移动终端的工作原理
MMS网络基本结构及工作原理

MMS网络基本结构及工作原理1. MMS 网络基本结构移动多媒体信息业务系统涵盖了多种类型的网络,并可以集成这些网络中现有的信息业务系统。
移动终端在多媒体信息业务环境(MMSE)中进行操作。
此环境既包括2.5G和3G网络,也有网络间的相互漫游等情况。
MMSE提供了所有相关的业务成份,如:信息的发送、存储、通知。
它们既可位于同一网络中或分布于不同的网络中。
在MMS服务投放市场以前,很多关于网络的实际准备工作必须预先完成。
在软、硬件的准备上除了可以接收MMS的终端外,还需要MMS中心、WAP网关、数据库服务器、增值服务(VAS)等。
◆多媒体信息中心(MMSC)在整个在多媒体信息业务环境(MMSE)中,多媒体信息中心(MMSC)是系统的核心。
由MMS服务器、MMS中继、信息存储器和数据库组成。
MMSC是MMS网络结构的核心,它提供存储和操作支持,允许终端到终端和终端到电子邮件的即时多媒体信息传送,同时支持灵活的寻址能力。
MMSC是将MMS信息从发送者传递到接收者的存储和转发网络元素。
MMSC的概念与SMSC相似,即服务器只在查找接收者电话的期间存储信息。
在找到接收电话以后,MMSC立即将多媒体消息转发给接收者,并且从MMSC删除此消息。
由于MMSC在能够发送的情况下不存储消息,因此它不是一个邮箱服务器。
MMSC是提供MMS服务所需的一个新的网络元素。
由于传输容量和界面需求都不同,SMSC的软件不能直接升级到MMSC。
另外,MMSC需要运行很多连接其它网络(如Internet)接口,以及提供增值服务所需的外部应用接口,MMSC 还应具备到Email的接口。
◆ WAP网关尽管用户对MMS的使用与SMS类似,但是MMS不能在SMS的传输信道进行传送,SMS的传输信道对于传送多媒体内容来说太窄了。
在协议层,MMS使用WAP无线会话协议(WSP)作为传输协议。
为了在MMS信息传输中使用WAP协议,需要一个WAP网关连接MMSC和无线WAP网络。
GPRS工作原理以及其通信协议

-------GPRS的工作原理简介GPRS工作时,是通过路由管理来进行寻址和建立数据连接的,而GPRS的路由管理表现在以下3个方面:移动终端发送数据的路由建立;移动终端接收数据的路由建立;以及移动终端处于漫游时数据路由的建立。
对于第一种情况,当移动终端产生了一个PDU(分组数据单元),这个PDU经过SNDC 层处理,称为SNDC数据单元。
然后经过LLC层处理为LLC帧,通过空中接口(空中接口(Air Interface)是指用户终端(UT)和无线接入网络(RAN)之间的接口)送到GSM网络中移动终端所处的SGSN。
SGSN把数据送到GGSN。
GGSN把收到的消息进行解装处理,转换为可在公用数据网中传送的格式(如PSPDN的PDU),最终送给公用数据网的用户。
为了提高传输效率,并保证数据传输的安全,可以对空中接口上的数据做压缩和加密处理。
在第二种情况中,一个公用数据网用户传送数据到移动终端时,首先通过数据网的标准协议建立数据网和GGSN之间的路由。
数据网用户发出的数据单元(如PSPDN中的PDU),通过建立好的路由把数据单元PDU送给GGSN。
而GGSN再把PDU送给移动终端所在的SGSN上,GSN把PDU封装成SNDC数据单元,再经过LLC层处理为LLC帧单元,最终通过空中接口送给移动终端。
第三种情况是一个数据网用户传送数据给一个正在漫游的移动用户。
这种情况下的数据传送必须要经过归属地的GGSN,然后送到移动用户A。
------GPRS的英文全称是:“General Packet Radio Service”(译作“通用无线分组服务”),它是利用“包交换”(Packet-Switched)的概念发展起来的一套无线传输方式。
