三角函数-任意角的三角函数

合集下载

任意角的三角函数课件最后更新

任意角的三角函数课件最后更新
A
B
c
b
a
C
上述定义只限于直角三角形中的锐角, 而现在角的定义已经拓广到任意角.
如:
2 sin ? 3 cos ? tan(

3
)?
任意角是 在直角坐 标平面内 给出定义
正弦、余弦、正切 是在直角三角形中 给出定义
思考:如何定义任意角的三角函数?
新课
导入
将 Rt⊿ABC 放在直角坐标系中,使得点 A 与坐标原点重合, AC 边在 x 轴的正半轴上.三角函数的定义可以写作:
函 数
然后再根据在各象限角三角函数值的符号来进行判断 .


27 角为第 (1) 因为 4327º 角为第 5
(2)因为
象限角,
0, 27 0,
象限角,
故 sin
故 sin27 4327
cos 4327
4327 5
0. 0.

例 2、根据条件 sin 0 且 tan 0 , 确定 是第几象限的角.
由 =m2 -16S 0 m 4 S
∴m的最小值为
4 S,
2S 此时 R= S, = 2 =2 R
1.2.1任意角的三角函数
初中:在直角三角形中锐角A 的三角函数定义:
a BC sin A c AB
AC b cos A AB c
BC a tan A AC b
课前复习: 1.如图,已知长为 3 dm,宽 1 dm 的长方形木块在桌面上作无滑动 的翻滚,翻滚到第四次时被一小木板挡住,使木块底面成 30° 的角, 问点 A 走过的路程的长及走过的弧度所在扇形的总面积.
思路点拨:要明确木块翻滚时的路线是圆弧,找出每段弧所对的 圆心角及半径即可.

任意角的 三角函数

任意角的  三角函数
y 以原点为O圆心,以单位长度为半径的 MP 圆叫做单位圆. sin b, P(a,b)
OP OM cos a, OP MP b tan OM a
α x O M A(1,0)
任意角的三角函数定义:
如图,设α 是一个任意角,它的终边与单位圆交 于点P(x,y),那么:
3.三角函数都是以角为自变量,以单位圆上的点 的坐标(比值)为函数值的函数.
作业:<<自主学习资源>>P73~74
第1,3,5,9,10,12题
谢谢大家!
y
sin
M0 M
α
O
A(1,0) x
P(x,y)
P0(-3,-4)
4 , 5 3 cos , 5 4 tan 3
P0(-3,-4)
| OM | | OM 0 | 3 cos x | OM | | OP | | OP0 | 5 tan y | MP | | M 0 P0 | 4 4 x | OM | | OM 0 | 3 3
实际上
练习2.已知角α 的终边经过点P(2,-3),求 角α 的正弦、余弦和正切值。
§1.2.1任意角
的三角函数
第一课时
复习引入
锐角三角函数的定义:
斜边 对边

对边 斜边
邻边
sin _____; cos _____; tan _____
邻边 斜边
对边 邻边
锐角三角函数坐标化
O重 设锐角 的顶点与原点 y P(a,b) 合,始边与 x 轴的非负半轴重合. P(a,b) 在 的终边上任取一点 P(a, b) ,它 r 与原点的距离 r a2 b2 α

《数学》教案:任意角的三角函数

《数学》教案:任意角的三角函数
5.利用计算器求在 范围内的角x(精确到 ):
(1) ;(2) ;
(3) .
提问
巡视
指导
思考
动手
解答
交流
通过课堂练习及时了解学生对知识的掌握情况
归纳总结
1.任意角的正弦、余弦和正切函数。
2.各象限角的三角函数值的正负号。
3.界限角的三角函数值。
回顾
总结
思考
记忆
通过归纳总结,回顾所学知识
课后练习
完成教材中习题4.2
通过例题讲解与提问增加课堂互动,加深学生理解
通过表格讲述各象限角三角函数的正负号
通过例题讲解与提问增加课堂互动,加深学生理解
讲解界限角的三角函数值
通过例题加深学生理解
理解应用
练习4.2.1
1.已知点 为角 的终边上的一点,且 ,那么 ______.
2.已知点 为角 的终边上的一点,则 ______.
表4-4
所在象限
点P的坐标
x
y
第一象限
第二象限
第三象限
第四象限
例2判断下列各三角函数值的正负号:
(1) ;(2) ;
(3) ;(4) .
解(1)因为 角是第三象限的角,所以 .
(2)因为 角是第四象限的角,所以 .
(3)因为 , 角是第一象限的角,所以 角也是第一象限的角, .
(4)因为 , 角是第四象限的角,所以 角也是第四象限的角, .
第4章三角函数
课题4.2任意角的三角函数
【教学目标】
1.掌握任意角的正弦、余弦和正切函数。
2.掌握三角函数的正负号,了解用计算器进行角度与三角函数值转换。
【教学重点】
任意角的正弦、余弦和正切函数及三角函数的正负号。

