32.『规律总结』 1.解答此类题目的关键是利用化归的思想,借助于周期函数的定义把待求问题转化到已知区间上,代入求解即可.2.如果一个函数是周期函数,若要研究该函数的有关性质,结合周期函数的定义可知,完全可以只研究该函数在一个周期上的特征,加以推广便可以得到该函数在其它义域内的有关性质.〔跟踪练习3〕若f (x )是以π2为周期的奇函数,且f (π3)=1,求f (-5π6)的值.[解析] ∵f (x )为以π2为周期的奇函数∴f (-56π)=-f (56π)=-f (π2+π3)=-f (π3)=-1.不清楚f (x +T )表达的意义典例4 利用定义求f (x )=sin(2x -π6)的最小正周期.[错解] ∵f (x +2π)=sin ⎣⎡⎦⎤2(x +2π)-π6 =sin ⎝⎛⎭⎫2x -π6+4π=sin ⎝⎛⎭⎫2x -π6=f (x ), ∴T =2π是f (x )的最小正周期.[错因分析] 错解中求的不是最小正周期.对于y =A sin(ωx +φ)(A >0,ω>0),其周期为2πω. [正解] 令z =2x -π6,∵x ∈R ,∴z ∈R .又∵y =sin z 的周期是2π, z +2π=⎝⎛⎭⎫2x -π6+2π=2(x +π)-π6, ∴f (x +π)=sin ⎣⎡⎦⎤2(x +π)-π6 =sin ⎝⎛⎭⎫2x -π6+2π=sin ⎝⎛⎭⎫2x -π6=f (x ). ∴T =π.[点评] 最小正周期是指使函数重复出现的自变量x 要加上的最小正数,是对x 而言,而不是对ωx 而言.〔跟踪练习4〕对于函数y =sin x ,x ∈R 有sin(π6+2π3)=sin π6,能否说2π3是它的周期?[解析] 不能.周期必须对定义域内的每一个值都有f (x +T )=f (x ). 课堂检测1.下列是定义在R 上的四个函数图象的一部分,其中不是周期函数的是( D )2.函数y =sin2x 是( A ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为π2的偶函数D .周期为π2的奇函数3.若函数f (x )=cos(ωx +π3)(ω>0)的最小正周期是2,则ω的值为( B )A .π2B .πC .3π2D .2π4.函数f (x )是以2为周期的函数,且f (2)=2,则f (6)=__2__. [解析] f (6)=f (4+2)=f (4)=f (2+2)=f (2)=2.5.设f (x )是以1为一个周期的奇函数,且当x ∈(-12,0)时,f (x )=4x -1,求f (-318)的值.[解析] ∵f (x )的周期为1,f (-318)=f (-4+18)=f (18).又当x ∈(-1,0)时,f (x )=2x +1, ∴f (-18)=4×(-18)-1=-32,又∵f (x )是奇函数,∴f (-18)=-f (18),∴f (18)=32.故f (-318)=32.A 级 基础巩固一、选择题1.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( B )[解析] 由已知,得f (x )是周期为2的偶函数,故选B . 2.函数y =sin ⎝⎛⎭⎫-x 2+π4的最小正周期为( C ) A .π B .2π C .4πD .π23.函数f (x )=7sin(2x 3+15π2)是( A )A .周期为3π的偶函数B .周期为2π的偶函数C .周期为3π的奇函数D .周期为4π3的偶函数4.函数y =|cos x |的最小正周期是( C ) A .π4B .π2C .πD .2π5.下列说法中正确的是( A )A .当x =π2时,sin(x +π6)≠sin x ,所以π6不是f (x )=sin x 的周期B .当x =5π12时,sin(x +π6)=sin x ,所以π6是f (x )=sin x 的一个周期C .因为sin(π-x )=sin x ,所以π是y =sin x 的一个周期D .因为cos(π2-x )=sin x ,所以π2是y =cos x 的一个周期6.若函数y =2sin ωx (ω>0)的图象与直线y +2=0的两个相邻公共点之间的距离为2π3,则ω的值为( A )A .3B .32C .23D .13[解析] 函数y =2sin ωx 的最小值是-2,该函数的图象与直线y +2=0的两个相邻公共点之间的距离恰好是一个周期,故由2πω=2π3,得ω=3.二、填空题7.若函数f (x )=sin ωx (ω>0)的周期为π,则ω=__2__.8.已知函数f (x )是定义在R 上的周期为6的奇函数,且f (1)=1,则f (5)=__-1__. [解析] 由于函数f (x )是定义在R 上的周期为6的奇函数,则f (5)=f (5-6)=f (-1)=-f (1).又f (1)=1,则f (5)=-1. 三、解答题9.已知定义在R 上的函数f (x )满足f (x +2)f (x )=1,求证:f (x )是周期函数. [证明] ∵f (x +2)=1f (x ),∴f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ).∴函数f (x )是周期函数,4是一个周期.10.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x .(1)求当x ∈[-π,0]时,f (x )的解析式; (2)画出函数f (x )在[-π,π]上的简图; (3)求当f (x )≥12时x 的取值范围.[解析] (1)∵f (x )是偶函数,∴f (-x )=f (x ). ∵当x ∈[0,π2]时,f (x )=sin x ,∴当x ∈[-π2,0]时,f (x )=f (-x )=sin(-x )=-sin x .又∵当x ∈[-π,-π2]时,x +π∈[0,π2],f (x )的周期为π,∴f (x )=f (π+x )=sin(π+x )=-sin x .∴当x ∈[-π,0]时,f (x )=-sin x . (2)如右图.(3)∵在[0,π]内,当f (x )=12时,x =π6或5π6,∴在[0,π]内,f (x )≥12时,x ∈[π6,5π6].又∵f (x )的周期为π,∴当f (x )≥12时,x ∈[k π+π6,k π+5π6],k ∈Z .B 级 素养提升一、选择题1.函数y =cos(k 4x +π3)(k >0)的最小正周期不大于2,则正整数k 的最小值应是( D )A .10B .11C .12D .13[解析] T =2πk 4=8πk ≤2,∴k ≥4π又k ∈N *∴k 最小为13,故选D .2.函数y =⎪⎪⎪⎪7sin ⎝⎛⎭⎫3x -π5的周期是( C ) A .2π B .π C .π3D .π6[解析] T =12·2π3=π3.3.函数y =|sin x |+|cos x |的最小正周期为( A ) A .π2B .πC .2πD .4π[解析] ∵⎪⎪⎪⎪sin (x +π2)+⎪⎪⎪⎪cos (x +π2)=|sin x |+|cos x |.∴原函数的最小正周期为π2. 4.函数f (x )=4sin(23x +15π2)是( A )A .周期为3π的偶函数B .周期为2π的偶函数C .周期为43π的奇函数D .周期为43π的偶函数[解析] f (x )=4sin(23x +15π2)=4sin(23x +32π)=-4cos 23x ,∴T =3π,且满足f (-x )=f (x ),故选A .二、填空题5.若函数f (x )是以π2为周期的偶函数,且f (π3)=1,则f (-17π6)=__1__.[解析] ∵f (x )的周期为π2,且为偶函数,∴f (-17π6)=f (-3π+π6)=f (-6×π2+π6)=f (π6)=f (π2-π2)=f (-π3)=f (π3)=1.6.设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝⎛⎭⎫α4+π12=95,则sin α的值为 ±45. [解析] ∵f (x )的最小正周期为π2,ω>0,∴ω=2ππ2=4.∴f (x )=3sin ⎝⎛⎭⎫4x +π6. 由f ⎝⎛⎭⎫α4+π12=3sin ⎝⎛⎭⎫α+π3+π6=3cos α=95, ∴cos α=35.∴sin α=±1-cos 2α=±45.三、解答题7.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. [解析] (1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π)(k ∈Z ).11 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π.8.已知f (x )是以π为周期的偶函数,且x ∈[0,π2]时,f (x )=1-sin x ,求当x ∈[52π,3π]时f (x )的解析式.[解析] x ∈[52π,3π]时, 3π-x ∈[0,π2], 因为x ∈[0,π2]时,f (x )=1-sin x , 所以f (3π-x )=1-sin(3π-x )=1-sin x .又f (x )是以π为周期的偶函数,所以f (3π-x )=f (-x )=f (x ),所以f (x )的解析式为f (x )=1-sin x ,x ∈[52π,3π]. C 级 能力拔高定义在R 上的偶函数f (x )满足f (x )=f (x +2),当x ∈[3,4]时,f (x )=x -2,则有下面三个式子:①f (sin 12)<f (cos 12);②f (sin π3)<f (cos π3);③f (sin1)<f (cos1).其中一定成立的是__②③__(填序号).。
2019-2020学年新导学案同步人教A版数学必修2_第2章 点_直线_平面之2.3.1

返回导航
·
第二章 点、直线、平面之间的位置关系
3.直线和平面所成的角
(1)定义:一条直线和一个平面相交,但不和这个平面__垂__直____,这条直线
叫做这个平面的斜线,斜线和平面的___交__点___叫做斜足.过斜线上斜足以外的
一点向平面引垂线,过___垂__足___和__斜__足____的直线叫做斜线在这个平面上的射
一点,且SA=SB=SC.