所谓“包交换”就是将Data封装成许多独立的封包,再将这些封包一一传送出去,形式上有点类似邮局中的寄包裹。
其作用在于只有当有资料需要传送时才会占用频宽,而且可以以传输的资料量计价,这对广大用户来说是较合理的计费方式,因为像Internet这类的数据传输大多数的时间频宽是闲置的。
移动终端安全威胁和防护措施

移动终端安全威胁和防护措施工业和信息化部电信研究院高级工程师落红卫中国移动通信集团吉林有限公司网络管理中心工程师萌孙随着移动通信的发展,移动终端也得到了飞速的发展,不仅数量大大增加,功能也日益增强,给人们的工作和摘要:移动终端极大地方便了人们的工作和但由于其特殊性同时也给人们带来越来活,生活带来了极大的方便。
但是,由于移动终端的开放性和这些威胁主要来源于移动终端多的安全威。
便携性,也给用户带来了安全威胁,特别是移动终端(包括人们便携具有多种无线接口和关联业务存储卡和SIM 卡)中存储了大量用户信息,任何安全问题借助相应的安培养良好的移动终端使用习惯规避安技术手段做好全面的安全防护措施,都会对用户的工作和生活产生巨大的影响。
同时,移动智关键词问题让移动终端发挥更积极的作。
能终端所占的比重日益增加,使安全问题更显突出。
总体安全防安全威移动终来说,移动智能终端的功能日益丰富,使其漏洞随之增加并导致安全事件种类的增多;操作系统开放性的提高,使convAbstract:Mobile devices have broughtgreatmoretoniencepeoplHowever,workandliving. 病毒开发更为容易;带宽的增加,使更加复杂的病毒通过been emergingthreatens have and moresecurity 各种数据业务进行传播成为可能;多样的外部接口增加了due totheirportability, variety ofwireless inter病毒传播的渠道;终端存储能力的提高,更增加了移动智Inexistance ofassociated services. and thefaces, 能终端安全的隐患。
以上安全问题基本上和计算机面临的to developforisview of this, itnecessary people安全问题类似。
但是不同的是,对于计算机,只有接入互联devices,mobile toapplyausinghabits goodincomprand topropriate safety techniques take-网才可能受到病毒攻击,并且可以通过重装操作系统方式problemsavoid securitytomeasureshensive 来进行处理,而移动智能终端时刻与移动网络相连,并且ssecurity threaten,mobile device,Key Words: 其操作系统并不能象计算机一样随时安装,一旦安全事件protectiocurity 爆发,其危害性将远远大于计算机病毒。
移动通信基本原理

并实现整个通信系统的运行、 管理。
第1章 移动通信基本原理
第1章 移动通信基本原理
1) 移动交换中心MSC MSC是计算机控制的全自动交换系统。
MSC是整个GSM网络的核心,它控制所有BSC的业
务,提供交换功能及和系统内其它功能的连接,MSC 可以直接提供或通过移动网关GMSC提供和公共电话
交换网(PSTN)、综合业务数字网(ISDN)、公共
线资源管理等功能。 功能实体可分为基站控制器
(BSC)和基站收发信台(BTS)。
第1章 移动通信基本原理
1) 基站收发信台BTS BTS完全由BSC控制, 主要负责无线传输, 完成 无线与有线的转换、 无线分集、 无线信道加密、 跳频 等功能。 2) 基站控制器BSC
基站控制器是基站的智能控制部分, 负责本基站
