低通无源滤波器设计-详细要点

低通无源滤波器设计-详细要点
低通无源滤波器设计-详细要点

低通无源滤波器仿真与分析

一、滤波器定义

所谓滤波器(filter),是一种用来消除干扰杂讯的器件,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。

二、滤波器的分类

常用的滤波器按以下类型进行分类。

1)按所处理的信号:

按所处理的信号分为模拟滤波器和数字滤波器两种。

2)按所通过信号的频段

按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。

低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。

高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。

带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。

带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。

3)按所采用的元器件

按所采用的元器件分为无源和有源滤波器两种。

无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。

有源滤波器:由无源元件(一般用R和C)和有源器件(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);

缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。

4)按照阶数来分

通过传递函数的阶数来确定滤波器的分类。

三、网络的频率响应

在时域中,设输入为)

y,滤波器的脉冲响应函数为)(t

(t

h。转换到

(t

x,输出为)

频域,激励信号为)

Y。

(ωj

(ωj

X,经过一个线性网络得到的响应信号为)

则传递函数)(1)()()(jw F j X j Y j H =≡ωωω

其中,传递函数的极点是网络的固有频率。而一个传递函数所有极点的实部均为负的网络是稳定的。

一个网络的传递函数蕴含了网络的全部属性。

幅频特性和相频特性

幅度增益 与ω 构成幅频特性曲线。

相位变化

与ω 构成相频特性曲线。 四、低通滤波器的一些概念

1、单位

分贝:是用对数的方式描述相对值,无量纲。

B 贝尔 (A/B )(贝尔)=lg (A/B )=lg(A)-lg(B)

dB 分贝 (A/B )(分贝)=10 1g (A/B )

对于幅频响应,

其中3dB :功率为2倍(10*1g2=3.01),电压或电流为1.414倍。

2、低通滤波器英文名称:low-pass filter 简称为LPF 。

低通滤波器是让某一频率以下的信号分量通过,而对该频率以上的信号分量大大抑制的电容、电感与电阻等器件的组合装置。

理想低通滤波器能够让直流一直到截止频率为c f 的所有信号都没有任何损失的通过。让高于截止频率c f 的所有信号全部丧失.

)(|)(|)()()(ωφφφωωωωj j x j y e j H j H e A e A j X j Y x

y ===|)(|ωj H A A x y

=)(ωφφφ=-x y |)(|ωj H A A x

y =|))(lg(|20)(|)(|ωωj H dB j H =

3、描述滤波器性能的基本参数:

1.截止频率

若滤波器在通频带内的增益为K,则当其增益下降到(即下降了3dB)时所对应的频率被称为截止频率。

2.带宽B

对于低通或带通滤波器,带宽是指其通频带宽度,对于高通或带阻滤波器,

带宽是指其阻带宽度。带宽决定着滤波器分离信号中相邻频率成分的能力。

3.品质因数Q

Q定义为带通或带阻滤波器的中心频率fc与带宽B之比,即

品质因数Q的大小反映了滤波器频率选择能力的高低。

4.倍频程选择性

是指在f02与2f02之间,或在f01与f01/2之间,幅频特性的衰减值,即频率变化一个倍频程时幅频特性的衰减量,用dB表示,它反映了滤波器对通频带以外的频率成分的衰减能力。

4、低通滤波器的幅频特性

被称为截止频率,是功率为最大值一半的点,也是带宽下降3dB的点。

c

5、滤波器作用:

下图是对滤波器作用的说明。由0.7KHz 和17KHz 的两个正弦波所合成的信号,经过只允许频率低于1KHz 的信号通过的RC 滤波器之后,输出端只能检测到0.7KHz 的正弦波信号。

通过Multisim 对滤波器作用的仿真如下

如图所示,红色波形为输入信号的波形,它是两个信号的叠加。经过滤波后得到的蓝色波形是低频的波形,因为电阻分压的关系,得到的信号波形不是十分理想,放大以后可以看到波形不是很光滑,是因为受到前端电阻的影响,得到的幅度也比输入波形小很多,但却是一个0.7kHz 的正弦信号。因此通过模拟仍反映出了此滤波器的低通特性。