数
(1)求证:SD⊥平面ABC;
学
必 修
(2)若AB=BC,求证:BD⊥平面SAC.
②
人 教
版
返回导航
·
·
第二章 点、直线、平面之间的位置关系
[解析] (1)因为SA=SC,D是AC的中点,
所以SD⊥AC.在Rt△ABC中,AD=BD,
由已知SA=SB,所以△ADS≌△BDS,
人 教
版
返回导航
·
第二章 点、直线、平面之间的位置关系
1.直线l⊥平面α,直线m⊂α,则l与m不可能
(A)
A.平行
B.相交
C.异面
D.垂直
[解析] ∵直线l⊥平面α,∴l与α相交,
又∵m⊂α,∴l与m相交或异面,由直线与平面垂直的定义,可知l⊥m.故l与
数 学
m不可能平行.
必
修
②
人 教
版
返回导航
·
②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角
即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.
(2)求线面角的技巧:在上述步骤中,其中作角是关键,而确定斜线在平面
内的射影是作角的关键,几何图形的特征是找射影的依据,射影一般都是一些
2012届高考物理总复习重难点诠释、典例剖析课件:第二章 直线运动 第1讲 直线运动的几个基本概念

x随时间变化的关系为x=5+2t3(m),它的速度随时间变化的关系 为v=6t2(m/s),求该质点在t=0到t=2 s间的平均速度大小和t=2 s到 t=3 s间的平均速度的大小. [解析] 当t=0时,对应x0=5 m,当t=2 s时,对应x2=21 m, 当t=3 s时,对应x3=59 m,则: t=0到t=2 s间的平均速度大小为 x − x0 v1 = 2 = 8 m/s 2 t=2 s到t=3 s间的平均速度大小为 x − x2 v2 = 3 = 38 m/s 1 [答案] 8 m/s 38 m/s
第二章: 第二章:
直线运动
重点难点诠释………………04……………11
重点难点诠释
跟踪练习1
下列情况中的物体,哪些可以看作质点(
)
A.研究从北京开往上海的一列火车的运行速度 B.研究汽车后轮上一点运动情况的车轮 C.体育教练员研究百米赛跑运动员的起跑动作 D.研究地球自转时的地球 [答案] A
重点难点诠释
跟踪练习2 关于时间与时刻,下列说法正确的是( )
A.作息时间表上标出上午8:00开始上课,这里的8:00指的是 时间 B.上午第一节课从8:00到8:45,这里指的是时间 C.电台报时时说:“现在是北京时间8点整”,这里实际上 指的是时刻 D.在有些情况下,时间就是时刻,时刻就是时间 [答案] BC
重点难点诠释
跟踪练习4 它意味着( ) 做匀加速直线运动的物体,加速度是2 m/s2,
A.物体在任1 s末的速度是该秒初的两倍 B.物体在任1 s末的速度比该秒初的速度大2 m/s C.物体在第1 s末的速度为2 m/s D.物体在任1 s的初速度比前1 s的末速度大2 m/s
初中数学_《探索直线平行的条件》第二课时教学设计学情分析教材分析课后反思

《探索直线平行的条件(第二课时)》教学设计【教学内容】鲁教版初中四年制一年级下册第七章《相交线与平行线》第二节《探索直线平行的条件》P73—P75第二课时.【教学目标】①能在基本图形中识别内错角、同旁内角;②通过图形变换,能在复杂的图形中辨析出内错角、同旁内角;③在掌握了“同位角相等,两直线平行”的基础上,利用自制模型,通过动手操作和小组合作,进一步探索直线平行的其它条件。
④在跟踪练习和变式训练中,90%以上的学生能通过独立思考或小组交流,能够选择恰当的方法解决问题。
⑤经历观察、操作、想象、推理、交流等活动进一步发展空间观念、推理能力和有条理的进行表达能力,体会利用数学转化思想,获得数学结论的过程。
【重点、难点】重点:探索并掌握“内错角相等,两直线平行”和“同旁内角互补,两直线平行”等两直线平行的条件。
难点:两直线平行的条件的探索和书写自己的理由,并综合应用判定平行的各种方法判定两直线平行。
【教具准备】三角尺、量角器,纸片,多媒体课件【教法学法】鉴于本节课的难点,我增设两个新的问题情境引导学生识别内错角和同旁内角,并且利用“三线八角”的模型引导学生关注内错角或者同旁内角与两直线平行的关系,从而快速突破教学难点,进入数学本质探究。
发挥学生的主体地位关键是让学生积极主动地思考。
这就要求所有问题都要在学生独立思考、或者在独立思考的基础上合作完成。
因此,本节课教师采用问题引导的启发式教法,学生通过自主探究与合作交流的方法学习。
【评价设计】1、通过提问完成目标1,达标率90%。
2、通过独立思考、小组合作学习和全班交流活动完成目标2,达标率95%。
3、通过教师的及时、有效的评价语完成跟踪练习1、2以及当堂检测。
《探索直线平行的条件(第二课时)》学情分析学生的知识技能基础:从认知结构的角度,六年级的学生已经具备一定的生活经验和数学活动经验,并且对基本几何图形有一定的认识,学生已经学了平行线的定义、平行公理及其推论,具备了探究直线平行的条件的基础,但在逻辑思维和合作交流的意识方面发展不够均衡。
高中数学第一章常用逻辑用语1.3.1“且”与“或”学案(含解析)新人教A版选修2-1

1。
3。
1 “且”与“或”自主预习·探新知情景引入要在某居民楼一楼与二楼的楼梯间安一盏灯,一楼和二楼各有一个开关,使得任意一个开关都能独立控制这盏灯,你能运用“或”“且”的方法解决吗?新知导学1.逻辑联结词“或”“非"构成新命题记作读作用联结词“且”把命题p和命题q联结起来,就__p∧q____p且q__得到一个新命题用联结词“或”把命题p和命题q联结起来,__p∨q____p或q__就得到一个新命题p q p∧q p∨q真真__真____真__真假__假____真__假真__假____真__假假__假____假__预习自测1.“xy≠0"是指( A )A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0 D.不都是0[解析]xy≠0当且仅当x≠0且y≠0.2.p:点P在直线y=2x-3上;q:点P在曲线y=-x2上,则使“p∧q"为真命题的一个点P(x,y)是( C )A.(0,-3)B.(1,2)C.(1,-1)D.(-1,1)[解析]点P(x,y)满足错误!,解得P(1,-1)或P(-3,-9),故选C.3.下列判断正确的是( B )A.命题p为真命题,命题“p或q”不一定是真命题B.命题“p且q”是真命题时,命题p一定是真命题C.命题“p且q”是假命题,命题p一定是假命题D.命题p是假命题,命题“p且q”不一定是假命题[解析] 因为p、q都为真命题时,“p且q”为真命题.4.由下列各组命题构成的新命题“p或q"“p且q”都为真命题的是( B )A.p:4+4=9,q:7〉4B.p:a∈{a,b,c},q:{a}{a,b,c}C.p:15是质数,q:8是12的约数D.p:2是偶数,q:2不是质数[解析] “p或q"“p且q”都为真,则p真q真,故选B.5.给出下列条件:(1)“p成立,q不成立”;(2)“p不成立,q成立”;(3)“p与q都成立”;(4)“p与q都不成立”.其中能使“p或q"成立的条件是__(1)(2)(3)__(填序号).互动探究·攻重难互动探究解疑命题方向❶命题的构成形式典例1 分别指出下列命题的构成形式及构成它的简单命题.(1)小李是老师,小赵也是老师;(2)1是合数或质数;(3)他是运动员兼教练员;(4)这些文学作品不仅艺术上有缺点,而且政治上有错误;(5)要么周长相等的两个三角形全等,要么面积相等的两个三角形全等.[规范解答](1)这个命题是“p∧q"的形式,其中,p:小李是老师;q:小赵是老师.(2)这个命题是“p∨q”的形式,其中,p:1是合数;q:1是质数.(3)这个命题是“p∧q”的形式,其中,p:他是运动员;q:他是教练员.(4)这个命题是“p∧q"的形式,其中,p:这些文学作品艺术上有缺点;q:这些文学作品政治上有错误.(5)这个命题是p∨q形式,其中p:周长相等的两个三角形全等,q:面积相等的两个三角形全等.『规律总结』1。
