论关于低通无源滤波器优秀设计详细.doc

合集下载

低通滤波器实验报告

低通滤波器实验报告

竭诚为您提供优质文档/双击可除低通滤波器实验报告篇一:绝对经典的低通滤波器设计报告经典无源低通滤波器的设计团队:梦知队团结奋进,求知创新,追求卓越,放飞梦想队员:日期:20XX.12.10目录第一章一阶无源Rc低通滤波电路的构建 (3)1.1理论分析 (3)1.2电路组成 (4)1.3一阶无源Rc低通滤波电路性能测试 (5)1.3.1正弦信号源仿真与实测 (5)1.3.2三角信号源仿真与实测 (10)1.3.3方波信号源仿真与实测 (15)第二章二阶无源Lc低通滤波电路的构建 (21)2.1理论分析 (21)2.2电路组成 (22)2.3二阶无源Lc带通滤波电路性能测试 (23)2.3.1正弦信号源仿真与实测 (23)2.3.2三角信号源仿真与实测 (28)2.3.3方波信号源仿真与实测 (33)第三章结论与误差分析 (39)3.1结论 (39)3.2误差分析 (40)第一章一阶无源Rc低通滤波电路的构建1.1理论分析滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。

也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。

低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。

图1Rc低通滤波器基本原理图当输入是直流时,输出电压等于输入电压,因为xc无限大。

当输入频率增加时,xc减小,也导致Vout逐渐减小,直到xc=R。

此时的频率为滤波器的特征频率fc。

解出,得:在任何频率下,应用分压公式可得输出电压大小为:因为在=为:时,xc=R,特征频率下的输出电压用分压公式可以表述这些计算说明当xc=R时,输出为输入的70.7%。

按照定义,此时的频率称为特征频率。

1.2电路组成图2-一阶Rc电路multisim仿真电路原理图图3-一阶Rc实物电路原理图电路参数:c=1.0μFR1=50ΩR2=50ΩR3=20ΩR4=20ΩR5=20Ω1.3一阶无源Rc滤波器电路性能测试1.3.1正弦信号仿真与实测对于一阶无源Rc滤波器电路,我们用100hz、1000hz、10000hz三种不同正弦频率信号检测,其仿真与实测电路图如下:篇二:低通滤波器的设计沈阳航空航天大学课程设计(说明书)班级/学号学生姓名指导教师沈阳航空航天大学课程名称电子技术综合课程设计院(系)专业班级学号姓名课程设计题目低通滤波器的设计课程设计时间:年月日至年月1日课程设计的内容及要求:一、设计说明设计一个低通滤波器。