五、低通滤波器设计

电容的阻抗以及频率响应特征

ω→0,|)(|ωj Z →∞ 低频下相当于断路

ω→∞,|)(|ωj Z →0 高频下相当于短路

C j j Z ωω1

)(

=

电感的阻抗以及频率相应特征

ω→0,|)(|ωj Z →0 低频下相当于短路

ω→∞,|)(|ωj Z →∞ 高频下相当于断路 极点RC

j 1-=ω,当RC>0时电路稳定。 5.1一阶RC 低通滤波器

频率响应 幅频特性:2)(11

|)(|RC j H ωω+=;

相频特性:)arctan(

)(RC ωωφ-=; 截止角频率 RC c 1=ω时,振幅2

1||=H =-3dB 式中为ω输入信号的角频率,令τ=RC 为回路的时间常数,则有

RC

f c C ππτπω21212=== ,C f 为截止频率。 L j j Z ωω=)

(C j C j R C j j H ωωωω+=+=11)/1(1

)(

通过Multisim进行模拟得到截止频率为1K Hz的RC滤波器幅频和相频特性曲线,τ=RC=0.1592ms,只需要RC的乘积为此值既可。取R=1KΩ,C=0.15μ设计出滤波器电路,进行模拟。

得到的频谱图和相位图如图所示。可以看到在-3dB的截止点,频率为1kHz所以满足设计要求。在相位图上可以看到该点对应的角度为45°。

总结:适当改变电路中R或C的取值,可改变截止频率。设计低通滤波器时,应使截止频率大于有用信号的频率。根据截止频率,算出时间常数τ=RC的值,然后根据需要选取所需的电阻与电感既可。不过RC滤波器在较低的信号源阻抗和较高的负载阻抗下才比较好的效果。

5.2二阶RC低通滤波器

采用1阶无源RC滤波器觉得不够满意地方可以采用RC滤波器简单地多级连接的方法。但需要较低的信号源阻抗和较高的负载阻抗。

在RC 滤波器多级连接时,如果各级都采用相同的R、C值,由于相互之间存在阻抗的影响,在截止频率附近会使截止频率下滑。改进的方式是采取从低阻抗到高阻抗的顺序排列。

典型的二阶RC 低通滤波电路如下

可以求得

)(|)(|311)(222ωθωωω∠=+-==j H RC

j C R V V jw H i o 22222229)1(1

|)(|C

R C R j H ωωω+-= )13arctan(

)(222C R RC ωωωθ--= 截止角频率τ

ω3742.06724.21==RC c ,截止频率πω2c H f = 通过Multisim 进行模拟得到截止频率为1K Hz 的RC 滤波器幅频和相频特性 τ=59.58μs 。取R=10k Ω,C≈6nF.仿真曲线如下

总结:在-3dB 时的截止频率为1kHz 满足

设计要求,同时可以看到,由于阶数的增加,相位的变化范围也增加。在中间点的相位为90度。由于只需要使τ=RC 满足特定值,因此有无数的设计方案。但

是为了防止截止频率下滑,特别是在设计2阶以上的RC 低通网络时最好按照阻抗从小到大排列,这样会得到更好的衰减效果。

5.3LC 低通滤波器

LC滤波器能够使用的频率范围非常宽,从几十赫兹到集总参数的极限——300MHz。在低频范围,LC滤波器价格较高。但当截止频率提高到10kHz以上时,LC滤波器在体积、价格等方面有突出优势。

影响LC滤波器的主要障碍是线圈和电容器的参数,即标准元件不一定能满足自己制作的要求。

实际的LC低通滤波器不可能达到理中的特性,因此实际中低通滤波器的设计都是根据某个函数形式来设计的。所以又称为函数型滤波器。常见的滤波器有巴特沃斯滤波器、切比雪夫滤波器、贝塞尔型、高斯型、逆切比雪夫型等等。这些函数所决定的实际滤波器各有其突出的特点,有的衰减特性在截止区很陡峭,有的相位特性(延时特性)较为规律,在实际中可以根据需要来选用。

一些典型函数型滤波器的特性如下:

