四川省泸州市2018年中考数学试题

合集下载

专题8.5 四川省泸州市-2018中考数学真题之名师立体解读高端精品(只含真题解析)

专题8.5 四川省泸州市-2018中考数学真题之名师立体解读高端精品(只含真题解析)

1.A【解析】由正数大于零,零大于负数,得﹣2<0<<2,﹣2最小,故选:A.2.B【解析】6500000=6.5×106,故选:B.3.C【解析】A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.4.B【解析】从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.6.A【解析】由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.7.B【解析】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.8.D【解析】由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.9.C【解析】根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.∴FM=a,∴===,故选:C.12.D【解析】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.13.x≥1【解析】∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.14.3(a+1)(a﹣1)【解析】:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1)15.6【解析】∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.17.解:原式=1+4+2﹣4=3.18.证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.19.解:原式=•=.22.解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.23.解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b 得:解得:∴一次函数解析式为:y=﹣24.解:(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴=,∵OD=OC,∴OC2=OF•OP.∴GH=.25.解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3 解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b 把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣∴解得m1=,m2=﹣(舍去)故m值为∴▱DEGH周长L=2[﹣+]=﹣∵a=﹣<0∴m=﹣时,L最大.∴n=4﹣=∴G点坐标为(,)。

2018年四川泸州中考数学试题及答案

2018年四川泸州中考数学试题及答案

【导语】⽆忧考将在本次四川泸州中考过后,考后发布2018年四川泸州中考数学试卷及答案解析,⽅便考⽣对照估分,⼤家可收藏并随时关注、栏⽬,中考信息持续更新!中考科⽬:语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。

)考试必读:中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。

涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。

不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。

有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。

避免违规:中考是中国重要的考试之⼀,直接决定着考⽣升⼊⾼中后的学习质量,对⾼考成绩有着⾮常重⼤的影响。

因此,中国教育部门对于中考违规、作弊的处罚⼒度是相当⼤的。

视违规情节的不同,轻则对试卷进⾏扣分处理,重则取消违规科⽬或全科的成绩并将其记⼊考⽣档案伴随终⽣,对于涉嫌犯罪的⼈员要追究刑事责任。

中考对于复读⽣也有⼀定的惩罚措施,例如禁⽌报考热点⾼中、对试卷进⾏扣分处理、取消额外加分等等。

因此,在中考的过程中要绝对避免出现违规、作弊的情况,不能铤⽽⾛险,酿成终⾝的遗憾。

参加2018中考的考⽣可直接查阅2018年四川泸州中考试题及答案信息!—→以下是四川泸州2018年各科中考试题答案发布⼊⼝:相关推荐:为⽅便⼤家及时获取泸州2018年中考成绩、2018年中考录取分数线信息,⽆忧考为⼴⼤考⽣整理了《全国2018年中考成绩查询、2018年中考录取分数线专题》考⽣可直接点击进⼊以下专题进⾏中考成绩及分数线信息查询。