第1章 移动通信基本原理
•半双工通信
•通信双方中,一方使用双频双工方式,即收发信机同时 •工作;另一方使用双频单工方式,即收发信机交替工作。
A T 发射机 受话器 R 接收机 f2 天线共用器 f1 R f1 f2 B T
发话器
Play
图1-5 半双工方式
第1章 移动通信基本原理
• 半双工方式,基站为双工,移动台为异频单工
数据网(PDN)等固定网的接口功能,把移动用户与 移动用户、移动用户和固定网用户互相连接起来。
第1章 移动通信基本原理
MSC支持的呼叫业务是: (1) 本地呼叫、 长途呼叫和国际呼叫。
(2) 通过MSC进行移动用户与市话、 长话之间的
联系, 控制不同蜂窝小区的运营。 (3) 支持移动电话机的越区切换、 漫游、 入网登 录和计费。
发话器 A T 发射机 天线共用器 受话器 R f2 f1 R f1 f2 B T
LTE的工作原理

LTE的工作原理LTE(Long-Term Evolution), 是一种无线通信技术标准。
其工作原理主要包括以下几个方面:1. 码分多址技术(CDMA):在LTE中,为了提高系统容量和频谱效率,采用了码分多址技术。
该技术通过将不同用户的数据编码成不同的序列,使得多个用户可以同时使用相同的频谱资源进行通信。
2. OFDMA(正交频分多址):LTE采用OFDMA技术实现下行链路(基站到终端)和上行链路(终端到基站)的无线传输。
OFDMA将频谱资源分为多个子载波,每个子载波间相互正交,使得多个用户可以同时传输数据,提高了系统的频谱效率。
3. MIMO技术(多输入多输出):LTE中采用了MIMO技术来提高系统的容量和覆盖范围。
MIMO利用多个天线在发送端和接收端之间传输多个数据流,通过空间上的信号复用和多径传播的特点,提高了系统的传输速率和可靠性。
4. 调制和编码:LTE使用了高效的调制和编码技术,如16QAM和64QAM调制,以及Turbo编码、LDPC编码等纠错码。
这些技术可以提高信道的可靠性和数据传输速率。
5. 动态资源分配:LTE可以根据用户的需求和信道质量动态分配无线资源。
通过监测信道状态和用户的需求,LTE可以动态调整子载波的分配、功率控制和调度算法,以优化网络性能。
6. 切换和漫游:LTE支持无缝切换和漫游,可以实现终端在不同LTE基站之间的切换,以实现用户在移动过程中的连续通信。
7. 双工方式:LTE支持全双工通信,同时支持下行和上行链路的同时传输,有效提高了系统的容量和频谱利用率。
总结起来,LTE的工作原理主要包括码分多址技术、OFDMA 技术、MIMO技术、调制和编码技术、动态资源分配、切换和漫游、双工方式等。
这些技术的综合应用使得LTE在无线通信中具有更高的传输速率、容量和覆盖范围。
2024版移动通信概述PPT课件

移动通信概述PPT课件•移动通信基本概念与原理•移动通信关键技术分析•蜂窝网络规划与优化方法•无线传输新技术发展趋势目录•移动终端设备与业务应用•网络安全与隐私保护问题探讨移动通信基本概念与原理01移动通信定义及发展历程移动通信定义指通信双方或至少有一方在移动中进行信息交换的通信方式。
发展历程从模拟移动通信到数字移动通信,再到当前的4G/5G移动通信技术。
无线通信系统与网络架构无线通信系统组成包括基站、移动台、交换中心、信道等组成部分。
网络架构包括核心网、接入网和传输网等部分,支持各种业务和应用。
信号传输与处理技术信号传输技术包括调制、解调、编码、解码等过程,实现信号的可靠传输。
信号处理技术包括滤波、放大、变换等技术,提高信号质量和传输效率。
标准化组织及其作用标准化组织如3GPP、IEEE等,负责制定和推广移动通信相关标准。
作用推动技术发展,提高设备兼容性,降低研发成本,促进产业合作。