任意角的三角函数

任意角的三角函数
▪ 叫单位圆
sinα y
cosx
tan y
x
锐角三角函数 可以用单位圆 上的点的坐标 来表示
推广:
我们也可以利用 单位圆定义任意角三角函数
(正弦,余弦,正切)
任意角的三角函数定义:
设α是一个任意角,它的终 边与单位圆交于点P(x,y) 则:
y 叫α的正弦
y
P(x, y)
sinα y
O
x叫α的余弦
(2) cos9
4 (3)tan( 11)
6
小结:
(1)任意角的三角函数定义 三角函数(正弦,余弦,正切)都是以角为自变量,以单 位圆上点的坐标或坐标的比值为函数值的函数. (由于角的集合与实数集合之间可以建立一一对应 关系,三角函数可以看成是自变量为实数的函数.)
所以三角函数可以记为:
ysinx 定义域为R
x
cosx
y x 叫α的正切
tan y x
问题3:
▪ 如何求α角的三角函数值? 求α角的三角函数值 即可求α终边与单位圆交于点的
纵横坐标或坐标的比值.
例题1
▪ 求 5 的正弦,余弦,正切的值
3
例题1 求 5 的正弦,余弦,正切的y 值
3
x 1 2
y 3 r 1 2
5 3
1
O2
sin5y 3
终边相同的角的同一三角函 数值是否相等?
终边相同的角的集合
{| k 2 ,k z}
终边相同
点的坐标相同
同一函数值相同
公式一
sin( k 2 ) sin
cos( k 2 ) cos
tan( k 2 ) tan
(k z)
例题4
▪ 求下列三角函数的值:

《任意角的三角函数》教案

《任意角的三角函数》教案

《任意角三角函数》教案教学目标:知识与技能目标:1、理解任意角的三角函数的定义;2、根据三角函数的定义,求出三角函数值;3、根据三角函数的定义,能够判断三角函数值的符号。

过程与方法目标:1、通过参与任意角的三角函数的“发现”与“形成”过程,培养合情猜测的能力,体会函数模型思想,以及数形结合思想,培养观察、分析、 探索、归纳、类比及解决问题的能力;2、通过从锐角三角函数推广到任意角的三角函数的过程,体会从特殊到 一般的数学思想方法。

情感态度与价值观目标:在探索任意角的三角函数的过程中,感悟数学概念的合理性、严谨性、科学性,感悟数学的本质,培养追求真理的精神。

教学重点:任意角的三角函数的定义,会利用三角函数的定义求角的函数值,会判断,三角函数在各象限的符号。

教学难点:三角函数值在各象限的符号;已知三角函数值来判断角的象限. 教具准备:直尺、多媒体课件教学方法:启发式、讲授法、练习法教学过程一、情景设置:问题1、初中时的锐角三角函数如何定义的?(学生上黑板画图,给出定义,教师根据学生展示情况进行点评) 锐角三角函数的定义:在直角△OAP 中,∠A 是直角,那么问题2、如果将锐角置于平面直角坐标系中,如何用直角坐标系中角的终边上的点的坐标表示锐角三角函数呢? (学生分组讨论,展示成果,教师规范思路和解答步骤) 建立平面直角坐标系,设点P 的坐标为(x ,y ),那么22||y x OP +=,于是问题3、对于确定的锐角,其三角函数值与终边上选取的点P 有何关系?这说明三角函数值的决定量是什么?学生互动:锐角α的三角函数值都是比值关系,与终边上选取的点P 的位置无关, 可以利用相似三角形证明.教师利用几何画板的动态效果,展示三角函数值与点P 的位置无关,仅与角α有关.问题4、你能用学过的知识来刻画一下角与这个比值的关系吗? 学生回答:对于确定的角α,比值xyr x r y ,,都惟一确定,故正弦、余弦、正切都是角α的OA Pα OA P αxy O A P α xyM N函数.问题5、终边落在第一象限内的角能用上述比值表示吗?任意角呢? 请你给出任意角的三角函数定义。