巴特沃斯滤波器——通带内响应最为平坦

切比雪夫滤波器——截止特性特别好;群延时特性不太好;通带内有等波纹

起伏。

椭圆函数型——通带内有起伏,阻带内有零点。截止特性比其他滤波器都好。

在设计LC低通滤波器时,根据设计目的选择需要的滤波器特性(巴特沃斯、切比雪夫等),并根据必要是衰减量确定阶数,那么可以预先准备好的归一化表简单地计算出元素的数值。

一阶巴特沃斯滤波器设计

根据归一化LPF来设计巴特沃斯型低通滤波器,指的是特征阻抗为1Ω且截止频率为1/(2π)的低通滤波器的数据。用这种归一化低通滤波器的设计数据作为基准滤波器,按照下面的设计步骤,就能够简单的计算出具有任何截止频率和任何特征阻抗的低通滤波器。

2阶归一化巴特沃斯型LPF 截止频率1/(2π)Hz,特征阻抗1Ω

首先选择归一化低通滤波器数据,其次根据需要进行截止频率变换,最后进

行特征阻抗变换。

滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器频率的比值M ,在用这个M 去除滤波器中的所有元件来实现的。

基准滤波器的截止频率

率待设计滤波器的截止频=M M L L OLD NEW )

()(=;M C C OLD NEW )

()(=

滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器特征阻抗的比值K ,在用这个K 去乘基准滤波器中的所有电感元件和用K 去除滤波器中的所有电容元件来实现的。

基准滤波器的特征阻抗

抗待设计滤波器的特征阻=

K K L L O LD NEW ?=)()(;K C C OLD NEW )()(= 如,欲设计一特征阻抗为50Ω且截止频率为300kHz 的2阶巴特沃斯型LPF ,则根据前面的步骤先求M

592.188495521300≈==Hz KHz M π

基准滤波器的截止频率率待设计滤波器的截止频 截止频率变换

)(75026.0592.188495541421.1)()(H M L L OLD NEW μ≈== )(75026.0592

.188495541421.1)

()(F M C C OLD NEW μ≈== 阻抗变换

0.50150=Ω

Ω==基准滤波器的特征阻抗抗待设计滤波器的特征阻K )(513.3750)(75026.0)()(H H K L L O LD NEW μμ=?=?=

)(015005.050

)(75026.0)

()(F F K C C OLD NEW μμ≈== 最终变换结果如图所示

其仿真结果如下所示

可以看到在-3dB点的频率下降约为330kHZ,基本满足设计要求。

二阶LC低通滤波网络模型

多阶LC滤波器的构成有π型和T型两种。无论怎么连接都可以得到相同的特性,T型的特点是在阻值频率下的输入阻抗大,而π型的特点是输入阻抗小。

二阶LC低通滤波网络模型分析:此网络可以归结为一带初始条件的二阶微分方程

x y dt

dy R L dt y d LC =++22 10|C dt dy t ==;2)0(C y = 对方程做拉普拉斯变换

)()()()(2s X s Y s sY R

L s Y LCs =++ 得到传递函数;令S=j ω 则有11

)(2++-=ωωωj R L LC j H ,21c LC ω=,Q

RC c ω=1 2

22)(c c

c s Q s s H ωωω++=

Q 称为网络的品质因数。通过对不同品质因数Q 的二阶LC 低通滤波器进行模拟得到幅频和相频特性曲线如下

由仿真曲线知道, 当2

1<

Q 时,Q 值越小,低频端输出信号幅度越不稳定,同一输入信号频率下,

LC

s RC s LC s X s Y s H 111)()()(2++=

=

输出信号的幅度越小,且输出信号的相移比较大。

2

1>Q 时,输出端没有稳定的幅频特性,在信号源频率等于LC 谐振频率时,电 路具有谐振性,虽然信号相移不大,但幅度不稳定。

21≈Q 时,电路具有最佳的通带特性,综合考虑其相频特性,在工程应用中 设计LC 二阶低通滤波网络参数时,应使滤波器品质因数2

1≈Q 总结:2阶或以上LC 滤波电路的设计比较复杂,其N 阶的网络模型相当于N 阶的微分方程。设计时要根据性能选取适合的函数模型,并进行逼近,得到符合实际元件参数的结果,同时要使滤波器品质因数2

1≈Q 。

心得体会

通过做本次报告,学会了进行Multisim 仿真的一般方法,同时对MATLAB 仿真计算的效果有了更进一步的认识。初步掌握一阶和二阶RC 、LC 低通滤波器的设计方法,具有很大的收获。