低通滤波器电路设计与实现

低通滤波器电路设计与实现

低通滤波器电路设计与实现一般来说,低通滤波器可以分为无源滤波器和有源滤波器两种。

无源滤波器是由被动元件(如电阻、电容、电感)构成的电路,直接利用被动元件的特性去除高频信号。

有源滤波器则在无源滤波器的基础上加入了主动元件(如运算放大器),增强了滤波器的性能和稳定性。

下面我们以RC无源低通滤波器为例,详细介绍低通滤波器的设计与实现。

RC无源低通滤波器是一种常见的一阶滤波器,由一个电阻R和一个电容C组成。

其基本原理是利用电容的电压延迟特性和电阻的阻性特性来实现滤波的目的。

首先,在设计RC无源低通滤波器时,首先需要确定滤波器的截止频率。

截止频率是指信号通过低通滤波器后,其幅频特性下降到-3dB时的频率。

通常情况下,截止频率可根据应用需求确定。

接下来,我们可以根据截止频率来选择合适的电容C和电阻R的数值。

根据RC滤波器的截止频率公式fc=1/(2πRC),可以得知,电容和电阻的数值越大,截止频率越低。

因此,在选择电容和电阻时,需要根据截止频率的要求来确定。

例如,假设我们要设计一个截止频率为1kHz的RC无源低通滤波器。

为了简化计算,假设我们选择电容为1μF,求解电阻的数值。

根据截止频率公式fc=1/(2πRC),我们可以得到R=1/(2πfc*C)。

代入数值,可得R=1/(2π*1000*1*10^-6)=159.2Ω。

因此,我们可以选择最接近该数值的标准电阻值,如160Ω。

在确定好电容和电阻的数值后,我们可以按照如下的图示,将它们组装成一个低通滤波器电路。

```---R------C---```在这个电路中,信号通过电容C后,会在电阻R上形成输出电压。

由于电容对高频信号的通过能力较差,高频成分将被滤除。

而对于低频信号,电容的阻抗相对较低,可以使其更容易通过。

因此,该电路实现了低通滤波的功能。

需要注意的是,实际电路中可能会存在元件的误差、电路的非理想性等因素,这些都可能会对滤波器的性能产生影响。

因此,在设计和实现低通滤波器时,需要对元件进行精确的选取和调试,并结合实际情况进行性能的评估和优化。

无源低通滤波器的设计

无源低通滤波器的设计

无源低通滤波器的设计设计一个无源低通滤波器的过程主要分为以下几个步骤:确定滤波器的参数、选择电路结构、计算元件值、仿真验证、制作电路板、测试和调整。

第一步:确定滤波器的参数在设计无源低通滤波器之前,需要明确滤波器的参数。

主要包括截止频率(Cutoff frequency)、通带增益(Passband gain)、阻带衰减(Stopband attenuation)等。

第二步:选择电路结构常见的无源低通滤波器电路结构主要有以下几种:RC滤波器、RL滤波器、LC滤波器、L的母线滤波器等。

根据滤波器的参数选择适合的电路结构。

第三步:计算元件值选定电路结构后,根据所需的截止频率和元件参数,通过计算得到所需的电阻、电容和电感的值。

例如,对于RC低通滤波器,可以使用以下公式计算电容和电阻的取值:R = 1 / (2πfc)C = 1 / (2πfcR)其中,R为电阻的阻值,C为电容的大小,f为截止频率。

第四步:仿真验证在制作实际电路之前,可以使用电子仿真软件对设计的滤波器进行验证。

通过输入不同频率的信号,观察输出信号的频谱分布,确保滤波器的性能满足设计要求。

第五步:制作电路板在经过仿真验证后,可以开始制作滤波器电路板。

根据计算得到的元件值,进行焊接和组装。

第六步:测试和调整制作完成后,对滤波器进行测试。

可以输入不同频率的信号,观察滤波器的输出。

如果滤波器的实际性能与设计要求不符,可以根据实际情况进行调整,如更换电阻、电容等元件的值,或者修改电路结构等。

总结:无源低通滤波器的设计需要先确定滤波器的参数,选择适合的电路结构,计算所需的元件值,进行仿真验证,制作电路板,最后进行测试和调整。

这个过程需要考虑滤波器的截止频率、通带增益、阻带衰减等参数,以及元件的可获得性和实际电路的性能。

通过反复调试和优化,最终设计出满足要求的无源低通滤波器。

低通无源滤波器设计详细

低通无源滤波器设计详细

低通无源滤波器设计详细
滤波器的分类
滤波器可以根据其功能波形分为几类:高通、低通、带通、带阻等滤波器。

低通滤波器
低通滤波器以低频段为重点,将高频段的信号减弱或滤除而得到的滤波器,它可以有效地去除高频信号中的噪声。

通常用于网络过滤应用,能够有效地抑制高频率的干扰。

低通滤波器可以分为有源滤波器和无源滤波器。

无源滤波器
无源滤波器是由电感器和电容器组成的电路,不需要使用电源,其本质是一个振荡系统,将信号通过一组电感电容滤波,保留低频部分信号,抑制高频部分信号。

无源低通滤波器的设计
无源低通滤波器的基本设计电路是由电容C1和电感L1构成,它们并联组成的RLC共振电路。

这个共振电路有一个主要频率,它将过滤掉所有频率比该频率低的衰减信号,实现低通滤波的作用。

电路的电性能如下:
电容C1:为滤波器提供高阻抗,限制高频电路电流流过,而低频电路电流可以通过。

电容C1的选择和滤波频率有关,它的尺寸越大,滤波频率越低。

电感L1:滤除低频电路电流,阻止低频信号从原来的路径流过,而高频的信号可以通过电感L1中。

无源低通滤波器的设计与仿真解析

无源低通滤波器的设计与仿真解析

无源低通滤波器的设计与仿真解析1.无源低通滤波器的基本原理-RC低通滤波器:RC电路由一个电阻R和一个电容C组成,输入信号通过电容进入电路,通过电阻输出。

该电路对高频信号的传递具有阻碍作用,使高频信号通过电容时被短路,从而被滤除。

-RLC低通滤波器:RLC电路由一个电阻R、一个电感L和一个电容C组成,输入信号通过电容进入电路,通过电感和电阻输出。

该电路除了对高频信号的阻碍作用外,还可以通过电感的电流变化来抵消与电阻上产生的电势降。

2.无源低通滤波器的设计步骤- 确定所需的截止频率(Cut-off frequency):截止频率是滤波器的重要参数,决定了滤波器对输入信号的滤波效果。

根据所需的滤波效果,选择适当的截止频率。

-计算电阻、电容和电感的数值:根据所选的截止频率和电压源的数值,使用以下公式计算电阻、电容和电感的数值:- RC低通滤波器:R = 1 / (2πfc),C = 1/ (2πfR)- RLC低通滤波器:R = 1 / (2πfc),L = R / (2πfQ),C = 1 / (2πfR)其中,f为截止频率,c为电容,l为电感,Q为无损品质因数。

-选择合适的电阻、电容和电感的数值:根据所计算出的数值,选择能满足要求的最接近的标准数值。

-进行电路连接:根据所选择的电阻、电容和电感的数值,将它们连接成相应的电路。

3.无源低通滤波器的仿真解析- 使用软件进行仿真:使用一些电子电路仿真软件如Multisim、PSpice等,将设计好的低通滤波器电路进行仿真。

-输入信号:选择一个合适的输入信号作为仿真的输入,例如正弦波、方波等。

-输出信号:观察滤波器电路的输出信号,并与输入信号进行对比分析,判断滤波器对输入信号的滤波效果。

-优化设计:根据仿真结果,可以对电阻、电容和电感的数值进行微调,以达到更好的滤波效果。

4.总结通过设计和仿真无源低通滤波器,我们可以滤除高频信号,保留低频信号。

设计无源低通滤波器的步骤包括确定截止频率、计算电阻、电容和电感的数值、选择标准数值和进行电路连接。

低通滤波器的设计与优化

低通滤波器的设计与优化

低通滤波器的设计与优化低通滤波器是一种能够将高频信号削弱而保留低频信号的电子设备。

在信号处理和通信系统中,低通滤波器被广泛应用于去除噪声、降低信号失真以及频率分析等领域。

本文将介绍低通滤波器的设计原理、常见的设计方法以及优化技术。

一、低通滤波器的设计原理低通滤波器的设计原理基于信号的频率特性。

它能够通过设置一个截止频率,将高于该频率的信号滤除。

截止频率是指滤波器对信号进行衰减的临界频率。

低于截止频率的信号成为通过信号,而高于截止频率的信号则被滤除。

二、常见的低通滤波器设计方法1. RC低通滤波器设计方法RC低通滤波器是一种简单且常用的低通滤波器。

它由一个电阻(R)和一个电容(C)组成。

该滤波器的截止频率(fc)可以通过选择合适的电阻和电容值来实现。

一般情况下,截止频率与电容和电阻的乘积成反比。

因此,可以通过调整电容和电阻的比值来实现滤波器的截止频率。

2. 无源滤波器设计方法无源滤波器是一种只由被动元件(如电阻、电容、电感)构成的滤波器。

常见的无源滤波器有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。

这些滤波器可以通过调节元件的数值和结构来实现不同的频率响应。

三、低通滤波器的优化技术1. 频率响应优化频率响应是指滤波器在不同频率下的响应特性。

要优化低通滤波器的频率响应,可以通过调整滤波器的阶数、元件数值以及滤波器结构等方式来实现。

同时,利用计算机仿真工具进行频率响应分析和优化也是一种常用的方法。

2. 抗混叠设计在使用模拟信号进行数字化处理时,会出现混叠现象。

抗混叠设计是指优化低通滤波器的频率特性,以确保信号在进行采样和重建时不会出现混叠。

其中,选择合适的截止频率和滤波器响应是关键。

3. 噪声优化在实际应用中,低通滤波器常常用于去除信号中的噪声。

优化低通滤波器的噪声特性可以通过选择低噪声元件、优化电路布局以及增加可调节的增益控制等方式来实现。

四、低通滤波器的应用领域低通滤波器在各个领域都有广泛的应用。

无源低通滤波器设计

无源低通滤波器设计

无源低通滤波器设计一、技术指标通带允许起伏:-1dB 0≤f ≤5kHz 阻带衰减: ≤-15dB f ≥10kHz二、设计原理本设计采用巴特沃斯(Butterworth)滤波器。

巴特沃斯滤波器是最基本的逼近函数形式之一,它的幅频特性H(j ω)的模平方为222)(11)(⎪⎪⎪⎪⎪⎭⎫⎝⎛ωω+=ωN c j H式中,N 是滤波器的阶数;c ω是滤波器的截止角频率,当c ω=ω时,21)(2=ωj H 。