2018年四川泸州市中考数学模拟试题(一)含答案

2018年四川泸州市中考数学模拟试题(一)含答案

泸州市2018年高中阶段学校招生考试模拟试卷1(满分:120分考试时间:120分钟)第I卷选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.10的平方根是()A.±B.±C.±5 D.52.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.函数y=中自变量x的取值范围是()A.x>﹣1且x≠2 B.x≥﹣1 C.x≠﹣1 D. x>﹣1 4.已知∠1=55°,∠2与∠1互为余角,∠3与∠2互为邻补角,则∠3的度数为()A.35°B.145°C.125°D.55°5.函数y=kx+b(k≠0)中,当x的值增加2时,y的值减小3,则k的值为()A.﹣B.﹣C.﹣2 D.﹣36.如图所示,同心圆中的大圆半径为5,小圆半径为3,若大圆的弦AB与小圆有公共点,则AB的最小长度是()第6题A.3 B.4C.5D.87.方程组的解是()A.B.C.D.8.已知﹣2<m<3,化简+|m+2|的结果是()A.5 B.1C.2m﹣1 D.2m﹣59.若圆锥的母线长是底面半径的3倍,则将圆锥的侧面展开后的扇形的圆心角是()A.60°B.90°C.120°D.150°10.用一些棱长是1的正方体堆成立体图形,如图所示是其俯视图(正方形内的数字表示该处的正方体个数),则这些正方体堆成的立体图形的正视图面积为()第10题A.7 B.8C.11 D.1311.已知二次函数y=a(x2﹣4x﹣5),a≠0,下列说法:①图象始终与x轴有两个交点;②图象的对称轴是直线x=2;③图象在x轴上截得的线段长为6;④若a<0,则当﹣1<x<5时,y>0;其中,正确的个数为()A.1 B.2C.3D.412.如图,△ABC中,∠C=90°,AC=6,BC=8,D、E分别在AC、BC上且DE∥AB,将△ABC沿DE折叠,使C点落在斜边AB上的F处,则AF的长是()第12题A.3.6 B.4C.4.8 D.6.4第II卷非选择题(共84分)二、填空题(本大题共4小题,每小题3分,共12分.请把答案填在题中的横线上)13.已知菱形的边长为6,有一个内角是45°,则该菱形的面积是.14.一组数据“2,3,3,x,5,8”的中位数是x,则这组数据的平均数是.15.如图是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要枚棋子.第15题16.若关于x的方程x2+(2a﹣1)x+a2﹣1=0的两根是x1、x2,且(3x1﹣x2)(x1﹣3x2)+21=0,则a的值为.三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明,证明过程或演算步骤)17.(6分)计算:|﹣|+﹣sin30°+(π+3)0.18.(6分)化简求值:﹣÷,其中a=.19.(6分)如图,在E在线段AB上,分别以AB、BE为边长在AB的两侧作等边△ABC 和等边△BDE.(1)连结AD、CE,求证:△ABD≌△CBE;(2)延长CE交AD于F,求∠AFC的度数.第19题20.(7分)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)第20题21.(7分)有三套内容完全相同的古典小说,其中有两套是2014年出版的,有一套是2015年出版的,且每套书分上、下两册,每册书的外形都没有区别,现在将这6册书打乱后随机摆放在书架上,然后再从中任意取出2册.(1)用列表画树形图的方法表示所有可能的结果;(2)求这2册书恰好是上、下两册的概率;(3)求这2册书恰好是同一年出版的概率.22.(8分)如图,已知双曲线y=与直线y=x+b.(1)若它们在第二象限有公共点A(﹣2,3),求双曲线及直线的解析式;(2)试说明点A是它们的唯一公共点;(3)若将直线进行上下平移,使它与双曲线没有公共点,请直接写出b的取值范围.第22题23.(8分)在我国大力建设新丝绸之路经济带的政策引领下,贸易和投资在古丝绸之路上再度活跃.我市某贸易公司要把240吨白砂糖运往丝绸之路经济领域的A、B两地,现用大、小两种货车共20辆,恰好能一次性装完这批白砂糖且每辆车都刚好装满.已知这两种货车的载重量分别为15吨/辆和10吨/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨,已知运往A地的运费为:大车630元/辆,小车420元/辆,运往B地的运费为:大车750元/辆,小车550元/辆,请你设计出使总运费最少的货车调配方案,并求出最少总运费.24.(12分)如图,AB是半圆O的直径,AC⊥AB,CD切半圆于点D,BF⊥AB,交AD 的延长线于F,交CD的延长线于E.(1)若∠C=80°,求∠F的度数;(2)求证:BE=EF;(3)若AC=6,BE=4,求AB的长.第24题25.(12分)已知抛物线y=x2+2(m+1)x﹣m+1与x轴交于点A、B,与y轴交于点C,其对称轴是直线x=4.(1)求抛物线的解析式是顶点坐标;(2)求C点的坐标及△ABC的面积;(3)已知与x轴平行的直线y=t及抛物线对称轴上的点D(4,t+1),问是否存在这样的t 值,使得抛物线上任意一点P(a,b)到这条直线的距离等于P点到D点的距离?若存在,则请求出t的值;若不存在,则说明理由.第25题泸州市2018年高中阶段学校招生考试模拟试卷1(参考答案)一、1.A解析:10的平方根为±,故选A.2.C解析:A、是轴对称图形,不是中心对称图形,故错误;B、不是轴对称图形,是中心对称图形,故错误;C、是轴对称图形,也是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选C.3.D解析:根据题意,得,解得x≥﹣1且x≠﹣1,即x>﹣1.故选D.4.B解析:∵∠1=55°,∠2与∠1互为余角,∴∠2=90°﹣∠1=90°﹣55°=35°,∵∠3与∠2互为邻补角,∴∠3=180°﹣∠2=180°﹣35°=145°.故选B.5.B解析:根据题意,得y﹣3=k(x+2)+b,y=kx+b+2k+3,而y=kx+b,所以2k+3=0,解得k=﹣.故选B.6.D解析:如图,当AB与小圆相切时有一个公共点D,此时AB取最小值,连结OA,OD,可得OD⊥AB,∴D为AB的中点,即AD=BD,在Rt△ADO中,OD=3,OA=5,∴AD=4,∴AB=2AD=8,故选D.7.C解析:,由①得:x=y③,把③代入②得:y=50,即y=30,把y=30代入③得:x=20,则方程组的解为,故选C.8.A解析:∵﹣2<m<3,∴m﹣3<0,m+2>0,∴+|m+2|=3﹣m+m+2=5.故选A.9.C解析:设底面半径为r,圆锥的侧面展开后的扇形的圆心角为n°,根据题意,得2πr=,解得n=120,即圆锥的侧面展开后的扇形的圆心角为120°.