《指数》教案与同步练习

《4.1 指数》教案第一课时 n次方根与指数幂【教材分析】学生在初中学习了数的开平方、开立方以及二次根式的概念,又学习了正整数指数幂、零指数幂、负整数指数幂的概念,以及整数指数幂的运算法则。
有了这些知识作储备,教科书通过实际问题引入分数指数幂,说明了扩张指数范围的必要性。
【教学目标与核心素养】课程目标1.理解n次方根、根式的概念与指数幂的概念.2.掌握指数幂和根式之间的互化、化简、求值;3.掌握指数幂的运算性质。
数学学科素养1.数学抽象:n次方根、根式的概念与指数幂的概念;2.逻辑推理:指数幂和根式之间的互化;3.数学运算:利用指数幂的运算性质化简求值;4.数学建模:通过与初中所学的知识进行类比,得出指数幂的概念,和指数幂的性质。
【教学重难点】重点:(1)根式概念的理解;(2)指数幂的理解;(3)掌握并运用指数幂的运算性质.难点:根式、指数幂概念的理解.[教学方法]:以学生为主体,采用类比发现,诱思探究式教学,精讲多练。
【教学过程】一、情景引入关于根号的故事,最有价值和意义的当属2的发现,它导致了第一次数学危机,并促使了逻辑学和几何学的发展.公元前五世纪,古希腊有一个数学学派,名叫毕达哥拉斯学派,毕达哥拉斯学派提出的著名命题“万物皆数”是该学派的哲学基石.而“一切数均可表示成整数或整数之比”则是这一学派的数学信仰.对于这一理论,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示.希帕索斯的发现导致了数学史上第一个无理数2 的诞生.小小2的出现,却在当时的数学界掀起了一场巨大的风暴.史称“第一次数学危机”.希帕索斯也因发现了根号2,撼动了学派的基石而被扔进大海.二、新知导学 1.n 次方根没有偶次方根.(2)n0=0(n >1,且n ∈N *). 2.根式(1)定义:式子叫做根式,这里n 叫做__根指数__,a 叫做__被开方数__. (2)性质:(n >1,且n ∈N *) ①(na )n =a .②na n=⎩⎨⎧a ,n 为奇数,|a |,n 为偶数.三、课前小测1.3-8等于( B )A.2 B.-2 C.±2D.-8[解析] 3-8=3-23=-2.2.下列各式正确的是( A )A.(3a)3=a B.(47)4=-7C.(5a)5=|a| D.6a6=a[解析] (3a)3=a,(47)4=7,(5a)5=a,6a6=|a|=⎩⎨⎧a a≥0-a a<0,故选A.3.以下说法正确的是( C )A.正数的n次方根是正数B.负数的n次方根是负数C.0的n次方根是0(其中n>1且n∈N*)D.负数没有n次方根[解析] 对于A,正数的偶次方根中有负数,∴A错误;对于B,负数的奇次方根是负数,偶次方根不存在,∴B错误;对于C,当n>1且n∈N*时,0的n次方根是0,∴C正确;对于D,n为奇数时,负数的奇次方根是负数,∴D错误.4.若66-x有意义,则实数x的取值范围为__(-∞,6]__.[解析] 要使式子66-x有意义,应满足6-x≥0,∴x≤6.四、互动探究命题方向1 ⇨n次方根的概念典例1 (1)16的平方根为__±4__,-27的5次方根为;(2)已知x7=6,则x=;(3)若4x-2有意义,则实数x的取值范围是__[2,+∞)__.[思路分析] 解答此类问题应明确n次方根中根指数对被开方数的要求及n 次方根的个数要求.[解析] (1)∵(±4)2=16,∴16的平方根为±4.-27的5次方根为5-27.(2)∵x7=6,∴x=76.(3)要使4x-2有意义,则需x-2≥0, 即x≥2.因此实数x的取值范围是[2,+∞).『规律方法』(1)任意实数的奇次方根只有一个,正数的偶次方根有两个且互为相反数;(2)(na)n是实数a的n次方根的n次幂,其中实数a的取值由n的奇偶性决定.〔跟踪练习1〕计算下列各值:(1)27的立方根是__3__;(2)256的4次算术方根是__4__;(3)32的5次方根是__2__.[解析] (1)∵33=27,∴27的立方根是3.(2)∵(±4)4=256,∴256的4次算术方根为4.(3)∵25=32,∴32的5次方根为2.命题方向2 ⇨利用根式的性质化简或求值典例2 计算下列各式的值: (1)5-25;(2)6π-46;(3)4x +24; (4)7x -77.[思路分析] 由题目可获得以下主要信息: ①所给形式均为na n 的形式; ②na n 形式中n 分为奇数和偶数两种. 解答本题可依据根式的性质na n=⎩⎨⎧|a |n 为大于1的偶数a n 为大于1的奇数,完成化简.[解析] (1)5-25=-2.(2)6π-46=64-π6=4-π.(3)4x +24=|x +2|=⎩⎨⎧x +2x ≥-2-x -2 x <-2.(4)7x -77=x -7.『规律方法』 1.根式化简或求值的注意点解决根式的化简或求值问题,首先要分清根式为奇次根式还是偶次根式,然后运用根式的性质进行化简或求值.2.对n a n 与(na )n 的进一步认识(1)对(na )n的理解:当n 为大于1的奇数时,(na )n 对任意a ∈R 都有意义,且(na )n=a ,当n 为大于1的偶数时,(na )n只有当a ≥0时才有意义,且(na )n =a (a ≥0).(2)对na n的理解:对任意a∈R都有意义,且当n为奇数时,na n=a;当n为偶数时,na n=|a|=⎩⎨⎧a a≥0-a a<0.(3)对于根式的运算还要注意变式,整体代换,以及平方差、立方差和完全平方、完全立方公式的运用,做到化繁为简,必要时进行讨论.〔跟踪练习2〕(1)计算下列各式:①5-a5=__-a__;②63-π6=__π-3__;③614-3338-30.125=__12__.(2)化简下列各式:①4x-24;②5x-π5.[解析] (1)①5-a5=-a.②63-π6=6π-36=π-3.③614-3338-30.125=522-3323-3123=52-32-12=12.(2)①4x-24=|x-2|=⎩⎨⎧x-2x≥2-x+2x<2.②5x-π5=x-π.命题方向3 ⇨有限制条件的根式化简 典例3 若代数式2x -1+2-x 有意义,化简4x 2-4x +1+24x -24.[思路分析] 先借助代数式有意义确定出x 的取值范围,再进行根式的化简. [解析] 由2x -1+2-x 有意义,得⎩⎨⎧2x -1≥02-x ≥0,故4x 2-4x +1+24x -24=2x -12+24x -24=|2x -1|+2|x -2|=2x -1+2(2-x )=3. 『规律方法』 有限制条件的根式化简的步骤〔跟踪练习3〕 化简下列各式:(1)x 2-2x +1-x 2+6x +9(-3<x <3); (2)(a -1)2+1-2a +a 2+31-a 3.[解析] (1)原式=x -12-x +32=|x -1|-|x +3|.∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4. ∴原式=⎩⎨⎧-2x -2-3<x <1-41≤x <3.(2)由a -1知a -1≥0, ∴原式=a -1+a -12+1-a =a -1.