任意角的三角函数的定义-高中数学知识点讲解

任意角的三角函数的定义-高中数学知识点讲解

任意角的三角函数的定义1.任意角的三角函数的定义
【知识点的认识】
任意角的三角函数
1 定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么 sin α=y,cos α=x,tan α=푦푥.
2.几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).
【命题方向】
已知角α的终边经过点(﹣4,3),则 cosα=()
43
A.5C.―5B.3
5D.―
4
5
【分析】由条件直接利用任意角的三角函数的定义求得 cosα的值.
解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r =푥2+푦2= 5.
∴cosα=푥
푟=
―4
5=―
4
5

故选:D.
【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.
【解题方法点拨】
利用三角函数的定义求三角函数值的方法
利用三角函数的定义,求一个角的三角函数值,需确定三个量:
(1)角的终边上任意一个异于原点的点的横坐标x;(2)纵坐标y;(3)该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).
1/ 1。

第1讲 任意角三角函数-简单难度-讲义

第1讲 任意角三角函数-简单难度-讲义

任意角的三角函数引入过去我们学习过锐角三角函数的定义,这个定义主要是限制在锐角范围内,本模块开始把角的范围扩充到任意角,那么任意角的三角函数是否存在,又是如何定义的呢?还有终边相同的角的三角函数的关系是什么?原来我们学习过锐角三角函数的定义,对于任意角的三角函数如何定义呢?教材借助单位圆定义任意角的三角函数有什么优越性.解读如果定义不用单位圆与角 终边的交点,而是用角 终边上除了顶点外的任意一点,设这一点到原点的距离为设为 ,其实可以分别定义为角 的正弦、余弦和正切.这二种定义方法都可以,是一致的,只不过教材上那种定义使问题的理解更简洁.由任意角的三角函数的定义,我们不难发现,正弦和余弦的定义域是任意角,而正切定义中的 是不能取0的,所以正切中角 的终边不能在 轴上.三角函数的值在各象限的符号如图所示:(-) (-)(+)(+)(+)(+) (+)(+) (-) (-)(-)(-)终边相同的角的同一三角函数值是相等的,这就是公式一.理解这组公式主要还是运用三角函数的定义.三角函数线设任意角 的顶点在原点 ,始边与 轴非负半轴重合,终边与单位圆相交于点 ,过 作 轴的垂线,垂足为 ;过点 作单位圆的切线,它与角 的终边或其反向延长线交于点 .我们分别称图中的有向线段MP 、OM 、AT 为角 正弦线、余弦线、正切线. 注意事项⑴三角函数线是与单位圆有关的平行于坐标轴的某些特定的有向线段,用它们的长度和方向来表示三角函数的值:○1三角函数线的长度等于三角函数的值绝对值;○2方向表示三角函数的值的正负.具体说正弦线由垂足指向 的终边与单位圆的交点,与 轴同向的为正值,反向的为负值;余弦线由原点指向垂足,与 轴同向的为正值,与 轴反向的为负值;正切线由切点指向与 的终边的交点,与 轴同向的为正值,反向的为负值.⑵三角函数线的定义不仅定义了什么是正弦线、余弦线、正切线,还给出了角的三角函数线的画法,体现了数形结合思想,以“形”说“数”,也就是在“数”的角度认识任意角的三角函数的基础上,又从图形角度帮助认识任意角的三角函数,即用有向线段来表示三角函数的值,这也是三角函数与其它基本初等函数不同的地方.探究t )求:的值。