故选C.10.B解析:由俯视图可知,主视图有3列,每列小正方形个数分别为2,3,3;(1×1)×(2+3+3)=1×8=8.故这些正方体堆成的立体图形的正视图面积为8.故选B.11.D解析:①∵y=a(x2﹣4x﹣5),a≠0,∴当y=0时,a(x2﹣4x﹣5)=0,解得x1=﹣1,x2=5,∴图象始终与x轴有两个交点,故说法正确;②图象的对称轴是直线x==2,故说法正确;③∵二次函数y=a(x2﹣4x﹣5)与x轴交点为(﹣1,0),(5,0),∴图象在x 轴上截得的线段长为:5﹣(﹣1)=6,故说法正确;④若a<0,则抛物线y=a(x2﹣4x﹣5)开口向下,∴当﹣1<x<5时,y>0,故说法正确;所以正确的命题为①②③④.故选D.12.A解析:连结CF,根据题意,得CF⊥DE,又DE∥AB,∴CF⊥AB,∵∠C=90°,AC=6,BC=8,∴AB=10,×AC×BC=×AB×CF,∴CF=4.8,∴AF==3.6,故选A.二、13.18解析:如图所示:作DE⊥AB于E,∵四边形ABCD是菱形,∴AB=AD=6,∵∠A=45°,∴△ADE是等腰直角三角形,∴AE=AD×sin45°=6×=3,∴菱形ABCD的面积=AB•DE=6×3=18;14.4解析:∵数据“2,3,3,x,5,8”的中位数是x,①如果x≤2,那么x=(3+5)=4,不合题意;②如果x≥8,那么x=(3+5)=4,不合题意;③如果2<x<3,那么x=(3+5)=4,不合题意;④如果3≤x≤5,那么=x,x=3,符合题意;⑤如果5<x<8,那么x=(3+5)=4,不合题意;∴这组数据的平均数是(2+3+3+3+5+8)=4.15.127解析:∵n=1时,总数是6+1=7;n=2时,总数为6×(1+2)+1=19;n=3时,总数为6×(1+2+3)+1=37枚;…;∴n=n时,有6×(1+2+3+…n)+1=6×+1=3n2+3n+1枚.∴n=6时,总数为6×(1+2+3…+6)+1=127枚.16.﹣5解析:∵x2+(2a﹣1)x+a2﹣1=0的两根是x1、x2,∴△=(2a﹣1)2﹣4(a2﹣1)=﹣4a+5≥0,∴a≤,∴x1+x2=1﹣2a,x1x2=a2﹣1,∵(3x1﹣x2)(x1﹣3x2)+21=0,∴3x12﹣10x1x2+3x22+21=0,∴3(x1+x2)2﹣16x1x2+21=0,∴3(1﹣2a)2﹣16(a2﹣1)+21=0,∴a2+3a﹣10=0,∴a1=﹣5,a2=2,∵a≤,∴a=﹣5.三、17.解:原式==4.18.解:原式=﹣•=﹣==,当a=时,原式==.19.(1)证明:∵△ABC和△BDE都是等边三角形,∴∠ABD=∠CBE=60°,CB=AB,BD=BE,在△ABD与△CBE中,,∴△ABD≌△CBE(SAS).(2)解:由(1)知:△ABD≌△CBE,则∠1=∠2.∵∠BAC=∠ACB=60°,∴∠2+∠3=60°,∴∠AFC=180°﹣∠BAC﹣(∠1+∠3)=180°﹣60°﹣(∠2+∠3)=60°,即∠AFC=60°.20.解:过点P作PC⊥AB,C是垂足.则∠APC=30°,∠BPC=45°,AC=PC•tan30°,BC=PC•tan45°.∵AC+BC=AB,∴PC•tan30°+PC•tan45°=100km,∴PC=100,∴PC=50(3﹣)≈50×(3﹣1.732)≈63.4km>50km.答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.21.解:(1)分别用A,B,C,a,b,c六本书,A,B,C表示上册,a,b,c表示下册,画树状图,得则共有30种等可能的结果;(2)∵这2册书恰好是上、下两册的有6种情况,∴这2册书恰好是上、下两册的概率为:=;(3)∵这2册书恰好是同一年出版的有14种情况,∴这2册书恰好是同一年出版的概率为=.22.解:(1)把A(﹣2,3)代入y=,得k=﹣6,则反比例函数的解析式是y=﹣;把A(﹣2,3)代入y=x+b得:﹣3+b=3,解得b=6,则函数的解析式是:y=x+6;(2)根据题意,得x+6=﹣,去分母、整理,得x2+4x+4=0,△=0,则方程有两个相同的解,则直线和反比例函数只有一个公共点,即点A是它们的唯一公共点;(3)当直线与反比例函数第四象限部分有一个公共点时,公共点一定是(2,﹣3).把(2,﹣3)代入直线的解析式,得3+b=﹣3,解得b=﹣6,当直线经过点A(﹣2,3)时:b=6,则将直线进行上下平移,使它与双曲线没有公共点,b的取值范围是﹣6<b<6.23.解:1)解法一:设大车用x辆,小车用y辆,依据题意,得,解得.∴大车用8辆,小车用12辆.解法二:设大车用x辆,小车用(20﹣x)辆,依据题意,得15x+10(20﹣x)=240,解得x=8.∴20﹣x=20﹣8=12(辆).∴大车用8辆,小车用12辆.(2)设总运费为W元,调往A地的大车a辆,小车(10﹣a)辆;调往B地的大车(8﹣a)辆,小车12﹣(10﹣a)=(a+2)辆,则W=630a+420(10﹣a)+750(8﹣a)+550(a+2).即:W=10a+11300(0≤a≤8,a为整数).∵15a+10(10﹣a)≥115,∴a≥3.又∵W随a的增大而增大,∴当a=3时,w最小.当a=3时,W=10×3+11300=11330.因此,应安排3辆大车和7辆小车前往A地,安排5辆大车和5辆小车前往B地,最少运费为11330元.24.(1)解:∵AB是半圆O的直径,AC⊥AB,BF⊥AB,∴AC、BF是半圆O的切线,AC∥BF,∴∠F=∠CAD,∵CD切半圆于点D,∴CA=CD,BE=DE,∴∠CAD=∠CDA=50°,∴∠F=50°;(2)证明:连结BD,如图所示:则∠ADB=90°,∴∠BDF=90°,∵∠EDF=∠CDA=50°,∴∠F=∠EDF,∴DE=EF,∴BE=EF;(3)解:作EG⊥AC于G,如图所示:则四边形ABEG是矩形,∴AG=BE=4,EG=AB,∵AC=CD=6,DE=BE=4,∴CE=6+4=10,CG=6﹣4=2,∴EG==4,∴AB=4.25.解:(1)由x=﹣2(m+1)=4,解得m=﹣3,所以抛物线解析式为y=x2﹣4x+4,顶点坐标为(4,﹣4);(2)抛物线y=x2﹣4x+4与y轴交于点C的坐标为(0,4),令y=x2﹣4x+4=0,解得x1=4+2,x2=4﹣2,点A的坐标为(4﹣2,0),B的坐标为(4+2,0),因此△ABC的面积=×4×4=8;(3)存在这样的t值,使得抛物线上任意一点P(a,b)到这条直线的距离等于P点到D 点的距离.设P点的坐标为(m,m2﹣4m+4),点D(4,t+1),PE=m2﹣4m+4﹣t,PD=,则m2﹣4m+4﹣t=,解得t=﹣,因此当t=﹣使得抛物线上任意一点P(a,b)到这条直线的距离等于P点到D点的距离.。