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

巴特沃斯有源低通滤波器的设计

巴特沃斯有源低通滤波器的设计 随着社会科学技术的飞速发展,各种科技产品在人类社会中随处可见,极大的丰富了人们的日常生活。物联设备、可穿戴设备以及虚拟仪器产品在各种应用和消费场合变得极为普遍。就目前而言,在几乎所有的电子产品中,各种增益、带宽以及高性能的滤波器都发挥着至关重要的作用,例如可穿戴设备的语音信号输入系统中,运用高性能的低通滤波器进行语音信号的降噪、滤波、回声消除,来提高系统的音质和语音识别精准度等。 本篇论文重点研究了巴特沃斯滤波器的设计方法。巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。本文首先采用归一法推导出满足设计要求的巴特沃斯滤波器的传递函数,接着求出了各阶滤波器电容、电阻的参数。并采用级联法,将低滤波器连接成三阶滤波器以满足滤波要求,然后用Multisim电路仿真软件仿真出其电路图进行了验证。 关键词:有源;低通;滤波器;巴特沃斯;运算放大器 第一章引言 1.1 滤波器简介 滤波本质上是将原始信号所携带的信息从被噪声扭曲和污染的信号中提取出来的过程。滤波器是一种能使一定频率范围内的信号顺利通过,而使其他频率的信号受到较大的衰减的电路,主要用于滤除干扰信号。一般在微弱信号放大的同时附加滤波功能或在信号采样前使用滤波器。 在近现代的科技发展中,滤波器作为一种必不可少的组成成分,在仪器仪表、智能控制、计算机科学、通信技术、电子应用技术和现代信号处理等领域有着十分重要的作用。滤波器作为一门学科已经有了仅一百年的历史了,自从德国的Wagner和美国的Campbell在1915年提出了滤波器的概念至今,它经历了由简单到复杂,由分立器件到单片集成,由有源到无源,由模拟到数字的发展历程。

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

无源滤波器设计

长沙学院 模电课程设计说明书 题目 系(部) 电子与通信工程系 专业(班级) 姓名 学号 指导教师 起止日期

数字电子技术课程设计任务书(11)系(部):电子与通信工程系专业:电子信息工程

长沙学院课程设计鉴定表

目录 一.无源滤波器的简介 (5) 1.无源滤波器定义 (5) 2.无源滤波器的优点 (5) 3.滤波器的分类 (5) 4.无源滤波器的发展历程 (5) 二.无源滤波器的工作原理与电路与电路分析 (6) 1.工作原理 (6) 2.电路分析 (7) 三.设计思路及电路仿真 (11) 1.无源低通滤波器 (11) 2.无源高通滤波器 (11) 3.无源带通滤波器 (12) 4.无源带阻滤波器 (13) 四.设计心得与体会 (15) 五.参考文献 (15)

一.无源滤波器的简介 1.无源滤波器定义 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。 2.无源滤波器的优点 无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。 3.滤波器的分类 ⑴按所处理的信号 按所处理的信号分为模拟滤波器和数字滤波器两种。 ⑵按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 ⑶按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 4.无源滤波器的发展历程 (1)1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。 (2)20世纪50年代无源滤波器日趋成熟。 (3)自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展; (4)到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。 (5)80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。 (6)90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。 当然,对滤波器本身的研究仍在不断进行。

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

低通无源滤波器设计-详细

低通无源滤波器仿真与分析 一、滤波器定义 所谓滤波器(filter),是一种用来消除干扰杂讯的器件,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1)按所处理的信号: 按所处理的信号分为模拟滤波器和数字滤波器两种。 2)按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3)按所采用的元器件 按所采用的元器件分为无源和有源滤波器两种。 无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。 有源滤波器:由无源元件(一般用R和C)和有源器件(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件); 缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。 4)按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 三、网络的频率响应 在时域中,设输入为)(t y,滤波器的脉冲响应函数为)(t h。转换到 x,输出为)(t 频域,激励信号为) Y。 (ωj (ωj X,经过一个线性网络得到的响应信号为)