没有正确理解na n =a 成立的条件典例4 已知a ,b ∈R ,下列各式总能成立的有__②__. ①(6a -6b )6=a -b ;②n a 2+b 2n=a 2+b 2;③4a 4-4b 4=a -b ;④10a+b10=a+b.[错解] ②③④由题意,得①显然不成立,②③④都成立.[错因分析] 该解法中忽略了na n=a成立的条件是只有当n为奇数,或者当n为偶数且a>0时才成立.[思路分析] 要解决此类化简、求值题,关键是正确理解na n=a成立的条件.[正解] ①显然不对,②中∵a2+b2≥0,②一定成立;③和④中,∵a,b∈R,∴4a4=|a|,4b4=|b|,10a+b10=|a+b|,因此③④都错.配方法与平方法的应用具备二次三项式形式的数学表达式,常采用配方法探求解题思路;含根号的数学表达式,常用平方法求解,平方前注意考虑表达式的符号.典例5 计算5-26+5+2 6.[分析] 注意a+2b的配方或整体考虑运用方程思想.[解析] 解法一:原式=2-32+2+32=3-2+3+2=2 3.解法二:设x=5-26+5+26,则x>0.平方得x2=(5-26)+(5+26)+25+265-26,即x2=12,∵x>0,∴x=2 3.∴原式=2 3.『规律方法』对形如a±2b的复合根式,在有些情况下是可能得到化简的,但并非所有的这种类型都能化简,只要掌握其中较简单的基本类型即可.将复合根式先化为a±2b(a>0,b>0)的形式.若有x1+x2=a,x1·x2=b,其中x1>0,x2>0,x1>x2,则复合根式可写为x 12±2x1·x2+x22=x1±x22=x1±x2,也即若方程x2-ax+b=0有两个正的有理根,则复合根式a±2b可化简.五、课堂作业1.下列运算中计算结果正确的是( D )A.a4·a3=a12B.a6÷a3=a2C.(a3)2=a5D.a3·b3=(a·b)3[解析] a4·a3=a7,故A错;a6÷a3=a3,故B错;(a3)2=a6,故C错;a3·a3=a6,故D正确.2.下列式子中正确的是( C )A.6-32=3-3 B.4a4=aC.622=32 D.a0=1[解析] 6-32=632=33,4a4=|a|,a0=1(a≠0),故A、B、D错误,选C.3.若2<a<3,化简2-a2+43-a4的结果是( C )A.5-2a B.2a-5C.1 D.-1[解析] 由于2<a<3,所以2-a<0,3-a>0,所以原式=a-2+3-a=1,故选C.4.求值:4-434=__43__.[解析] 4-434=4434=43.《第一课时 n次方根与指数幂》同步练习A级基础巩固一、选择题1.已知x5=6,则x等于( B )A. 6 B.56C.-56 D.±56[解析] x为6的5次方根,所以x=56.2.a-b2+5a-b5的值是( C )A.0 B.2(a-b) C.0或2(a-b) D.a-b[解析] 当a≥b时,原式=a-b+a-b=2(a-b),当a<b时,原式=b-a+a-b=0,故选C.3.已知m10=2,则m等于( D )A.102 B.-102C.210D.±102[解析] ∵m10=2,∴m是2的10次方根.又∵10是偶数,∴2的10次方根有两个,且互为相反数,∴m=±102,故选D.4.3-8125的值是( B )A.25B.-25C.±25D.-35[解析] 3-8125=3-253=-25,故选B.5.化简x+32-3x-33得( C )A.6 B.2xC.6或-2x D.-2x或6或2[解析] 原式=|x +3|-(x -3)=⎩⎨⎧6 x ≥-3-2x x <-3.6.化简4-23-4+23=( D ) A .2 3 B .2 C .-2 3 D .-2[解析] 4-23=3-23+1=3-12=3-1,同理4+23=3+1,∴4-23-4+23=-2,故选D . 二、填空题 7.2-π2=__π-2__.[解析] 2-π2=|2-π|=π-2.8.把a-1a根号外的a 移到根号内等于=__--a __.[解析] 由题意,得-1a>0,∴a <0.∴a -1a=-(-a )-1a=--a2·-1a=--a .三、解答题 9.化简下列各式. (1)(47)4;(2)(3-15)3; (3)5-125;(4)4-104;(5)42a -b4;(6)12+1-12-1. [解析] (1)(47)4=7. (2)(3-15)3=-15.(3)5-125=-12.(4)4-104=|-10|=10.(5)42a-b4=|2a-b|=⎩⎨⎧2a-b2a≥bb-2a2a<b.(6)12+1-12-1=2-12-1-2+12-1=-2.B级素养提升一、选择题1.若3x2为一个正数,则( C )A.x≥0B.x>0 C.x≠0D.x<0[解析] 当x≠0时,x2>0,∴3x2是一个正数,故选C.2.化简-x3x的结果是( A )A.--x B.x C.-x D.-x [解析] ∵-x3有意义,∴x<0,∴-x3x=-x3-x2=--x3x2=--x.3.化简(2-b)2的结果是( A )A.-b B.bC.±b D.1 b[解析] 由题意知,-b≥0,∴(2-b)2=-b.4.当2-x有意义时,化简x2-4x+4-x2-6x+9的结果是( C )A .2x -5B .-2x -1C .-1D .5-2x[解析] ∵2-x 有意义,∴2-x ≥0,即x ≤2,所以原式=x -22-x -32=(2-x )-(3-x )=-1.二、填空题5.7-210=__5-2__. [解析]7-210=5-22=5- 2.6.函数f (x )=x -12+5x +15的值域为__[2,+∞)__.[解析] f (x )=|x -1|+x +1=⎩⎨⎧2x <12x x ≥1.当x ≥1时,f (x )≥2,当x <1时,f (x )=2, ∴f (x )的值域为[2,+∞). 三、解答题7.已知a 、b 是方程x 2-6x +4=0的两根,且a >b >0,求a -ba +b的值. [解析] ∵a 、b 是方程x 2-6x +4=0的两根, ∴⎩⎨⎧a +b =6ab =4,∵a >b ,(a -b a +b )2=a +b -2ab a +b +2ab =6-246+24=210=15. ∴a -ba +b=15=55. 8.已知4a +12=-4a -1,求实数a 的取值范围.[解析] ∵4a +12=|4a +1|=-4a -1,∴4a +1≤0,∴a ≤-14.∴a 的取值范围是(-∞,-14].9.若x>0,y>0,且x-xy-2y=0,求2x-xyy+2xy的值.[解析] ∵x-xy-2y=0,x>0,y>0,∴(x)2-xy-2(y)2=0,∴(x+y)(x-2y)=0,由x>0,y>0得x+y>0,∴x-2y=0,∴x=4y,∴2x-xyy+2xy=8y-2yy+4y=65.《第二课时分数指数幂及其运算性质》教案【教材分析】学生在初中学习了数的开平方、开立方以及二次根式的概念,又学习了分数指数幂的概念,以及整数指数幂的运算法则.有了这些知识作储备,教科书通过实际问题引入无理数指数幂,说明了扩张指数范围的必要性.【教学目标与核心素养】课程目标1.理解分数指数幂的概念;2.掌握实数指数幂和根式之间的互化、化简、求值;3.掌握实数指数幂的运算性质;4.能利用已知条件求值.数学学科素养1.数学抽象:分数指数幂的概念;2.逻辑推理:实数指数幂和根式之间的互化;3.数学运算:利用实数指数幂的运算性质化简求值;4.数据分析:分析已知条件与所求式子之间的联系;5.数学建模:通过与分数指数幂性质进行类比,得出分数指数幂的概念和性质。
05 孟德尔的豌豆杂交实验(二)(学生)
黄色豌豆和绿色豌豆的性状分离比是多少?