不同阶次的巴特沃斯滤波器特性如图所示,这一幅频特性具有以下特点:图1 巴特沃斯滤波器幅频相应(1) 最大平坦性:在ω=0点,它的前(2N-1)阶导数为零,即滤波器在ω=0附近一段范围内是非常平直的,它以原点的最大平坦性来逼近理想低通滤波器。

(2) 通带和阻带的下降的单调性,具有良好的相频特性。

(3) 3dB 的不变性:随着N 的增加,通带边缘下降越陡峭,越接近理想特性。

但无论N 是多少,幅频特性都经过-3dB 点。

当c ω>ω时,特性以20NdB/dec速度下降。

三、设计步骤(1) 求滤波器阶数N由给定的技术指标写出滤波器幅频特性)(ωj H 在srad p /10523⨯⨯=πω和s rad s /101023⨯⨯=πω两特定点的方程:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=+=-=+=15))(11lg(20)(lg 201))(11lg(20)(lg 2022Nc s sN c p p j H j H ωωωωωω 联立方程,消去C ω,求解NN =log 10(101510−110110−1)2log 10(105)=3.4435取整后得到要求的阶数N=4。

(2) 求衰减为-3dB 的截止角频率cω,将N=4代入)(s j H ω的表达式得到∣H(j ωs )∣=√1+(2π×10×103ωc)2×4=10−1520即srad c /4306211010102815203=-⨯⨯=πω(3) 求滤波器的系统函数H 。

低通无源滤波器设计-详细(精品范文).doc

低通无源滤波器设计-详细(精品范文).doc

【最新整理,下载后即可编辑】低通无源滤波器仿真与分析一、滤波器定义所谓滤波器(filter),是一种用来消除干扰杂讯的器件,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。

一般可实为一个可实现的线性时不变系统。

二、滤波器的分类常用的滤波器按以下类型进行分类。

1)按所处理的信号:按所处理的信号分为模拟滤波器和数字滤波器两种。

2)按所通过信号的频段按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。

低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。

高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。

带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。

带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。

3)按所采用的元器件按所采用的元器件分为无源和有源滤波器两种。

无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。

这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。

有源滤波器:由无源元件(一般用R 和C)和有源器件(如集成运算放大器)组成。

这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。

4) 按照阶数来分通过传递函数的阶数来确定滤波器的分类。

三、网络的频率响应在时域中,设输入为)(t x ,输出为)(t y ,滤波器的脉冲响应函数为)(t h 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低通无源滤波器仿真与分析一、滤波器定义所谓滤波器( filter ),是一种用来消除干扰杂讯的,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。

一般可实为一个可实现的线性时不变系统。

二、滤波器的分类常用的滤波器按以下类型进行分类。

1)按所处理的信号:按所处理的信号分为和两种。

2)按所通过信号的频段按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。

低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。

高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。

带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。

带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。

3)按所采用的元器件按所采用的分为无源和两种。

:仅由 (R、L 和 C)组成的滤波器,它是利用电容和电感元件的随频率的变化而变化的构成的。