(完整word版)基于巴特沃斯的低通滤波器的设计原理

课程设计报告 ——基于虚拟仪器的幅频特性自动测试系统的实现 2010年12月25日 一、实验内容 基于虚拟仪器的幅频特性自动测试系统的实现 二、实验目的 1、通过对滤波器的设计,充分了解测控电路中学习的各种滤波器的工作原理以及工作机制。学习幅频特性曲线的拟合,学会基本MATLAB操作。 2、进一步掌握虚拟仪器语言LabVIEW设计的基本方法、常用组件的使用方法和设计全过程。以及图形化的编程方法;学习非线性校正概念和用曲线拟合法实现非线性校正;练习正弦波、方波、三角波产生函数的使用方法;掌握如何使用数据采集卡以及EIVIS产生实际波形信号。了解图形化的编程方法;练习DIO函数的

使用方法;学习如何使用数据采集卡以及EIVIS产生和接受实际的数字信号。 3、掌握自主化学习的方法以及工程设计理念等技能。 三、实验原理 滤波器是具有频率选择作用的电路或运算处理系统。滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。 任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。 滤波器主要参数介绍: ①通带截频f p=w p/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频f r=w r/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率f c=w c/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以f c作为通带或阻带截频。 ④固有频率f0=w0/(2π)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。 有源滤波器地设计,主要包括确定传递函数,选择电路结构,选择有源器件

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

巴特沃斯有源低通滤波器的设计 摘要 随着社会科学技术的飞速发展,各种科技产品在人类社会中随处可见,极大的丰富了人们的日常生活。物联设备、可穿戴设备以及虚拟仪器产品在各种应用和消费场合变得极为普遍。就目前而言,在几乎所有的电子产品中,各种增益、带宽以及高性能的滤波器都发挥着至关重要的作用,例如可穿戴设备的语音信号输入系统中,运用高性能的低通滤波器进行语音信号的降噪、滤波、回声消除,来提高系统的音质和语音识别精准度等。 本论文通过对各种低通滤波器的通频带、增益和截止频率的分析,采用通频带最大扁平度技术(巴特沃斯技术)来设计实现四阶高性能低通滤波器,通过Multisum仿真软件,验证了设计的正确性。在这基础上,本文还对如何提高该滤波器的响应速度进行了研究,提出了一种有效的提高响应速度的方案,并通过仿真软件得以验证。这在低通滤波器的理论以及实际工程应用中,都具有非常重要的意义。 关键词:有源低通滤波器,巴特沃斯,运算放大器

Design of Butterworth Active Low Pass Filter ABSTRACT With the rapid development of social science and technology, various technological products can be seen everywhere in human society, which greatly enriches people's daily lives. IoT devices, wearable devices, and virtual instrument products have become extremely common in various applications and consumer occasions. For now, in almost all electronic products, various gains, bandwidths, and high-performance filters play a vital role. For example, in the voice signal input system of wearable devices, the use of high-performance low-pass The filter performs noise reduction, filtering, and echo cancellation of the speech signal to improve the sound quality of the system and the accuracy of speech recognition. In this paper, through the analysis of the passband, gain and cutoff frequency of various low-pass filters, the maximum flatness of the passband technology (Butterworth technology) is used to design and implement a fourth-order high-performance low-pass filter, through Multisum simulation software To verify the correctness of the design. On this basis, this paper also studies how to improve the response speed of the filter, and puts forward an effective scheme to improve the response speed, which is verified by simulation software. This is of great significance in the theory of low-pass filters and in practical engineering applications. KEYWORDS:active low-pass filter,butterworth,amplifier