圆粒豌豆和皱粒豌豆的性状分离比是多少?
这说明了什么?
5.(理解)若用纯种黄色皱粒豌豆和纯种绿色圆粒豌豆作亲本进行该杂交实验,你认为F1和F2将会出现怎样的实验现象?
〖问题研讨二〗对自由组合现象的解释――提出假设
学生:阅读教材P10“对自由组合现象的解释”小节,小组内讨论解决下列问题:
课堂组织
〖问题研讨一〗两对相对性状的杂交实验――发现问题
学生:阅读教材P9“两对相对性状杂交实验”小节,小组内分析解决下列问题:
1.(记忆)该杂交实验中选择了怎样的豌豆作为亲本?
2.(理解)F1的性状表现是怎样的?说明了什么?
3.(理解)在F2中:
性状表现类型及其比例是怎样的?
亲性状有哪些?
重组性状有哪些?
孟德尔提出了怎样的假设?
6.(分析)根据孟德尔的假设,在F1自交过程中,应该有种雌雄配子结合方式。
请在下列表格中写出每种配子结合方式形成的受精卵(F2)中的遗传因子组成:
雄配子
雌配子
7.(记忆)根据上表,归纳出F2的性状表现类型及其比例:
8.(绘图)请根据以上分析,写出两对相对性状杂交实验的遗传图解:
(3)他们新生的儿子与父亲,女儿与母亲具有相同基因型的几率分别是和。
(4)这个非秃头褐眼的儿子将来与一个蓝眼秃头的女子婚配,他们新生的子女可能的表现型分别是。若生一个秃头褐眼的儿子的几率是。若连续生三个都是非秃头蓝眼的女儿的几率是。
3.归纳遗传因子的自由组合定律。
自由组合定律的内容:。
自由组合定律实质:。
【跟踪练习2】下列关于基因的自由组合定律的陈述中,错误的是()
高中英语北师大版版必修3练习Unit 7 课时跟踪练(三) Lesson 2 & Lesson 3—Pre reading Word版含解
课时跟踪练(三) Lesson 2 & Lesson 3—Pre-readingⅠ.阅读理解AThere are eight species of dolphins in Hawaii. The bottle-nosed dolphin is the most common type of dolphin. This name came from its longer upper and lower jaws. This dolphin is a very loving and friendly animal. There are cases of dolphins that rescue injured divers in the ocean.In Hawaii, you can experience swimming with dolphins. There are several companies on Oahu and the Big Island that offer a swim with these animals in the wild. These kinds of tours usually are combined with water sports such as snorkel (水下呼吸管) or scuba diving.Dolphins are protected by the Marine Mammal Protection Act and it is against the law to become closer than 50 yards (45 m)to them. But these friendly animals can approach to check you out. You have to consider that if dolphins prefer to keep away, you should not try to swim close to them. If dolphins come close while you are swimming in the ocean, don't attempt to touch them and don't make aggressive or sudden movements.At the Sea Life Park on Oahu, they have special dolphin programs that allow you to swim and hug dolphins, besides, you'll learn about these mammals' habits. The Dolphin Quest program will explain to you why dolphins are considered one of the most intelligent creatures.Swimming with dolphins is one of the most attractive activities if you come to Hawaii. But Hawaii's underwater world is amazing and has many other species to watch:Humpback whales,Green sea turtles,Monk seals and so on.While you get in touch with this underworld,always have in mind the main rule of the ocean respect: Look but don't touch.语篇解读:本文向读者介绍在夏威夷和海豚一起游泳时需要注意的几点事项。
2020_2021学年高中数学第一章数列3等比数列第2课时等比数列的性质学案(含解析)北师大版必修5
第2课时等比数列的性质Q情景引入ing jing yin ru1915年,波兰数学家谢尔宾斯基(W.Sierpinski)创造了一个美妙的“艺术品”,被人们称为谢尔宾斯基三角形,如图所示.如果我们来看一看图中那些白色三角形的个数,并把它们按面积大小,从小到大依次排列起来,可以得到一列数:1,3,9,27,81,……我们知道这是一个等比数列,那么,等比数列中,有什么特殊的性质呢?X新知导学in zhi dao xue1.等比数列的性质:(1)通项公式的推广:a n=a m·q n-m (m、n∈N+).(2)公比为q的等比数列的各项同乘以一个不为零的数m,所得数列是等比数列,公比为q .(3)若{a n}是等比数列,且m+n=p+q,m、n、p、q∈N+,则a m·a n=a p·a q .(4)若等比数列{a n}的公比为q,则{1a n }是以1q为公比的等比数列.(5)一组等比数列{a n}中,下标成等差数列的项构成等比数列 .(6)若{a n}与{b n}均为等比数列,则{a n b n}为等比数列 .(7)公比为q的等比数列,按m项分组,每m项之和(和不为0)组成一个新数列,仍是等比数列,其公比为q m .(8){a n}是等差数列,c是正数,则数列{ca n}是等比数列.(9){a n}是等比数列,且a n>0,则{log a a n}(a>0,a≠1)是等差数列.2.等比数列中的设项方法与技巧(1)若三个数成等比数列,可设三个数为a,aq,aq2或aq,a,aq.(2)若四个数成等比数列,可设 a ,aq ,aq 2,aq 3;若四个数均为正(负)数,可设a q 3,a q,aq ,aq 3. Y 预习自测u xi zi ce1.在等比数列{a n }中,若 a 6=6,a 9=9,则a 3等于( A ) A .4 B .32 C .169D .3[解析] 解法一:∵a 6=a 3·q 3, ∴a 3·q 3=6.a 9=a 6·q 3,∴q 3=96=32.∴a 3=6q 3=6×23=4.解法二:由等比数列的性质,得a 26=a 3·a 9, ∴36=9a 3,∴a 3=4.2.在等比数列{a n }中,a 4+a 5=10,a 6+a 7=20,则a 8+a 9等于( D ) A .90 B .30 C .70 D .40[解析] ∵q 2=a 6+a 7a 4+a 5=2, ∴a 8+a 9=(a 6+a 7)q 2=20q 2=40.3.如果数列{a n }是等比数列,那么( A ) A .数列{a 2n }是等比数列 B .数列{2a n }是等比数列 C .数列{lg a n }是等比数列 D .