专题8.5 四川省泸州市(母题解读)-2018中考数学真题之名师立体解读高端精品(原卷版)

专题8.5 四川省泸州市(母题解读)-2018中考数学真题之名师立体解读高端精品(原卷版)

母题一方程与不等式的应用问题【母题来源】四川省泸州市2018年中考数学试卷第21题【母题原题】某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【命题意图】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.【方法、技巧、规律】由于列方程(组)、列不等式(组)解应用题手段独特,方法灵活,因而常出现在中考试卷中,事实上,列方程(组)、列不等式(组)解应用题的方法可以简单地分为:设、找、列、解、答五个步骤,某种为打造书香校园,计划购进甲乙两种规格的书柜放置新购置的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多提供资金4320元,请设计几种购买方案供这个学校选择.【母题2】某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?【母题3】某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A 花木每棵50元,B 花木每棵100元.(1)若购进A ,B 两种花木刚好用去8000元,则购买了A ,B 两种花木各多少棵?(2)如果购买B 花木的数量不少于A 花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.母题二 一次函数与反比例函数综合问题【母题来源】四川省泸州市2018年中考数学试卷第23题【母题原题】一次函数y=kx+b 的图象经过点A (﹣2,12),B (8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m >0)的图象相交于点C (x 1,y 1),D (x 2,y 2),与y 轴交于点E ,且CD=CE ,求m 的值.【命题意图】本题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.【方法、技巧、规律】解决与函数相关的问题时,要结合图形进行解答,而且对于有待定系数时,要考虑可能出现的情况.一次函数与反比例函数问题中有时会出现几何图形问题.反比例函数与一次函数、三角形、四边形等的综合运用,充分利用各种图形的性质,表示出关键点的坐标及对应线段的长度是关键,灵活运用反比例函数性质【母题1】如图,一次函数1y x =+的图象与x 轴、y 轴分别交于点A 、B ,以线段AB 为边在第一象限作等边△ABC .(1)若点C 在反比例函数k y x=的图象上,求该反比例函数的解析式;(2)点P (m )在第一象限,过点P 作x 轴的垂线,垂足为D ,当△P AD 与△OAB 相似时,P 点是否在(1)中反比例函数图象上?如果在,求出P 点坐标;如果不在,请加以说明.【母题2】已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y =kx +b 和反比例函数m y x =图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.【母题3】如图所示,Rt △PAB 的直角顶点P (3,4)在函数y=k x (x >0)的图象上,顶点A 、B 在函数y=t x (x >0,0<t <k )的图象上,PA ∥x 轴,连接OP ,OA ,记△OPA 的面积为S △OPA ,△PAB 的面积为S △PAB ,设w=S △OPA ﹣S △PAB .①求k 的值以及w 关于t 的表达式;②若用w max 和w min 分别表示函数w 的最大值和最小值,令T=w max +a 2﹣a ,其中a 为实数,求T min .母题三圆与相似综合问题【母题来源】四川省泸州市2018年中考数学试卷第24题【母题原题】如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.【命题意图】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【方法、技巧、规律】1.弄清题目中各种量的关系,解题需要用到的定理,适当添加辅助线,将问题转化,运用“分析与推理”,“从结论看需知”等综合法与分析法来沟通已知条件与结论.2.判定切线的方法:①连半径,证垂直;②作垂直,证半径.3.不规则图形面积的计算,可以通过割补、平移、旋转等方法转化为规则图形的面积.【母题1】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【母题2】如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若122 7SS,求sin A的值.【母题3】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过 BD上一点E作EG∥AC交CD 的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tan G=34,AH=EM的值.母题四二次函数综合问题【母题来源】四川省泸州市2018年中考数学试卷第25题【母题原题】如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【命题意图】本题以二次函数图象为背景,综合考查三角形相似、平行四边形性质、二次函数最值讨论以转化的数学思想.【方法、技巧、规律】弄清题目中所涉及的概念,熟悉与之相关的定理、公式、技巧和方法;从不同的角度来探索解题的途径,注意运用“从已知看可知”,“从结论看需知”等综合法与分析法来沟通已知条件与结论.综合使用分析法和综合法,运用方程的思想,,使用分类讨论的思想,运用数形结合的思想,运用转化的思想.【母题1】如图,已知直角坐标系中,A 、B 、D 三点的坐标分别为A (8,0),B (0,4),D (﹣1,0),点C 与点B 关于x 轴对称,连接AB 、AC .(1)求过A 、B 、D 三点的抛物线的解析式;(2)有一动点E 从原点O 出发,以每秒2个单位的速度向右运动,过点E 作x 轴的垂线,交抛物线于点P ,交线段CA 于点M ,连接P A 、PB ,设点E 运动的时间为t (0<t <4)秒,求四边形PBCA 的面积S 与t 的函数关系式,并求出四边形PBCA 的最大面积;(3)抛物线的对称轴上是否存在一点H ,使得△ABH 是直角三角形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.【母题2】如图,抛物线22y ax bx =+-的对称轴是直线x =1,与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为(﹣2,0),点P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E .(1)求抛物线解析式;(2)若点P 在第一象限内,当OD =4PE 时,求四边形POBE 的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点B ,D ,M ,N 为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】【母题3】如图,抛物线2y x bx c =++经过B (﹣1,0),D (﹣2,5)两点,与x 轴另一交点为A ,点H 是线段AB 上一动点,过点H 的直线PQ ⊥x 轴,分别交直线AD 、抛物线于点Q ,P .(1)求抛物线的解析式;(2)是否存在点P ,使∠APB =90°,若存在,求出点P 的横坐标,若不存在,说明理由;(3)连接BQ ,一动点M 从点B 出发,沿线段BQ 以每秒1个单位的速度运动到Q ,再沿线段QD 个单位的速度运动到D 后停止,当点Q 的坐标是多少时,点M 在整个运动过程中用时t 最少?。

【中考真题】2013-2018年四川省泸州市中考数学试题汇编(含参考答案与解析)