移动通信关键技术分析02多址技术原理及应用场景多址技术原理多址技术是指在一个通信系统中,允许多个用户同时共享同一物理信道进行通信的技术。
它通过对信号进行不同的处理,使得系统能够区分来自不同用户的信号,实现多用户同时通信。
应用场景多址技术广泛应用于移动通信、卫星通信、计算机网络等领域。
在移动通信中,多址技术是实现手机用户之间、手机与基站之间通信的基础。
调制与解调方法探讨调制方法调制是将基带信号转换为适合在信道中传输的已调信号的过程。
常见的调制方式包括幅度调制(AM)、频率调制(FM)和相位调制(PM)。
在移动通信中,通常采用数字调制方式,如QPSK、16QAM等。
解调方法解调是将已调信号还原为基带信号的过程。
解调方法与调制方法相对应,例如对于QPSK调制,可以采用相干解调或非相干解调等方法进行解调。
信道编码与差错控制策略信道编码信道编码是为了提高数字传输的可靠性而采用的一种技术。
它通过在发送端对信息进行编码,增加冗余度,以便在接收端能够检测和纠正传输过程中可能出现的错误。
移动通信原理

表2-1 三代移动通信的比较
5. 小灵通PHS
小灵通又叫无线市话, 英文简称为PHS(Personal Handphone System), 是一种个人无线接入系统。 在不 少城市, “小灵通”已成为人们日常生活中不可缺少 的通信工具。 “小灵通”采用的是微蜂窝技术, 将用 户终端以无线的方式接入固定电话网, 使传统意义上 的电话不再固定在某个位置, 用户可在小灵通网络覆 盖范围内自由移动实现通信。 正是由于无线市话小巧、 价廉、 环保的特点, 人们亲切地称之为“小灵通”。
图2-9 GSM语音编码器框图
2.4.2 信道编码 1. 信道编码的基本原理 语音信号经过语音编码后, 紧接着还要进行信道
编码。 由语音编码过程可以看出, 采用LPC-LTP-RPE 编码方案, 可以降低数字信号的传输速率, 实现数字 信号压缩。
采用数字传输时, 所传信号的质量常常用接收比 特中有多少是正确的来表示, 并由此引出比特差错率 (BER)的概念。 BER表明总比特率中有多少比特被检 测出错误, 差错比特数目或所占的比例要尽可能小。
基站子系统BSS和手机MS组成。 基站子系统与移动电 话机之间依赖无线信道来传输信息。 移动通信系统与 其他通信系统如PSTN固定电话网之间, 需要通过中继 线相连, 实现系统之间的互连互通, 其组成框图如图 1-1所示。 当然, 对整个通信网络需要进行管理和监 控, 这是由操作维护子系统OMS来完成的。
移动通信原理
2.1 手机发展概况
1. 模拟式手机 模拟式手机泛指第一代移动通信的终端设备。 第 一代移动通信俗称“本地通”, 多采用TACS制, 频 分多址(FDMA)方式。
2. 数字式手机 现在正处于移动通信的第二阶段, 数字式手机泛 指第二代移动通信的终端设备。 第二代数字式手机, 俗称“全球通”, 我国现有GSM、 CDMA两种制式。 我国首先采用GSM制, 它属时分多址(TDMA)方式。
集群移动通信系统

集群移动通信系统第一点:集群移动通信系统的概述集群移动通信系统是一种专业的通信系统,主要应用于公共安全、紧急救援、大型活动等场景。
它不同于普通的移动通信系统,具有较高的通信可靠性、安全性和实时性。
集群移动通信系统的主要特点包括:1.高频段使用:集群移动通信系统通常使用UHF(超高频)和VHF(甚高频)频段,这些频段的波长较短,抗干扰能力强,传播损耗小,适合于城市等复杂环境下的通信。
2.信道分配与管理:系统通过动态的信道分配和管理技术,实现高效的使用频率资源,减少信道间的干扰,提高通信质量和效率。
3.多级优先级:在紧急情况下,集群移动通信系统支持多级优先级通信,确保紧急任务的优先处理。
4.漫游和越区切换:系统支持漫游和越区切换功能,使得移动用户在不同覆盖区域间无缝通信。