数列{na n }是等比数列[解析] 数列{a 2n }是等比数列,公比为q 2,故选A . 4.等比数列{a n }中,a 1=1,a 9=9,则a 5= 3 . [解析] 由a 25=a 1·a 9,∴a 25=9,∴a 5=±3. 而a 1、a 9均为正值,故a 5也为正值,∴a 5=3.5.已知等比数列{a n }中,a 4=7,a 6=21,则a 12= 567 . [解析] 解法一:可知a 4、a 6、a 8、a 10、a 12成等比数列.其公比为 a 6a 4=217=3,所以a 12=a 4·35-1=7×34=567.解法二:设等比数列{a n }的公比为q ,则a 6a 4=q 2=3. ∴a 12=a 4·q 8=7×34=567.解法三:由⎩⎪⎨⎪⎧a 4=7,a 6=21,得⎩⎪⎨⎪⎧a 1q 3=7,a 1q 5=21,两式相比得q 2=3.∴a 12=a 1·q 11=(a 1·q 5)·q 6=a 6·(q 2)3=21×33=567.H 互动探究解疑u dong tan jiu jie yi命题方向1 ⇨运用等比数列性质解题例题1 在等比数列{a n }中,若a 2=2,a 6=162,求a 10.[分析] 解答本题可充分利用等比数列的性质及通项公式,求得q ,再求a 10. [解析] 解法一:设公比为q ,由题意得⎩⎪⎨⎪⎧a 1q =2a 1q 5=162,解得⎩⎪⎨⎪⎧ a 1=23q =3,或⎩⎪⎨⎪⎧a 1=-23q =-3.∴a 10=a 1q 9=23×39=13 122或a 10=a 1q 9=-23×(-3)9=13 122.解法二:∵a 6=a 2q 4,∴q 4=a 6a 2=1622=81,∴a 10=a 6q 4=162×81=13 122.解法三:在等比数列中,由a 26=a 2·a 10得a 10=a 26a 2=16222=13 122.『规律总结』 比较上述三种解法,可看出解法二、解法三利用等比数列的性质求解,使问题变得简单、明了,因此要熟练掌握等比数列的性质,在解有关等比数列的问题时,要注意等比数列性质的应用.〔跟踪练习1〕(1)若1,a 1,a 2,4成等差数列;1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值等于( A ) A .-12B .12C .±12D .14(2)若等比数列{a n } 的各项均为正数,且a 10·a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20= 50 .[解析] (1)∵1,a 1,a 2,4成等差数列, 3(a 2-a 1)=4-1, ∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q ,则b 22=1×4=4,且b 2=1×q 2>0, ∴b 2=2, ∴a 1-a 2b 2=-a 2-a 1b 2=-12. (2)因为等比数列{a n }中,a 10·a 11=a 9·a 12, 所以由a 10a 11+a 9a 12=2e 5,可解得a 10·a 11=e 5. 所以ln a 1+ln a 2+…+ln a 20=ln(a 1·a 2·…·a 20) =ln(a 10·a 11)10=10ln(a 10·a 11) =10·lne 5=50.命题方向2 ⇨对称法设未知项例题2 已知四个数前三个成等差,后三个成等比,中间两数之积为16,首尾两个数之积为-128,求这四个数.[分析] 求四个数,给出四个条件,若列四个方程组成方程组虽可解,但较麻烦,因此可依据条件减少未知数的个数.设未知数时,可以根据前三个数成等差来设,也可以依据后三个数成等比来设,还可以依据中间(或首尾)两数之积来设,关键是要把握住未知量要尽量少,下一步运算要简捷.[解析] 设四个数为2a q -a 、aq、a 、aq ,则由题意得⎩⎪⎨⎪⎧a 2q =162aq-a ·aq =-128,解得⎩⎪⎨⎪⎧ a =8q =4或⎩⎪⎨⎪⎧a =-8q =4.因此所求的四个数为-4,2,8,32或4,-2,-8,-32.『规律总结』 (1)根据四个数中前3个成等差、后三个成等比列方程时,可以据后三个成等比用a 、q 表示四个数,也可以据前三个成等差,用a 、d 表示四个数,由于中间两数之积为16,将中间两个数设为aq,aq 这样既可使未知量减少,同时解方程也较为方便.(2)注意到中间两数的特殊地位,可设第三个数为x ,则第二个数为16x ,则第一个数为32x-x ,最后一个数为x 316,再利用首尾两数之和为-128可列出关于x 的方程x 316·⎝ ⎛⎭⎪⎫32x -x =-128,解之得x =±8,则更简捷.〔跟踪练习2〕有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,则这四个数为多少.[解析] 解法一:设四个数依次为a -d ,a ,a +d ,a +d2a ,由条件得⎩⎪⎨⎪⎧a -d +a +d 2a =16,a +a +d =12,解得⎩⎪⎨⎪⎧a =4d =4或⎩⎪⎨⎪⎧a =9.d =-6.所以,当a =4,d =4时, 所求四个数为0,4,8,16. 当a =9,d =-6时, 所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.解法二:设四个数依次为2a q -a ,aq,a ,aq (a ≠0),由条件得⎩⎪⎨⎪⎧2a q -a +aq =16,aq +a =12,解得⎩⎪⎨⎪⎧q =2,a =8或⎩⎪⎨⎪⎧q =13,a =3.当q =2,a =8时,所求四个数为0,4,8,16. 当q =13,a =3时,所求四个数为15,9,3,1.解法三:设四个数依次为x ,y,12-y,16-x ,由条件有⎩⎪⎨⎪⎧2y =x +12-y ,12-y2=y ·16-x ,解得⎩⎪⎨⎪⎧x =0,y =4或⎩⎪⎨⎪⎧x =15,y =9.故所求四个数为0,4,8,16,或15,9,3,1.命题方向3 ⇨有关等比数列的开放探究题例题3 已知数列{a n }是各项为正数的等比数列,数列{b n }定义为b n =1n[lg a 1+lg a 2+…+lg a n -1+lg(ka n )],是否存在实数k ,使得数列{b n }为等差数列?并证明你的结论.[分析] 先利用数列{a n }是等比数列,求出数列{b n }的通项公式,再求b n +1-b n ,看使它成为常数的条件是什么?[解析] 设数列{a n }的公比为q ,则a n =a 1qn -1,b n =1n[lg a 1+lg(a 1q )+lg(a 1q 2)+…+lg(ka 1q n -1)],解得b n =1n [n lg a 1+12n (n -1)lg q +lg k ]=lg a 1+12(n -1)lg q +1nlg k ,∴b n +1-b n =[lg a 1+12n lg q +1n +1lg k ]-[lg a 1+12(n -1)lg q +1nlg k ]=12lg q -1n n +1lg k . 要使数列{b n }为等差数列,只需k =1, 故存在实数k =1,使得数列{b n }成为等差数列.『规律总结』 除了用假设法,也可以从寻求使它成立的条件入手,找到解决问题的突破口.下面的性质要熟悉:①若{a n }是等差数列,c 是正数,则数列{ca n }是等比数列;②若{a n }是等比数列,且a n >0,则{log a a n }(a >0,a ≠1)是等差数列,这两个基本性质反映了等差、等比数列可以互相转化.〔跟踪练习3〕在公差不为零的等差数列{a n }和等比数列{b n }中,已知a 1=1,且a 1=b 1,a 2=b 2,a 8=b 3. (1)求数列{a n }的公差d 和数列{b n }的公比q ;(2)是否存在常数a ,b 使得对一切正整数n ,都有a n =log a b n +b 成立?若存在,求出a 和b ;若不存在,说明理由.[解析] (1)由已知a 1=b 1=1,a 2=b 2,a 8=b 3,得⎩⎪⎨⎪⎧1+d =q1+7d =q2,解得⎩⎪⎨⎪⎧q =6d =5或⎩⎪⎨⎪⎧q =1d =0(舍去).(2)假设存在a ,b 使得a n =log a b n +b 成立, 即有1+5(n -1)=log a 6n -1+b .