【中考真题】2013-2018年四川省泸州市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年四川省泸州市中考数学试题汇编(含参考答案与解析)1、2013年四川省泸州市中考数学试题及参考答案与解析 (2)2、2014年四川省泸州市中考数学试题及参考答案与解析 (25)3、2015年四川省泸州市中考数学试题及参考答案与解析 (49)4、2016年四川省泸州市中考数学试题及参考答案与解析 (74)5、2017年四川省泸州市中考数学试题及参考答案与解析 (95)6、2018年四川省泸州市中考数学试题及参考答案与解析 (111)2013年四川省泸州市中考数学试题及参考答案一、选择题(本大题共12小题,每小题2分,共24分)1.﹣2的相反数是()A.2 B.﹣2 C.12D.12-2.某校七年级有5名同学参加设计比赛,成绩分为为7,8,9,10,8(单位:环).则这5名同学成绩的众数是()A.7 B.8 C.9 D.103.下列各式计算正确的是()A.(a7)2=a9B.a7•a2=a14C.2a2+3a3=5a5D.(ab)3=a3b34.如图所示为某几何体的示意图,则该几何体的主视图应为()A.B.C.D.5.第六次全国人口普查数据显示:泸州市常住人口大约有4220000人,这个数用科学记数法表示正确的是()A.4.22×105B.42.2×105C.4.22×106D.4.22×1076.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC7.函数y=自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠38.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠09.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A. B. C.或 D.或 10.设x 1、x 2是方程x 2+3x ﹣3=0的两个实数根,则2112x x x x 的值为( ) A .5 B .﹣5 C .1 D .﹣111.如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,点D 的对称点F 恰好落在BC 上,已知折痕AE=cm ,且tan ∠EFC=34,那么该矩形的周长为( )A .72cmB .36cmC .20cmD .16cm12.如图,在等腰直角△ACB=90°,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE=90°,DE 交OC 于点P .则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC 的面积等于四边形CDOE 的面积的2倍;(3)CD+CE=OA ;(4)AD 2+BE 2=2OP•OC . 其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(本大题共4个小题,每小题4分,共16分) 13.分解因式:x 2y ﹣4y= .14.在一只不透明的口袋中放入红球6个,黑球2个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n= . 15.如图,从半径为9cm 的圆形纸片上剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 cm .16.如图,点P 1(x 1,y 1),点P 2(x 2,y 2),…,点P n (x n ,y n )在函数1y x=(x >0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n ﹣1A n 都是等腰直角三角形,斜边OA 1、A 1A 2、A 2A 3,…,A n ﹣1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是 ;点P n 的坐标是 (用含n 的式子表示).三、解答题(本大题共3个小题,每小题6分,共18分)17.(6分)计算:()1012 3.14sin 303π-⎛⎫--⨯︒ ⎪⎝⎭.18.(6分)先化简:2223111a a a a --⎛⎫÷- ⎪--⎝⎭,再求值,其中a = 19.(6分)如图,已知▱ABCD 中,F 是BC 边的中点,连接DF 并延长,交AB 的延长线于点E .求证:AB=BE .四、解答题(共2个小题,每小题7分,共14分)20.(7分)某校开展以感恩教育为主题的艺术活动,举办了四个项目的比赛,它们分别是演讲、唱歌、书法、绘画.要求每位同学必须参加,且限报一项活动.以九年级(1)班为样本进行统计,并将统计结果绘成如图1、图2所示的两幅统计图.请你结合图示所给出的信息解答下列问题.(1)求出参加绘画比赛的学生人数占全班总人数的百分比? (2)求出扇形统计图中参加书法比赛的学生所在扇形圆心角的度数?(3)若该校九年级学生有600人,请你估计这次艺术活动中,参加演讲和唱歌的学生各有多少人?21.(7分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元? 五、解答题(共2个小题,每小题8分,共16分)22.(8分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A 、C 之间选择一点B (A 、B 、C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40m . (1)求点B 到AD 的距离; (2)求塔高CD (结果用根号表示).23.(8分)如图,已知函数43y x =与反比例函数k y x =(x >0)的图象交于点A .将43y x =的图象向下平移6个单位后与双曲线ky x=交于点B ,与x 轴交于点C .(1)求点C 的坐标; (2)若2OACB=,求反比例函数的解析式.六、解答题(本大题共2个小题,其中第24小题10分,第25小题12分,共22分) 24.(10分)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA=∠CBD . (1)求证:CD 2=CA•CB ; (2)求证:CD 是⊙O 的切线;(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=23,求BE的长.25.(12分)如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,,已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P 点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)参考答案与解析一、选择题(本大题共12小题,每小题2分,共24分)1.﹣2的相反数是()A.2 B.﹣2 C.12D.12-【知识考点】相反数.【思路分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.【解答过程】解:﹣2的相反数是2,故选:A.【总结归纳】此题主要考查了相反数,关键是掌握相反数的定义.2.某校七年级有5名同学参加设计比赛,成绩分为为7,8,9,10,8(单位:环).则这5名同学成绩的众数是()A.7 B.8 C.9 D.10【知识考点】众数.【思路分析】根据众数的概念:一组数据中出现次数最多的数据叫做众数求解即可.【解答过程】解:数据8出现2次,次数最多,所以众数是8.故选B.【总结归纳】考查众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.3.下列各式计算正确的是()A.(a7)2=a9B.a7•a2=a14C.2a2+3a3=5a5D.(ab)3=a3b3【知识考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【思路分析】A、利用幂的乘方运算法则计算得到结果,即可做出判断;B、利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式不能合并,错误;D、利用积的乘方运算法则计算得到结果,即可做出判断.【解答过程】解:A、(a7)2=a14,本选项错误;B、a7•a2=a9,本选项错误;C、本选项不能合并,错误;D、(ab)3=a3b3,本选项正确,故选D【总结归纳】此题考查了幂的乘方与积的乘方,同底数幂的乘法,以及合并同类项,熟练掌握运算法则是解本题的关键.4.如图所示为某几何体的示意图,则该几何体的主视图应为()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】几何体的主视图就是从正面看所得到的图形,注意所有的看到的棱都应表现在主视图中.【解答过程】解:从正面看可得到图形.故选A.【总结归纳】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,关键是掌握主视图所看的位置.5.第六次全国人口普查数据显示:泸州市常住人口大约有4220000人,这个数用科学记数法表示正确的是()A.4.22×105B.42.2×105C.4.22×106D.4.22×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将4220000用科学记数法表示为:4.22×106.故选:C.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC 【知识考点】平行四边形的判定.【思路分析】根据平行四边形判定定理进行判断.【解答过程】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【总结归纳】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.7.函数y=自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3【知识考点】函数自变量的取值范围.【思路分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答过程】解:根据题意得,x﹣1≥0且x﹣3≠0,解得x≥1且x≠3.故选A.【总结归纳】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.8.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0【知识考点】根的判别式;一元二次方程的定义.【思路分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出不等式,且二次项系数不为0,即可求出k的范围.【解答过程】解:∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0,解得:k>﹣1且k≠0.故选D【总结归纳】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.9.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.B.C.或D.或【知识考点】垂径定理;勾股定理.【思路分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答过程】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm ;当C 点位置如图2所示时,同理可得OM=3cm , ∵OC=5cm , ∴MC=5﹣3=2cm , 在Rt △AMC 中,AC===2cm .故选C .【总结归纳】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 10.设x 1、x 2是方程x 2+3x ﹣3=0的两个实数根,则2112x x x x 的值为( ) A .5 B .﹣5 C .1 D .﹣1 【知识考点】根与系数的关系.【思路分析】先利用根与系数的关系求出两根之和与两根之积,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将两根之和与两根之积代入计算即可求出值. 【解答过程】解:∵x 1、x 2是方程x 2+3x ﹣3=0的两个实数根, ∴x 1+x 2=﹣3,x 1x 2=﹣3, 则原式===﹣5.故选B【总结归纳】此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 11.如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,点D 的对称点F 恰好落在BC 上,已知折痕AE=cm ,且tan ∠EFC=34,那么该矩形的周长为( )A .72cmB .36cmC .20cmD .16cm 【知识考点】矩形的性质;翻折变换(折叠问题).。

2018年泸州中考数学试题

2018年泸州中考数学试题

泸州市2018年高中阶段学校招生考试数学试卷全卷满分120分,考试时间120分钟.第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.在-2,0,12,2四个数中,最小的是( ) A.-2 B.0 C.12D.2 2. 2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( ) A. 56.510⨯ B. 66.510⨯ C. 76.510⨯ D. 56510⨯ 3.下列计算,结果等于4a 的是( )A.3a a +B. 5a a - C. 22()a D.82a a ÷4. 左下图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A. B. C. D.5. 如图1,直线a //b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A. 50°B. 70°C. 80°D. 110°6.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:A.16,15B.16,14C.15,15D.14,15 7.如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为( )A.20B. 16C. 12D.88. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图3所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,大正方形的面积为25,则小正方形的边长为() A. 9 B.6C. 4D.3B各位群友,大家好!《诗经》有云:“他山之石,可以攻玉。