三角函数大全

三角函数大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22yx r +=,正弦:r y =αsin 余弦:rx =αcos 正切:x y =αtan 余切:y x =αcot 正割:xr =αsec余割:yr =αcsc注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 任意角的三角函数知识点1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ;(3)y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x. 2.正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).3.三角函数的定义域4.诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k ·2π)=sin α,cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α,其中k ∈Z .5.三角函数线如图,设单位圆与x 轴的正半轴交于点A ,与角α的终边交于P 点.过点P 作x 轴的垂线PM ,垂足为M ,过A 作单位圆的切线交OP 的延长线(或反向延长线)于T 点.单位圆中的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线.记作:sin α=MP ,cos α=OM ,tan α=AT .6.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α (α≠k π+π2,k ∈Z ).同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)tan α=sin αcos α的变形公式:sin α=cos αtan α;cos α=sin αtan α.题型一:三角函数的定义【例1】已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.【例2】已知角α的终边上一点的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为() A.5π6 B.2π3 C.5π6 D.11π6【过关练习】1.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3D .52.已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值;3.已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值.题型二:三角函数在各象限的符号【例1】判断下列三角函数值的符号:(1)sin 3,cos 4,tan 5;(2)sin(cos θ)(θ为第二象限角).【过关练习】1.若sin θ<0且tan θ<0,则θ是第 象限的角.2.若tan x <0,且sin x -cos x <0,则角x 的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限题型三:诱导公式一的应用【例1】求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π.【过关练习】1.求下列各式的值:(1)cos 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 810°+tan 765°-cos 360°.2.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°);(2)tan 405°-sin 450°+cos 750°.题型四:三角函数线的应用【例1】在单位圆中画出满足sin α=12的角α的终边,并求角α的取值集合.【例2】利用单位圆中的三角函数线,分别确定角θ的取值范围.(1)sin θ≥32;(2)-12≤cos θ<32.【例3】求下列函数的定义域.(1)f (x )=sin x ·tan x ;(2)f (x )=lg sin x +9-x 2.【过关练习】1.根据下列三角函数值,作角α的终边,然后求角的取值集合:(1)cos α=12;(2)tan α=-1.2.如果π4<α<π2,那么下列不等式成立的是( ) A .cos α<sin α<tan αB .tan α<sin α<cos αC .sin α<cos α<tan αD .cos α<tan α<sin α3.求函数f (x )=1-2cos x +ln ⎝⎛⎭⎫sin x -22的定义域.4.设a =sin(-1),b =cos(-1),c =tan(-1),则有( )A .a <b <cB .b <a <cC .c <a <bD .a <c <b 5.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .(-π3,π3) B .(0,π3) C .(5π3,2π) D .(0,π3)∪(5π3,2π)题型五:同角三角函数关系的应用【例1】已知cos α=-817,求sin α,tan α的值.【例2】已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α; (2)14sin 2α+13sin αcos α+12cos 2α.【例3】已知sin θ+cos θ=15,θ∈(0,π),求: (1)sin θ-cos θ;(2)sin 3θ+cos 3θ.【过关练习】1.已知tan α=43,且α是第三象限角,求sin α,cos α的值.2.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.34 B .±310 C.310 D .-3103.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15 B .-35 C.15 D.354.已知tan α=3,求下列各式的值.(1)3cos α-sin α3cos α+sin α; (2)2sin 2α-3sin αcos α.5.已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两个根(a ∈R ).(1)求sin 3θ+cos 3θ的值;(2)求tan θ+1tan θ的值.题型六:三角函数化简【例1】若α是第三象限角,化简1+cos α1-cos α+1-cos α1+cos α.【例2】求证:2sin x cos x -1cos 2x -sin 2x =tan x -1tan x +1.【过关练习】1.化简:1cos 2α1+tan 2α-1+sin α1-sin α(α为第二象限角).2.证明:sin α-cos α+1sin α+cos α-1=1+sin αcos α;课后练习【补救练习】1.若sin θcos θ>0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限2.设角α终边上一点P (-4a,3a )(a <0),则2sin α+cos α的值为() A.25 B.25或-25 C .-25 D .与a 有关3.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan ⎝⎛⎭⎫-23π4;4.在[0,2π]上,满足sin x ≥12的x 的取值范围为( )A.⎣⎡⎦⎤0,π6B.⎣⎡⎦⎤π6,5π6C.⎣⎡⎦⎤π6,2π3D.⎣⎡⎦⎤5π6,π5.利用三角函数线比较下列各组数的大小(用“>”或“<”连接):(1)sin 23π________sin 45π;(2)cos 23π________cos 45π;(3)tan 23π________tan 45π.6.已知α是第四象限角,cos α=1213,则sin α等于( )A.513 B .-513 C.512 D .-512【巩固练习】1.已知角θ的终边上一点(,2)P m -,且||4OP =,则tan θ=__________。

2.已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值.3.sin(-1 380°)的值为( )A .-12 B.12 C .-32 D.324.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为 .5.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.6.如果3π4<θ<π,那么下列各式中正确的是( ) A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ7.函数y =tan ⎝⎛⎭⎫x -π3的定义域为( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π3,x ∈R B.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6,k ∈Z C.⎩⎨⎧⎭⎬⎫x |x ≠k π+5π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x |x ≠k π-5π6,k ∈Z 8.若tan θ=-2,则sin θcos θ= .9.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 B.54 C .-34 D.4510.已知sin α+cos α=15,α∈(0,π),则tan α的值是( ) A.34 B .-34 C.43 D .-43【拔高练习】1.函数sin |cos |tan |sin |cos |tan |x x x y x x x =++的值域是_________。

2.使得lg(cos αtan α)有意义的角α是第 象限角.3.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .4.当α∈⎝⎛⎭⎫0,π2时,求证:sin α<α<tan α. 5.已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值. (1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.。

相关文档
最新文档