整理,得(5-log a 6)n -(4+b -log a 6)=0. ∵a n =log a b n +b 对一切正整数n 恒成立.∴⎩⎪⎨⎪⎧5-log a 6=04+b -log a 6=0,∴a =56,b =1.Y 易混易错警示i hun yi cuo jing shi例题4 四个实数成等比数列,且前三项之积为1,后三项之和为134,求这个等比数列的公比.[误解] 设这四个数为aq -3,aq -1,aq ,aq 3,由题意得⎩⎪⎨⎪⎧a 3q -3=1,①aq -1+aq +aq 3=134.②由①得a =q ,把a =q 代入②并整理,得4q 4+4q 2-3=0,解得q 2=12或q 2=-32(舍去),故所求的公比为12.[辨析] 上述解法中,四个数成等比数列,设其公比为q 2,则公比为正数,但题设并无此条件,因此导致结果有误.[正解] 设四个数依次为a ,aq ,aq 2,aq 3,由题意得⎩⎪⎨⎪⎧aq 3=1,①aq +aq 2+aq 3=134.②由①得a =q -1,把a =q -1代入②并整理,得4q 2+4q -3=0,解得q =12或q =-32,故所求公比为12或-32.B 本节思维导图ei jie si wei dao tu等比数列的性质⎩⎪⎨⎪⎧等比数列的性质等比数列中的设项方法与技巧等差数列与等比数列的综合应用。
函数的表示法2:分段函数
分段函数Q 情景引入ing jing yin ru某魔术师猜牌的表演过程是这样的,表演者手中持有六张扑克牌,不含王牌和牌号数相同的牌,让6位观众每人从他手里任摸一张,并嘱咐摸牌时看清和记住自己的牌号,牌号数是这样规定的,A 为1,J 为11,Q 为12,K 为13,其余的以牌上的数字为准,然后,表演者让他们按如下的方法进行计算,将自己的牌号乘2加3后乘5,再减去25,把计算结果告诉表演者(要求数值绝对准确),表演者便能立即准确地猜出谁拿的是什么牌,你能说出其中的道理吗?分段函数所谓分段函数,是指在定义域的不同部分,有不同的对应关系的函数.[知识点拨] 分段函数是一个函数,不要把它误认为是几个函数.分段函数的定义域是各段定义域的并集,值域是各段值域的并集.预习自测1.函数y =|x |的图象是( B )[解析] 因为y =|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,所以B 选项正确.2.y =f (x )的图象如图所示,则函数的定义域是( D )A .[-5,6)B .[-5,0]∪[2,6]C .[-5,0)∪[2,6)D .[-5,0]∪[2,6)[解析] 根据分段函数定义域的确定原则:将每一段上函数的自变量的范围取并集,即:[-5,0]∪[2,6).3.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f [g (π)]的值为( B )A .1B .0C .-1D .π[解析] 由题设,g (π)=0,f (g (π))=f (0)=0. 4.已知函数f (x )=⎩⎪⎨⎪⎧2x -3,x >0,3,x =0,2x +3,x <0,求f (f (12))的值.[解析] f (12)=12×2-3=-2,f (-2)=2×(-2)+3=-1, ∴f (f (12))=f (-2)=-1.命题方向1 ⇨分段函数的求值问题 典例1 已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2.(1)求f (-4),f (3),f [f (-2)]; (2)若f (a )=10,求a 的值.[思路分析] 分段函数的解析式⇒求函数值或已知函数值列方程求字母的值. [解析] (1)f (-4)=-4+2=-2, f (3)=2×3=6,f (-2)=-2+2=0, f [f (-2)]=f (0)=02=0.(2)当a ≤-1时,a +2=10,可得a =8,不符合题意; 当-1<a <2时,a 2=10,可得a =±10,不符合题意; 当a ≥2时,2a =10,可得a =5,符合题意; 综上可知,a =5.『规律方法』 求分段函数函数值的方法 (1)先确定要求值的自变量属于哪一段区间. (2)然后代入该段的解析式求值,直到求出值为止. 当出现f [f (x 0)]的形式时,应从内到外依次求值. 〔跟踪练习1〕已知f (x )=⎩⎪⎨⎪⎧x +3,x >10,f [f (x +5)],x ≤10,则f (5)的值是( A )A .24B .21C .18D .16[解析] f (5)=f [f (10)],f (10)=f [f (15)]=f (18)=21,f (5)=f (21)=24. 命题方向2 ⇨分段函数与不等式的应用 典例2 已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤-2,x +1,-2<x <4,3x ,x ≥4,若f (a )<-3,则a 的取值范是__(-∞,-3)__.[思路分析]解不等式f (a )<-3需先求f (a )的值―→讨论a 落在分段函数的哪一段上―→解得a 的取值范围[解析] 当a ≤-2时,f (a )=a <-3,此时不等式的解集是(-∞,-3); 当-2<a <4时,f (a )=a +1<-3,此时不等式无解; 当a ≥4时,f (a )=3a <-3,此时不等式无解. 所以a 的取值范围是(-∞,-3).『规律方法』 解决分段函数与不等式的问题,应分段利用函数解析式求得自变量的取值范围,最后再将每段中求得的范围取并集,即可得到所求自变量的取值集合.〔跟踪练习2〕已知函数f (x )=⎩⎪⎨⎪⎧-1,x <0,1,x ≥0,则不等式xf (x -1)≤1的解集为( A )A .[-1,1]B .[-1,2]C .(-∞,1]D .[-1,+∞)[解析] 当x -1<0,即x <1时,f (x -1)=-1, ∴xf (x -1)=-x ≤1,∴x ≥-1, ∴-1≤x <1.当x -1≥0,即x ≥1时, f (x -1)=1,∴xf (x -1)=x ≤1, 又∵x ≥1,∴x =1.综上可知,-1≤x ≤1,故选A . 命题方向3 ⇨分段函数的图象及应用 典例3 已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示函数f (x );(2)画出函数f (x )的图象; (3)写出函数f (x )的值域.[思路分析] 先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,再利用描点法作出函数图象.[解析] (1)当0≤x ≤2时,f (x )=1+x -x2=1;当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).『规律方法』 1.由分段函数的图象确定函数解析式的步骤(1)定类型:根据自变量在不同范围内图象的特点,先确定函数的类型. (2)设函数式:设出函数的解析式.(3)列方程(组):根据图象中的已知点,列出方程或方程组,求出该段内的解析. (4)下结论:最后用“{”表示出各段解析式,注意自变量的取值范围. 2.作分段函数图象的注意点作分段函数的图象时,定义域分界点处的函数取值情况决定着图象在分界点处的断开或连接,特别注意端点处是实心点还是空心点.〔跟踪练习3〕已知函数f (x )=⎩⎪⎨⎪⎧-2x +1,x <1,x 2-2x ,x ≥1.(1)画出函数的图象; (2)若f (x )=1,求x 的值. [解析] (1)函数图象如图所示.(2)由f (x )=1和函数图象综合判断可知,当x ∈(-∞,1)时,得f (x )=-2x +1=1,解得x =0;当x ∈[1,+∞)时,得f (x )=x 2-2x =1,解得x =1+2或x =1-2(舍去). 综上可知x 的值为0或1+2 分段函数概念的理解错误.典例4 求函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≥0)x (x <0)的定义域.[错解] ∵x ≥0时,f (x )=x 2-1,x <0时,f (x )=x , ∴当x ≥0时,f (x )的定义域为[0,+∞), 当x <0时,f (x )的定义域为(-∞,0).