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

有源低通滤波器设计

有源低通滤波器设计 ⒈设计一个截止频率fo为1000HZ的1阶有源低通滤波器(提示:集成运放使用 μА741、取电容C=0.01uf,其他元件参数自行考虑)。要求:①设计的电路、标明元 件参数;②在OrCAD/PSpice平台上完成上述设计及仿真,测试1阶电路对应的幅频 特性曲线。 ⒉设计一个截止频率fo为1000HZ的2阶有源低通滤波器(提示:集成运放使用 μА741、设计系数α=1.414,即Q=0.707、R1=R2=R,C1=C2=C,取电容C=0.01uf,其他 元件参数自行考虑)。要求:①设计的电路、标明元件参数;②在OrCAD/PSpice平台 上完成上述设计及仿真,测试2阶电路对应的幅频特性曲线。书写Pspice实践练习报 告(自行)。 (一)Pspice简介 Pspice是由SPICE(Simulation Program with Intergrated Circuit Emphasis)发展而来的用于微机系列的通用电路分析程序。Pspice软件是一个通用的电路分析程序,它可以仿真和计算电路的性能。由于该软件提供了丰富的元件库,使得各种常用元器件随手可得,在软件上我们可以搭接任何模拟和数字或者数模混合电路。该软件使用的编程语言简单易学,对电路的计算和仿真快速而准确,强大的图形后处理程序可以将电路中的各电量以图形的方式显示在计算机的屏幕上,就像一个多功能、多窗口的示波器一样。 PSPICE软件具有强大的电路图绘制功能、电路模拟仿真功能、图形后处理功能和元器件符号制作功能,以图形方式输入,自动进行电路检查,生成图表,模拟和计算电路。它的用途非常广泛,不仅可以用于电路分析和优化设计,还可用于电子线路、电路和信号与系统等课程的计算机辅助教学。与印制版设计软件配合使用,还可实现电子设计自动化。被公认是通用电路模拟程序中最优秀的软件,具有广阔的应用前景。这些特点使得PSPICE受到广大电子设计工作者、科研人员和高校师生的热烈欢迎,国内许多高校已将其列入电子类本科生和硕士生的辅修课程。 电路设计软件有很多,它们各有特色。如Protel和Tango,它对单层/双层电路板的原理图及PCB图的开发设计很适合,而对于布线复杂,元件较多的四层及六层板来说ORCAD 更有优势。但在电路系统仿真方面,PSPICE可以说独具特色,是其他软件无法比拟的,它是一个多功能的电路模拟试验平台,PSPICE软件由于收敛性好,适于做系统及电路级仿真,

RC低通滤波器设计

RC低通滤波器 1、电路的组成 所谓的低通滤波器就是允许低频信号通过,而将高频信号衰减的电路,RC低通滤波器电路的组成如图3-17所示。 2、电压放大倍数 在电子技术中,将电路输出电压与输入电压的比定义为电路的电压放大倍数,或称为传递函数,用符号A u来表示,在这里A u为复数,即 令,则 (3-19) 的模和幅角为 (3-20)

(3-21) 式3-19称为RC低通电路的频响特性,式3-20称为RC低通电路的幅频特性,式3-21称为RC低通电路的相频特性。在电子电路中,描述电路幅频特性和相频特性的单位通常用对数传输单位分贝。 3、对数传输单位分贝(dB)的定义 在电信号的传输过程中,为了估计线路对信号传输的有效性,经常要计算的值。式中的P0和P i 分别为线路输出端和输入端信号的功率。当多级线路相串联时,总的的值为: 对上式取对数可简化计算,利用对数来描述的,被定义为对数传输单位贝尔(B)。即 (3-22) 贝尔的单位太大了,在实际上通常用贝尔的十分之一为计量单位,称为分贝(dB)。即,1B=10dB。 因为,所以,对于等电阻的一段网络,贝尔也可用输出电压和输入电压的比来定义。即 (3-23) 当电压放大倍数用dB做单位来计量时,常称为增益。根据增益的概念,我们通常将对信号电压的放大作用是100倍的电路,说成电路的增益是40dB,电压放大作用是1000倍的电路,说成电路的增益是6 0dB,当输出电压小于输入电压时,电路增益的分贝数是负值。例-20dB说明输入信号被电路衰减了10倍。 4.低通滤波器的波特图 利用对数传输单位,可将低通滤波器的幅频特性写成

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

有源滤波器的设计

课程设计报告 题目:有源滤波器的设计 院(系):南湖学院机电系 专业:电子信息工程 学生姓名:陈知 欧阳维俊 学号:24122201272 24122201254 指导教师:陈松 2014年4月22 日

目录 1设计任务 (2) 2 设计要求 (2) 3设计说明 (2) 4设计原理 (2) 5 制板及调试 (5) 5.1 DXP注意事项 (5) 5.2 制作pcb板的流程 (5) 5.3调试 (6) 6课程设计总结 (7) 附录 (9)