四川泸州中考数学试题及解析

2018年四川省泸州市初中毕业、升学考试数学(满分120分,考试时间120分钟)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.(2018四川泸州,1题,3分) 在-2,0,12,2四个数中,最小的是( ) A.-2 B.0 C.12D.2 【答案】A【解析】有理数比较大小,负数小于0,0小于正数,因为-2<0<21<2,故选A 【知识点】有理数比较大小2.(2018四川泸州,2题,3分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( )A. 56.510⨯B. 66.510⨯C. 76.510⨯D. 56510⨯【答案】B【解析】650000=6.5×106.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【知识点】科学记数法3.(2018四川泸州,3题,3分) 下列计算,结果等于4a 的是( )A.3a a +B. 5a a -C. 22()a D.82a a ÷【答案】C【解析】A.原式=4a ,B.原式不可以化简,C.原式=a 2×2=a 4,D.原式=a 8-2=a 6 【知识点】合并同类项,幂的乘方,同底数幂的除法4.(2018四川泸州,4题,3分) 左下图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )第4题图 A. B. C. D. 【答案】B【解析】考察由正方体组成的简单几何体的三视图,从上往下看,上面一行有三个正方形,第二行在左边有一个正方形,故选B【知识点】常见几何体(组合体)的三视图5.(2018四川泸州,5题,3分) 如图1,直线a //b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A. 50°B. 70°C. 80°D. 110°B第5题图 【答案】C【解析】因为a//b ,所以∠BAD=∠1,因为∠1=50°,所以∠BAD=50°,因为AD 平分∠BAC ,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC= 80° 【知识点】平行线性质,角平分线,邻补角6.(2018四川泸州,6题,3分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是( )A.16,15B.16,14C.15,15D.14,15【答案】A【解析】由表可知,人数最多的是16岁,因此年龄的众数为16,总共有9人,因此中位数为第5个人的年龄,由表可知,第5个人的年龄为15岁,因此中位数为15 【知识点】众数,中位数7.(2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为()A.20B. 16C. 12D.8第7题图 【答案】B 【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO 是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16【知识点】平行四边形的性质,三角形中位线8.(2018四川泸州,8题,3分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图3所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,大正方形的面积为25,则小正方形的边长为( ) A. 9 B.6 C. 4D.3第8题图 【答案】D【解析】因为ab=8,所以三角形的面积为21ab=4,则小正方形的面积为25-4×4=9,边长为3 【知识点】勾股定理,三角形面积,平方根9.(2018四川泸州,9题,3分)已知关于x 的一元一次方程2210x x k -+-=有两个不相等的实数根,则实数k 的取值范围是( )A. 2k ≤B. 0k ≤C.2k <D.0k < 【答案】C【解析】由题可知,△>0,即 (-2)2-4(k-1)>0,解得k <2 【知识点】一元二次方程跟的判别式,解不等式10.(2018四川泸州,10题,3分)如图4,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AGGF的值是( ) A.43 B.54 C.65 D.76G FEDCB A第10题图【答案】C【解析】因为正方形中,AE=3ED ,DF=CF ,所以设边长为4a ,则AE=3a ,ED=a ,DF=CF=2a ,延长BE 、CD 交于点M ,易得△ABE ∽△MDE ,可得MD=a 34,因为△ABG ∽△MFG ,AB=4a ,MF=a 310,所以56==MF AB GF AG第10题解图【知识点】相似三角形11.(2018四川泸州,10题,3分)在平面直角坐标系内,以原点O 为原心,1为半径作圆,点P在直线y =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( ) A. 3 B. 2C.【答案】D【解析】由题可知,B (-2,0),C (0,32),P 为直线上一点,过P 作圆O 的切线PA ,连接AO ,则在Rt △PAO 中,AO=1,由勾股定理可得22AO PO PA -=,要想使PA 最小,要求PO 最小,所以过点O 作OP⊥BC 于点P ,此时PO=3,PA=2【知识点】一次函数,圆的切线,勾股定理12.(2018四川泸州,10题,3分)已知二次函数22233y ax ax a =+++(其中x 是自变量),当2x ≥时,y 随x 的增大而增大,且21x -≤≤时,y 的最大值为9,则a 的值为( ) A.1或2-B.D.1【答案】D【解析】原函数可化为y=a(x+1)2+3a 2-a+3,对称轴为x=-1,当2x ≥时,y 随x 的增大而增大,所以a>0,抛物线开口向上,因为21x -≤≤时,y 的最大值为9,结合对称轴及增减性可得,当x=1时,y=9,带入可得,a 1=1,a 2=-2,又因为a>0,所以a=1MG FEDCB A【知识点】二次函数,增减性二、填空题(每小题3分,共12分)13.(2018四川泸州,题,3分)在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥1【解析】根号下的数为非负数,即x-1≥0,x ≥1 【知识点】二次根式的定义14.(2018四川泸州,题,3分)分解因式:233a -= .【答案】3(a+1)(a-1)【解析】原式=3(a 2-1)=3(a+1)(a-1)【知识点】因式分解(提公因式法,公式法)15.(2018四川泸州,题,3分) 已知1x ,2x 是一元二次方程2210x x --=的两实数根,则12112121x x +++的值是 .【答案】6【解析】由韦达定理可得x 1+x 2=2,x 1x 2=-1,6122)1(42221)(242)(2)12)(12(12122121212121=+⨯+-⨯+⨯=+++++=+++++=x x x x x x x x x x 原式【知识点】韦达定理,分式加减16.(2018四川泸州,题,3分) 如图5,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .C第16题图 【答案】18【解析】做△ABC 的高AH ,因为S=120,BC=20,所以AH=12,△CDF 的周长=CF+CD+DF ,CF=5,因为EG 是腰AC 的垂直平分线,连接AD ,AF ,可得DA=DC ,所以AD+DF 的最小值为AF 的长度,在Rt △AHF 中,HF=5,AH=12,由勾股定理可得AF=13,因此△CDF 周长的最小值为18【知识点】三角形面积,垂直平分线,勾股定理三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤) 17.(2018四川泸州,17题,6分)计算:011()|4|2π---.【思路分析】本题考查零指数幂,负指数幂,平方根,绝对值 【解题过程】原式=1+4+2-4=3【知识点】零指数幂,负指数幂,平方根,绝对值18.(2018四川泸州,19题,6分) 如图6,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .FED CBA第18题图【思路分析】△FDE 和△CAB 全等,得到对应角相等【解题过程】因为DA=EB ,所以DE=AB ,又因为EF=BC ,DF=AC ,所以△FDE ≌△CAB ,所以∠F=∠C 【知识点】三角形全等的判定和性质19.(2018四川泸州,19题,6分) 化简:2221(1)11a a a a +++÷--.【思路分析】先算括号里的分式加减,再算乘除,先因式分解 【解题过程】()1111·1212+=+--+-=a a a a a 原式 【知识点】分式运算,因式分解20.(2018四川泸州,20题,7分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数C据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题: (1)求n 的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.第20题图【思路分析】(1)总数=频数÷频率(2)频率估计概率,频数=总数×频率(3)抽取两名,即不放回抽取 【解题过程】(1)n=5÷10%=50(人)(2)喜爱看电视的百分比:(50-15-20-5)÷50×100%=20%,该校喜爱看电视的人数1200×20%=240(人) (3)设三名男生为男A ,男B ,男C ,从这4名学生中任意抽取2名学生,所有可能的情况如下表由表可知,总共有12中可能的结果,每种结果的可能性都相同,其中,抽到两名男生的结果有6种,所以P(抽到两名男生)=21126 【知识点】条形统计图,扇形统计图,概率21.(2018四川泸州,21题,7分) 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本. (1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【思路分析】(1)根据甲乙图书价格和数量的等量关系可列分式方程;(2)设出乙图书的数量,根据费用的要求,列出不等式,进一步进行求解【解题过程】(1)设乙图书每本价格为x 元,则甲图书每本价格为2.5x 元,根据题意得实践视活动外书245.2800800=-xx ,解得,x=20,经检验得,x=20是原分式方程的解,2.5x=50,因此,甲乙两种图书每本价格分别为50元、20元。