5.高度的可靠性:通过采用各种抗干扰、抗多径衰落的技术,保证在复杂环境下的通信可靠性。
6.语音和数据通信:除了基本的语音通信外,现代集群移动通信系统还支持数据传输,包括短信、图片、地图等信息。
7.保密性和安全性:系统采用加密技术,保证通信内容的保密性和安全性。
集群移动通信系统通常由多个基站、调度台、移动终端等组成。
基站负责信号的接收和发送,调度台用于管理和控制通信,移动终端则是用户实际使用的设备。
系统的工作原理是,移动终端通过基站与调度台进行通信,调度台根据通信需求和信道状况,动态分配信道和资源,以实现高效、可靠的通信。
第二点:集群移动通信系统的应用场景集群移动通信系统在多个行业和领域发挥着重要作用,以下是几个典型的应用场景:1.公共安全:在公安、交警、消防等公共安全领域,集群移动通信系统是标配的通信手段。
它可以为执法人员提供实时、可靠的语音和数据通信,便于指挥调度和快速响应。
2.紧急救援:在地震、洪水、泥石流等自然灾害发生时,常规通信设施可能受损,集群移动通信系统可以迅速建立现场通信网络,为救援人员提供有效的通信支持。
3.大型活动:对于奥运会、世博会、音乐节等大型活动,集群移动通信系统可以保障组织者、参与者之间的通信顺畅,确保活动的顺利进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移动终端的工作原理
移动终端(比如智能手机)的工作原理涉及多个方面的协同,包括硬件和软件层面,使得用户可以在移动设备上进行各种操作和获取信息。
移动终端的基本工作原理:
一、硬件层面
1. 处理器和内存:移动终端中的处理器(比如ARM架构的处理器)负责执行计算任务,内存用于存储临时数据和运行程序。
2. 通信模块:移动终端内置了用于无线通信的模块,比如GSM、CDMA、LTE等,使其能够连接移动网络。
3. 传感器:包括加速度计、陀螺仪、GPS接收器、环境光传感器等,用于获取设备周围环境和用户交互的信息。
4. 显示屏和输入设备:通常采用触摸屏技术,用户通过触摸屏操作移动终端,并通过显示屏获取信息。
5. 电源:由于移动设备通常依赖电池供电,供电是移动设备工作最基本的硬件条件。
二、软件层面
1.操作系统:移动设备运行一个专门为移动环境优化的操作系统,如Android或iOS。
这些操作系统提供了一个用户友好的界面,使得用户可以通过触摸屏幕进行交互。
操作系统还管理设备的硬件资源,包括处理器、内存、电池等,并允许第三方应用程序在其上运行。
2.无线通信:移动终端的核心功能是无线通信,它们使用各种无线通信技术,如蜂窝网络(如4G LTE、5G)、Wi-Fi、蓝牙等来连接到互联网或其他设备。
当你打开一个应用程序并请求数据(例如,浏览网页、下载文件或流媒体),这些请求被发送到网络,然后返回所请求的数据。
3.应用程序:移动设备上运行的应用程序提供各种服务,如社交媒体、电子邮件、游戏、音乐和视频播放等。
这些应用程序通过无线网络连接到服务器,获取和发送数据。
4.定位服务:许多移动设备还包含GPS或其他地理位置服务,这些服务可以确定设备的物理位置。
这对于导航、定位、地理标记等功能非常有用。
5.电源管理:由于移动设备通常依赖电池供电,因此电源管理是其重要的工作原理之一。
操作系统会根据设备的使用情况和电池状态,动态调整硬件的功耗,以延长电池寿命。
6.安全机制:移动设备包含各种安全机制,包括密码保护、指纹识别、面部识别等,以保护用户数据的安全。
此外,操作系统还提供应用程序沙箱机制,防止恶意软件访问设备的其他部分。
三、工作流程
移动终端的工作原理涉及从硬件到软件的协同工作。
当用户使用移动终端时,硬件和软件协同工作,通过处理器执行应用程序,利用通信模块连接网络,通过传感器获取环境信息,并通过显示屏和输入设备与用户交互,从而实现各种功能和服务。