一、设计任务 1、设计一滤波; 2、已知某一信号含有两种成分:1000Hz、0.5V和10000Hz、5V两种正弦波信号由滤波器设计指标计算电路元件参数; 3、设计滤波器有效分离两种信号。 二、设计要求 1、设计1000Hz、0.5V和10000Hz、5V两个信号源; 2、设计一加法器,将产生的两个信号相加; 3、两信号源的误差不超过1%; 4、加法器输入端接地时,其输出噪声小于10mV; 5、最终分离的信号的幅度与原信号幅度之差不大于100mV。 三、设计说明 1、放大器可选用LM324、NE553 2、TL062\TL082等; 2、注意预留测试端子。 四、设计原理 有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。从功能来讲有源滤波器分为:低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BEF)、全通滤波器(APF)。其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带

低通无源滤波器设计详细

低通无源滤波器仿真与分析 、滤波器定义 所谓滤波器( filter ),是一种用来消除干扰杂讯的,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1) 按所处理的信号: 按所处理的信号分为和两种。 2) 按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3) 按所采用的元器件 按所采用的分为无源和两种。 :仅由(R、L 和C)组成的滤波器,它是利用电容和电感元件的随频率的变化而变化的构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L 较大时滤波器的和重量都比较大,在低频域不适用。 有源滤波器:由无源元件(一般用R和C)和(如集成运算放大器) 组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件) ;缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在、高频、大功率的场合不适用。 4) 按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 三、网络的频率响应 在时域中,设输入为 x(t) ,输出为 y(t ) ,滤波器的脉冲响应函数为 h(t ) 。转换到频域,激励信号为 X(j ) ,经过一个线性网络得到的响应信号为 Y( j )

模拟低通滤波器的设计

1 课程设计目的 1.掌握有源滤波器和无源滤波器设计方法和过程。 2.要求设计一个有源二阶的低通滤波器,其设计指标为:最高截止频率为2KHz ,通带电压放大倍数为2,在频率为10KHz 时,幅度衰减大于30dB 。 3.熟练运用仿真软件(workbench 或multisim )设计和仿真电路。 4.对其设计电路进行仿真并利用相应元件搭建电路。 5.结合现有仪器仪表进行系统调试。 6.掌握理论联系实践的方法。 2 课程设计实施 2.1 设计任务及要求 要求设计一个有源二阶的低通滤波器,其设计指标为:最高截止频率为2KHz ,通带电压放大倍数为2,在频率为10KHz 时,幅度衰减大于30dB 。 2.2 滤波器的设计原理及元器件的选择 2.2.1 滤波器介绍 滤波器是一种能使有用信号通过,滤除信号中的无用频率,即抑制无用信号的电子装置。有源滤波器实际上是一种具有特定频率响应的放大器。 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零,但实际滤波器不能达到理想要求。为了寻找最佳的近似理想特性,一般主要考虑滤波器的幅频响应,而不考虑相频响应,一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。 滤波器的阶数越高,幅频特性衰减的速率越快,但RC 网络节数越多,元件参数计算就会越繁琐,电路的调试越困难,任何高阶滤波器都可由一阶和二阶滤波器级联而成,而对于n 为偶数的高阶滤波器,可以由 2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1 n 节二阶滤波器和一节一阶滤波器级联而成,因此一阶滤波器和二阶滤波器是高阶滤波器的基础。 2.2.2 有源滤波器的设计 有源滤波器的设计,就是根据所给定的指标要求,确定滤波器的阶数n ,选择具体的电路形式,算出电路中各元件的具体数值,安装电路和调试,使设计的滤波器满足指标要求,具体步骤如下: (1)根据阻带衰减速率要求,确定滤波器的阶数n 。 (2)选择具体的电路形式。