这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感 L 较大时滤波器的和重量都比较大,在低频域不适用。

有源滤波器:由无源元件 (一般用 R 和 C)和(如集成运算放大器)组成。

这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽 (由于不使用电感元件);缺点是:通带范围受有源器件 (如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在、高频、大功率的场合不适用。

4)按照阶数来分通过传递函数的阶数来确定滤波器的分类。

三、网络的频率响应在时域中,设输入为x(t ) ,输出为 y(t ) ,滤波器的脉冲响应函数为h(t ) 。

转换到频域,激励信号为X ( j ) ,经过一个线性网络得到的响应信号为Y( j) 。

则传递函数H ( j ) Y ( j ) 1X ( j ) F ( jw )其中,传递函数的极点是网络的固有频率。

而一个传递函数所有极点的实部均为负的网络是稳定的。

一个网络的传递函数蕴含了网络的全部属性。

幅频特性和相频特性Y ( j )j A y eX ( j ) A x e j yH ( j ) | H ( j ) | e j ( ) xA y| H ( j ) |幅度增益A x 与ω构成幅频特性曲线。

相位变化yx ( ) 与ω 构成相频特性曲线。

四、低通滤波器的一些概念1、单位分贝:是用对数的方式描述相对值,无量纲。

B 贝尔(A/B ) (贝尔 )=lg(A/B ) =lg(A)-lg(B)dB 分贝( A/B ) (分贝 )=10 1g( A/B )对于幅频响应,A y ) || H ( jA x| H( j ) |(dB) 20lg(|H( j )|)其中 3dB :功率为 2倍( 10*1g2=),电压或电流为倍。

2、低通滤波器英文名称:low-pass filter 简称为 LPF。

低通滤波器是让某一频率以下的信号分量通过,而对该频率以上的信号分量大大抑制的电容、电感与电阻等器件的组合装置。

理想低通滤波器能够让直流一直到截止频率为 f c的所有信号都没有任何损失的通过。

让高于截止频率f c的所有信号全部丧失 .3、描述滤波器性能的基本参数:1.截止频率若滤波器在通频带内的增益为K ,则当其增益下降到(即下降了 3dB) 时所对应的频率被称为截止频率。

2.带宽 B对于低通或带通滤波器,带宽是指其通频带宽度,对于高通或带阻滤波器,带宽是指其阻带宽度。

带宽决定着滤波器分离信号中相邻频率成分的能力。

3.品质因数 QQ 定义为带通或带阻滤波器的中心频率fc 与带宽 B 之比,即品质因数 Q 的大小反映了滤波器频率选择能力的高低。

4.倍频程选择性是指在 f02 与 2f02 之间,或在 f01 与 f01/2 之间,幅频特性的衰减值,即频率变化一个倍频程时幅频特性的衰减量,用dB 表示,它反映了滤波器对通频带以外的频率成分的衰减能力。

4、低通滤波器的幅频特性c被称为截止频率,是功率为最大值一半的点,也是带宽下降3dB 的点。

5、滤波器作用:下图是对滤波器作用的说明。

由和 17KHz的两个正弦波所合成的信号,经过只允许频率低于 1KHz的信号通过的 RC滤波器之后,输出端只能检测到的正弦波信号。

通过 Multisim对滤波器作用的仿真如下如图所示,红色波形为输入信号的波形,它是两个信号的叠加。

经过滤波后得到的蓝色波形是低频的波形,因为电阻分压的关系,得到的信号波形不是十分理想,放大以后可以看到波形不是很光滑,是因为受到前端电阻的影响,得到的幅度也比输入波形小很多,但却是一个的正弦信号。

因此通过模拟仍反映出了此滤波器的低通特性。

五、低通滤波器设计电容的阻抗以及频率响应特征Z ( j ) 1 ω→ 0,| Z( j ) | →∞低频下相当于断路j Cω→∞, | Z ( j ) |→0高频下相当于短路电感的阻抗以及频率相应特征Z ( j )j Lω→ 0,| Z( j) | →0低频下相当于短路ω→∞, | Z ( j) |→∞ 高频下相当于断路极点 j1,当 RC>0时电路稳定。

RC一阶 RC 低通滤波器频率响应幅频特性: | H ( j) |1 ;(1 RC)2相频特性: ( )arctan( RC) ;1 C 1 H ( j )j1 / j C ) 1 j C(R截止角频率c1RC时,振幅 | H |1=-3dB2式中为ω输入信号的角频率,令τ =RC 为回路的时间常数,则有c1 1 , f C 为截止频率。

f C22 RC2通过 Multisim 进行模拟得到截止频率为 1K Hz 的 RC 滤波器幅频和相频特性曲线,τ =RC=,只需要 RC 的乘积为此值既可。

取 R=1K Ω, C=μ设计出滤波器电路,进行模拟。

得到的频谱图和相位图如图所示。

可以看到在-3dB的截止点,频率为1kHz所以满足设计要求。