[错因分析] 错解的原因是对分段函数概念不理解,认为分段函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≤0)x (x <0)是两个函数.[正解] 函数f (x )的定义域为(-∞,0)∪[0,+∞),即(-∞,+∞),∴函数f (x )的定义域为(-∞,+∞).建模应用能力数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题.数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式.数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力.在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验.学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识.典例5 如图,在边长为4的正方形ABCD 的边上有一点P ,沿折线BCDA 由点B (起点)向点A (终点)运动,设点P 运动的路程为x ,△APB 的面积为y .(1)求y 关于x 的函数关系式y =f (x ); (2)画出y =f (x )的图象;(3)若△APB 的面积不小于2,求x 的取值范围. [思路分析] (1)点P 位置不同△ABP 的形状一样吗? (2)注意该函数的定义域.[解析] (1)y =⎩⎪⎨⎪⎧2x (0≤x ≤4)8 (4<x ≤8)2(12-x ) (8<x ≤12).(2)y =f (x )的图象如图所示.(3)即f (x )≥2,当0≤x ≤4时,2x ≥2,∴x ≥1,当8<x ≤12时,2(12-x )≥2, ∴x ≤11,∴x 的取值范围是1≤x ≤11.[点评] (3)可以作直线y =2与函数y =f (x )的图象交于点A (1,2),B (11,2),要使y ≥2,应有1≤x ≤11.『规律方法』 利用分段函数求解实际应用题的策略 (1)首要条件:把文字语言转换为数学语言. (2)解题关键:建立恰当的分段函数模型.(3)思想方法:解题过程中运用分类讨论的思想方法.1.已知函数已知f (1)=0,且对任意n ∈N *,都有f (n +1)=f (n )+3,则f (3)=( C ) A .0 B .3 C .6D .9[解析] f (3)=f (2)+3=f (1)+6=6.2.在下列的四个图象中,是函数f (x )=x|x |的图象的是( C )3.函数f (x )=⎩⎪⎨⎪⎧x +2,(x ≤-1)x 2,(-1<x <2)2x (x ≥2),若f (x )=3,则x 的值为( D )A .1B .1或 3C .32D . 34.已知函数f (x )=⎩⎪⎨⎪⎧2x +1(x ≥0)|x |(x <0),且f (x 0)=3,则实数x 0=__-3或1__.[解析] 当x 0≥0时,f (x 0)=2x 0+1=3, ∴x 0=1;当x 0<0时,f (x 0)=|x 0|=3, ∴x 0=±3, 又∵x 0<0, ∴x 0=-3.一、选择题1.设f (x )=⎩⎪⎨⎪⎧x +2(x ≥0)1(x <0),则f [f (-1)]=( A )A .3B .1C .0D .-1[解析] ∵x <0时,f (x )=1, ∴f (-1)=1,∴f [f (-1)]=f (1), 又∵x ≥0时,f (x )=x +2, ∴f (1)=1+2=3.2.设函数f (x )=⎩⎪⎨⎪⎧1-x 2(x ≤1)x 2+x -2(x >1),则f [1f (2)]的值为( A )A .1516B .-2716C .89D .18[解析] ∵x >1时,f (x )=x 2+x -2, ∴f (2)=22+2-2=4, ∴1f (2)=14∴f [1f (2)]=f (14),又∵x ≤1时,f (x )=1-x 2, ∴f (14)=1-(14)2=1-116=1516,故选A .3.某市出租车起步价为5元(起步价内行驶里程为3 km),以后每1 km 价为1.8元(不足1 km 按1 km 计价),则乘坐出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为下列图中的( B )[解析] 由已知得y =⎩⎪⎨⎪⎧5(0<x ≤3)5+[x -3]×1.8(x >3).故选B .4.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1(x >0)0(x =0)-1(x <0),则( D )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x[解析] 当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ;当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ;当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x ,故选D .5.若函数f (x )=⎩⎪⎨⎪⎧ x 2,x ≥0,x ,x <0,φ(x )=⎩⎪⎨⎪⎧x ,x ≥0,-x 2,x <0,则当x <0时,f [φ(x )]( B )A .-xB .-x 2C .xD .x 2[解析] x <0时,φ(x )=-x 2<0,∴f (φ(x ))=-x 2.6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在图中,纵轴表示离学校的距离,横轴表示出发后的时间,则四个图形中较符合该学生走法的是( D )[解析] ∵纵轴表示离学校的距离,横轴表示出发后的时间,∴当t =0时,纵坐标表示家到学校的距离,不能为零,故排除A ,C ;又由于一开始是跑步,后来是走完余下的路,∴刚开始图象下降的较快,后来下降的较慢,故选D .二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧2,x ∈[-1,1],x ,x ∉[-1,1],若f (f (x ))=2,则x 的取值范围是__{2}∪[-1,1]__.[解析] 设f (x )=t ,∴f (t )=2,当t ∈[-1,1]时,满足f (t )=2,此时-1≤f (x )≤1,无解,当t =2时,满足f (t )=2,此时f (x )=2即-1≤x ≤1或x =2.8.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,0,x <0,则不等式xf (x )+x ≤2的解集是__{x |x ≤1}__.[解析] 当x ≥0时,f (x )=1,由xf (x )+x ≤2,知x ≤1,∴0≤x ≤1; 当x <0时,f (x )=0,∴x <0. 综上,不等式的解集为{x |x ≤1}. 三、解答题9.若方程x 2-4|x |+5=m 有4个互不相等的实数根,求m 的取值范围.[解析] 令f (x )=⎩⎪⎨⎪⎧x 2-4x +5,x ≥0,x 2+4x +5,x <0.作其图象,如图所示由图可知1<m <5.10.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左向右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左侧部分的面积y 关于x 的函数解析式.[解析] 如图所示,过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .因为四边形ABCD 是等腰梯形, 底角为45°,AB =22cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. 当点F 在BG 上时,即x ∈(0,2]时,y =12x 2;当点F 在GH 上时,即x ∈(2,5]时, y =12×2×2+2(x -2)=2x -2; 当点F 在HC 上时,即x ∈(5,7]时,y =S 五边形ABFED =S 梯形ABCD -S Rt △CEF =12(7+3)×2-12(7-x )2=-12(x -7)2+10.综上,y =⎩⎪⎨⎪⎧12x 2,x ∈(0,2],2x -2,x ∈(2,5],-12(x -7)2+10,x ∈(5,7].。