无源低通滤波器分析报告

无源低通滤波器分析 一、研究目的 滤波器是一种选择装置,它对输入信号处理,从中选出某些特定信号作为输出。如果滤波器主要由无源元件R、L、C构成,称为无源滤波器。滤波器按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。针对电气专业的实际特点,文中主要对无源低通滤波器进行分析讨论,并希望总结出无源滤波器在实际工程应用中的相关选用原则。 要求:1、分析讨论无源低通滤波器的各基本形式;2、通过仿真测试滤波器实际效果并分析结果;3、总结滤波器选用原则和体会 二、滤波器类型简介 无源滤波器通常是以L-C、R-C等无源器件组成的一种只允许通过给定的频带信号而阻止其它频率信号通过的选频网络。工业电源中一般把400HZ以下的电源称为工频电源,400-10KHZ的电源称为中频电源,10KHZ以上称为高频电源。用于交流电源输入端滤除电源网络中高频干扰的低通滤波器,整流电路中用于滤除纹波的平滑滤波器,用于抑制放大器产生低频振荡为目的的电源去耦滤波器等,都属于无源滤波器的范畴。 而RC电路多用于低频、功率输出较小的场合,LC电路适用于高频应用场合。 按滤波器结构分类,常用的基本形式有L型、倒L型、T型、π型等电路形式。 图1、L型、倒L型、T型、π型电路形式

三、滤波元件特性 常用元器件低频特性和高频特性: 图2、元器件低频特性和高频特性图 电感L的基本特性为通直阻交,电路中具有稳定电流的作用。高频时电感的阻抗与频率呈现如下关系 图3、电感高频特性图 电容C的基本特性为通交阻直,电路中具有稳定电压的作用。按功能可分为1、旁路电容2、去耦电容3、滤波电容。高频时电容的阻抗与频率呈现如下关系: 图4、电容高频特性图 滤波电容不是理想的低通滤波器,存在ESL和ESR,是以自谐振点为中心的带通滤波器。同为0805封装的陶瓷电容,0.01μf的电容比0.1μf的电容有更好的高频滤波特性,实际使用中要注意选择合适的电容。

等波纹低通滤波器的设计及与其他滤波器的比较

燕山大学 课程设计说明书题目:等波纹低通滤波器的设计 学院(系):里仁学院 年级专业:仪表10-2 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 2013年7月5日

摘要 等波纹最佳逼近法是一种优化设计法,它克服了窗函数设计法和频率采样法的缺点,使最大误差(即波纹的峰值)最小化,并在整个逼近频段上均匀分布。用等波纹最佳逼近法设计的FIR数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。这就是等波纹的含义。最佳逼近是指在滤波器长度给定的条件下,使加权误差波纹幅度最小化。与窗函数设计法和频率采样法比较,由于这种设计法使滤波器的最大逼近误差均匀分布,所以设计的滤波器性能价格比最高。阶数相同时,这种设计法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大;指标相同时,这种设计法使滤波器阶数最低。实现FIR数字滤波器的等波纹最佳逼近法的MATLAB信号处理工具函数为remez和remezord。Remez函数采用数值分析中的remez多重交换迭代算法求解等波纹最佳逼近问题,求的满足等波纹最佳逼近准则的FIR数字滤波器的单位脉冲响应h(n)。由于切比雪夫和雷米兹对解决该问题做出了贡献,所以又称之为切比雪夫逼近法和雷米兹逼近法。 关键词:FIR数字滤波器 MATLAB remez函数 remezord函数等波纹

目录 摘要---------------------------- ----------------------------------------------------------------2 关键字------------------------------------------------------------------------------------------2 第一章第一章数字滤波器的基本概-------------------------------------------------4 1.1滤波的涵义----------------------------------------------------------------------4 1.2数字滤波器的概述-------------------------------------------------------------4 1.3数字滤波器的实现方法-------------------------------------------------------4 1.4 .数字滤波器的可实现性------------------------------------------------------5 1.5数字滤波器的分类-------------------------------------------------------------5 1.6 FIR滤波器简介及其优点----------------------------------------------------5- 第二章等波纹最佳逼近法的原理-------------------------------------------------------5 2.1等波纹最佳逼近法概述-------------------------------------------------------9 2.2.等波纹最佳逼近法基本思想-------------------------------------------------9 2.3等波纹滤波器的技术指标及其描述参数介绍---------------------------10 2.3.1滤波器的描述参数-----------------------------------------------------10 2.3.2设计要求-----------------------------------------------------------------10 第三章matlab程序------------------------------------------------------------------------11 第四章该型滤波器较其他低通滤波器的优势及特点--------------------12 第五章课程设计总结---------------------------------------------------------------------15 参考文献资料-------------------------------------------------------------------------------15

相关文档
最新文档