四川省泸州市中考数学试卷含答案解析版

2018年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)(2018•泸州)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.2(2018•泸州)2017年,全国参加汉语考试的人数约为6500000,将6500000 2.(3分)用科学记数法表示为()A.×105B.×106C.×107D.65×1053.(3分)(2018•泸州)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a24.(3分)(2018•泸州)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.(3分)(2018•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC 的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°6.(3分)(2018•泸州)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,157.(3分)(2018•泸州)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.88.(3分)(2018•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.39.(3分)(2018•泸州)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<010.(3分)(2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.11.(3分)(2018•泸州)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA 的最小值为()A.3 B.2 C.D.12.(3分)(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1二、填空题(每小题3分,共12分)13.(3分)(2018•泸州)若二次根式在实数范围内有意义,则x的取值范围是.14.(3分)(2018•泸州)分解因式:3a2﹣3= .15.(3分)(2018•泸州)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是.16.(3分)(2018•泸州)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF 周长的最小值为.三、(每小题6分,共18分)17.(6分)(2018•泸州)计算:π0++()﹣1﹣|﹣4|.18.(6分)(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19.(6分)(2018•泸州)化简:(1+)÷.四、(每小题7分,共14分)20.(7分)(2018•泸州)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21.(7分)(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书五、(每小题8分,共16分)22.(8分)(2018•泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D 间的距离(计算结果用根号表示,不取近似值).23.(8分)(2018•泸州)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y 1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.六、(每小题12分,共24分)24.(12分)(2018•泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH 的长.25.(12分)(2018•泸州)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.2018年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)(2018•泸州)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.2【考点】18:有理数大小比较.【专题】511:实数.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2最小,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.(2018•泸州)2017年,全国参加汉语考试的人数约为6500000,将6500000(3分)2.用科学记数法表示为()A.×105B.×106C.×107D.65×105【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:6500000=×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2018•泸州)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【专题】11 :计算题.【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.4.(3分)(2018•泸州)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.(3分)(2018•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC 的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【考点】JA:平行线的性质.【专题】1 :常规题型.【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.6.(3分)(2018•泸州)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【考点】W5:众数;W4:中位数.【专题】1 :常规题型;542:统计的应用.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)(2018•泸州)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.8【考点】L5:平行四边形的性质;KX:三角形中位线定理.【专题】555:多边形与平行四边形.【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.(3分)(2018•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【考点】KR:勾股定理的证明.【专题】1 :常规题型.【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.(3分)(2018•泸州)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<0【考点】AA:根的判别式.【专题】11 :计算题.【分析】利用判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(3分)(2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【考点】S9:相似三角形的判定与性质;LE:正方形的性质.【专题】556:矩形菱形正方形.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.【点评】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.11.(3分)(2018•泸州)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA 的最小值为()A.3 B.2 C.D.【考点】MC:切线的性质;F8:一次函数图象上点的坐标特征.【专题】11 :计算题.【分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,先利用一次解析式得到D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,则PA=,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.12.(3分)(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【考点】H3:二次函数的性质;H7:二次函数的最值.【专题】1 :常规题型.【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.【点评】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c (a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(每小题3分,共12分)13.(3分)(2018•泸州)若二次根式在实数范围内有意义,则x的取值范围是x≥1 .【考点】72:二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.(3分)(2018•泸州)分解因式:3a2﹣3= 3(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)(2018•泸州)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是 6 .【考点】AB:根与系数的关系.【专题】17 :推理填空题;523:一元二次方程及应用.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.16.(3分)(2018•泸州)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF 周长的最小值为18 .【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【专题】552:三角形.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、(每小题6分,共18分)17.(6分)(2018•泸州)计算:π0++()﹣1﹣|﹣4|.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1 :常规题型.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+2﹣4=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【考点】KD:全等三角形的判定与性质.【专题】552:三角形.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.【点评】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,属于中考基础题目.19.(6分)(2018•泸州)化简:(1+)÷.【考点】6C:分式的混合运算.【专题】11 :计算题.【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可.【解答】解:原式=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、(每小题7分,共14分)20.(7分)(2018•泸州)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】11 :计算题.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(7分)(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【专题】1 :常规题型.【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.五、(每小题8分,共16分)22.(8分)(2018•泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D 间的距离(计算结果用根号表示,不取近似值).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】1 :常规题型.【分析】在直角三角形中,利用余弦函数用AD表示出AE、DE,用BC表示出CE、BE.根据BC=6AD,AE+BE=AB=90m,求出AD、DE、CE的长.在直角三角形DEC中,利用勾股定理求出CD的长.【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.【点评】本题考查了解直角三角形的应用及勾股定理.题目难度不大,解决本题的关键是利用BC=6AD,AE+BE=AB=90m求出AD的长.23.(8分)(2018•泸州)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y 1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【考点】G8:反比例函数与一次函数的交点问题.【专题】153:代数几何综合题;31 :数形结合;533:一次函数及其应用;534:反比例函数及其应用.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE,得到相似比为1:2,表示点C、D坐标,代入y=kx+b求解.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B设点C坐标为(a,b),由已知ab=m由(1)点E坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点D坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得m=6a∵ab=m∴b=6则点D坐标化为(a,3)∵点D在y=﹣图象上∴a=4∴m=ab=12【点评】本题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.六、(每小题12分,共24分)24.(12分)(2018•泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH 的长.【考点】S9:相似三角形的判定与性质;M5:圆周角定理;MC:切线的性质.【专题】559:圆的有关概念及性质.【分析】(1)想办法证明△OFD∽△OCP,可得=,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF 中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(4)2+r2=(r+4)2,∴r=2,∵CM==,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=,在Rt△OEF中,OF==,∴EC=2OF=,∵EC∥OB,∴==,∵GH∥CM,∴==,∴GH=.【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(12分)(2018•泸州)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;31 :数形结合;37:数学建模思想;537:函数的综合应用.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣)x+3可求a,应用待定系数法可求直线AB的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,得到DE与AE的数量关系可以构造方程;(3)用n表示GH,由平行四边形性质DE=GH,可得m,n之间数量关系,利用相似用GM表示EG,表示▱DEGH周长,利用函数性质求出周长最大时的m值,可得n值,进而求G点坐标.【解答】解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣(2)由已知,点D坐标为(m,﹣)点E坐标为(m,﹣)∴AC=4﹣mDE=(﹣)﹣(﹣)=﹣∵BC∥y轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE ∴解得m1=,m2=4(舍去)故m值为(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣同理HG=﹣∵四边形DEGH是平行四边形∴﹣=﹣整理得:(n﹣m)[]=0∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH周长L=2[﹣+]=﹣∵a=﹣<0∴m=﹣时,L最大.∴n=4﹣=∴G点坐标为(,),此时点E坐标为(,)当点G、E位置对调时,依然满足条件∴点G坐标为(,)或(,)【点评】本题以二次函数图象为背景,综合考查三角形相似、平行四边形性质、二次函数最值讨论以转化的数学思想.。

【2018年中考真题模拟】四川省泸州市2018年中考数学真题试题(含答案)

泸州市二0一七年高中阶段学校招生考试
数学试题
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.7-的绝对值为( )
A .7
B .7-
C .17
D .17
- 2. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )
A .356710⨯
B .456.710⨯
C .55.6710⨯
D .6
0.56710⨯
3. 下列各式计算正确的是( )
A .236x x x ⋅=
B .32x x x -=
C .2(2)4x x =
D .623x x x ÷=
4. 下图是一个由4个相同的正方体组成的立体图形,它的左视图是( )
5. 已知点(,1)A a 与点(4,)B b -关于原点对称,则a b +的值为( )
A .5
B .5-
C .3
D .3-
6. 如图,AB 是O 的直径,弦CD AB ⊥于点E ,若8,1AB AE ==,则弦CD 的长是( )
A ..6 D .8
7. 下列命题是真命题的是( )
A .四边都相等的四边形是矩形。

【2018年中考超凡押题】四川省泸州市2018年中考数学真题试题(含答案)

泸州市二0一七年高中阶段学校招生考试 数学试题 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.7的绝对值为( ) A.7 B.7 C.17 D.17 2. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )

A.356710 B.456.710 C.55.6710 D.60.56710 3. 下列各式计算正确的是( ) A.236xxx B.32xxx C.2(2)4xx D.623xxx 4. 下图是一个由4个相同的正方体组成的立体图形,它的左视图是( )

5. 已知点(,1)Aa与点(4,)Bb关于原点对称,则ab的值为( ) A.5 B.5 C.3 D.3 6. 如图,AB是O的直径,弦CDAB于点E,若8,1ABAE,则弦CD的长是( ) A.7 B.27 C.6 D.8

7. 下列命题是真命题的是( ) A.四边都相等的四边形是矩形 B.菱形的对角线相等 C.对角线互相垂直的平行四边形是正方形 D.对角线相等的平行四边形是矩形 8. 下列曲线中不能表示y是x的函数的是( )

9. 已知三角形的三遍长分别为,,abc,求其面积问题,中外数学家曾经进行过深入的研究,故希腊的几何学甲海伦给出求其面积的海伦公式()()()Sppapbpc,其中2abcp;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其

面积的秦九韶公式222221()22abcSab,若一个三角形的三边分别为2,3,4,其面积是 ( )

A.3158 B.3154 C.3152 D.152 11.如图,在矩形ABCD中,点E是边BC的中点,AEBD,垂足为F,则tanBDE的值是 ( )

A.24 B.14 C.13 D.23

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共23页) 2018年四川省泸州市中考数学试卷 一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.(3分)在﹣2,0,,2四个数中,最小的是( )

A.﹣2 B.0 C. D.2 2.(3分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( ) A.6.5×105 B.6.5×106 C.6.5×107 D.65×105 3.(3分)下列计算,结果等于a4的是( ) A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2 4.(3分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )

A. B. C. D. 5.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是( )

A.50° B.70° C.80° D.110° 6.(3分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果 第2页(共23页)

如下表: 年龄 13 14 15 16 17 人数 1 2 2 3 1 则这些学生年龄的众数和中位数分别是( ) A.16,15 B.16,14 C.15,15 D.14,15 7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )

A.20 B.16 C.12 D.8 8.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )

A.9 B.6 C.4 D.3 9.(3分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是( ) A.k≤2 B.k≤0 C.k<2 D.k<0 10.(3分)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是( ) 第3页(共23页)

A. B. C. D. 11.(3分)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为( ) A.3 B.2 C. D. 12.(3分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为( ) A.1或﹣2 B.或 C. D.1

二、填空题(每小题3分,共12分) 13.(3分)若二次根式在实数范围内有意义,则x的取值范围是 . 14.(3分)分解因式:3a2﹣3= . 15.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则

的值是 . 16.(3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为 .

三、(每小题6分,共18分) 17.(6分)计算:π0++()﹣1﹣|﹣4|. 18.(6分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C. 第4页(共23页)

19.(6分)化简:(1+)÷. 四、(每小题7分,共14分) 20.(7分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题: (1)求n的值; (2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数; (3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.

21.(7分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本. (1)甲、乙两种图书每本价格分别为多少元? (2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?

五、(每小题8分,共16分) 22.(8分)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点 第5页(共23页)

的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).

23.(8分)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3). (1)求该一次函数的解析式; (2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.

六、(每小题12分,共24分) 24.(12分)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF. (1)求证:CO2=OF•OP; (2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长. 第6页(共23页)

25.(12分)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D. (1)求a的值和直线AB的解析式; (2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值; (3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标. 第7页(共23页)

2018年四川省泸州市中考数学试卷 参考答案与试题解析

一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.(3分)在﹣2,0,,2四个数中,最小的是( )

A.﹣2 B.0 C. D.2 【解答】解:由正数大于零,零大于负数,得 ﹣2<0<<2, ﹣2最小, 故选:A.

2.(3分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( ) A.6.5×105 B.6.5×106 C.6.5×107 D.65×105 【解答】解:6500000=6.5×106, 故选:B.

3.(3分)下列计算,结果等于a4的是( ) A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2 【解答】解:A、a+3a=4a,错误; B、a5和a不是同类项,不能合并,故此选项错误; C、(a2)2=a4,正确; D、a8÷a2=a6,错误; 故选:C. 第8页(共23页)

4.(3分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )

A. B. C. D. 【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形, 故选:B.

5.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是( )

A.50° B.70° C.80° D.110° 【解答】解:∵∠BAC的平分线交直线b于点D, ∴∠BAD=∠CAD, ∵直线a∥b,∠1=50°, ∴∠BAD=∠CAD=50°, ∴∠2=180°﹣50°﹣50°=80°. 故选:C.

6.(3分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表: 年龄 13 14 15 16 17 第9页(共23页)

人数 1 2 2 3 1 则这些学生年龄的众数和中位数分别是( ) A.16,15 B.16,14 C.15,15 D.14,15 【解答】解:由表可知16岁出现次数最多,所以众数为16岁, 因为共有1+2+2+3+1=9个数据, 所以中位数为第5个数据,即中位数为15岁, 故选:A.

7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )

A.20 B.16 C.12 D.8 【解答】解:∵四边形ABCD是平行四边形, ∴OA=OC, ∵AE=EB, ∴OE=BC, ∵AE+EO=4, ∴2AE+2EO=8, ∴AB+BC=8, ∴平行四边形ABCD的周长=2×8=16, 故选:B.

8.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )

相关文档
最新文档