在相位图上可以看到该点对应的角度为45°。

总结:适当改变电路中R 或 C 的取值,可改变截止频率。

设计低通滤波器时,应使截止频率大于有用信号的频率。

根据截止频率,算出时间常数τ=RC 的值,然后根据需要选取所需的电阻与电感既可。

不过RC滤波器在较低的信号源阻抗和较高的负载阻抗下才比较好的效果。

二阶 RC 低通滤波器采用 1 阶无源 RC 滤波器觉得不够满意地方可以采用RC 滤波器简单地多级连接的方法。

但需要较低的信号源阻抗和较高的负载阻抗。

在 RC 滤波器多级连接时,如果各级都采用相同的R、C 值,由于相互之间存在阻抗的影响,在截止频率附近会使截止频率下滑。

改进的方式是采取从低阻抗到高阻抗的顺序排列。

典型的二阶 RC低通滤波电路如下可以求得V o 1| H ( j ) |( )H ( jw )V i 1 j 3 RC2R2C2| H ( j) | 1(12R2C2)29 2R2C2( )arctan(3 RC) 12 2 2R C截止角频率 c 1 0.3742,截止频率 f Hc2.6724RC 2通过 Multisim 进行模拟得到截止频率为 1K Hz 的 RC滤波器幅频和相频特性τ=μ s。

取 R=10kΩ , C≈ 6nF. 仿真曲线如下总结:在 -3dB 时的截止频率为 1kHz 满足设计要求,同时可以看到,由于阶数的增加,相位的变化范围也增加。

在中间点的相位为 90 度。

由于只需要使τ =RC满足特定值,因此有无数的设计方案。

但是为了防止截止频率下滑,特别是在设计 2 阶以上的 RC低通网络时最好按照阻抗从小到大排列,这样会得到更好的衰减效果。

低通滤波器LC 滤波器能够使用的频率范围非常宽,从几十赫兹到集总参数的极限——300MHz 。

在低频范围, LC 滤波器价格较高。

但当截止频率提高到 10kHz 以上时, LC 滤波器在体积、价格等方面有突出优势。

影响 LC 滤波器的主要障碍是线圈和电容器的参数,即标准元件不一定能满足自己制作的要求。

实际的 LC 低通滤波器不可能达到理中的特性,因此实际中低通滤波器的设计都是根据某个函数形式来设计的。

所以又称为函数型滤波器。

常见的滤波器有巴特沃斯滤波器、、贝塞尔型、高斯型、逆切比雪夫型等等。

这些函数所决定的实际滤波器各有其突出的特点,有的衰减特性在截止区很陡峭,有的相位特性(延时特性)较为规律,在实际中可以根据需要来选用。

一些典型函数型滤波器的特性如下:巴特沃斯滤波器——通带内响应最为平坦——截止特性特别好;群延时特性不太好;通带内有等波纹起伏。

椭圆函数型——通带内有起伏,阻带内有零点。

截止特性比其他滤波器都好。

在设计 LC 低通滤波器时,根据设计目的选择需要的滤波器特性(巴特沃斯、切比雪夫等),并根据必要是衰减量确定阶数,那么可以预先准备好的归一化表简单地计算出元素的数值。

一阶巴特沃斯滤波器设计根据归一化 LPF 来设计巴特沃斯型低通滤波器,指的是特征阻抗为 1Ω且截止频率为 1/(2 π ) 的低通滤波器的数据。

用这种归一化低通滤波器的设计数据作为基准滤波器,按照下面的设计步骤,就能够简单的计算出具有任何截止频率和任何特征阻抗的低通滤波器。

2 阶归一化巴特沃斯型LPF 截止频率 1/(2π) Hz,特征阻抗1Ω首先选择归一化低通滤波器数据,其次根据需要进行截止频率变换,最后进行特征阻抗变换。

滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器频率的比值 M,在用这个 M去除滤波器中的所有元件来实现的。

待设计滤波器的截止频率M基准滤波器的截止频率L( NEW ) L(OLD ); C( NEW )C(OLD ) M M滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器特征阻抗的比值K,在用这个 K 去乘基准滤波器中的所有电感元件和用K 去除滤波器中的所有电容元件来实现的。

待设计滤波器的特征阻抗K基准滤波器的特征阻抗L( NEW ) L(OLD )C(OLD )K;C(NEW )K如,欲设计一特征阻抗为50Ω且截止频率为300kHz 的 2 阶巴特沃斯型 LPF,则根据前面的步骤先求MM 待设计滤波器的截止频率300 KHz基准滤波器的截止频率 1 1884955 .592Hz2截止频率变换L(OLD ) 1.414210.75026( H ) L( NEW )1884955.592MC( OLD ) 1.41421 0.75026( F ) C( NEW )1884955.592M阻抗变换K 待设计滤波器的特征阻抗5050.0 基准滤波器的特征阻抗 1L( NEW )L(OLD ) K 0.75026( H ) 50 37.513( H )C(OLD ) 0.75026( F )0.015005( F )C( NEW )50K最终变换结果如图所示其仿真结果如下所示可以看到在 -3dB 点的频率下降约为330kHZ,基本满足设计要求。

相关文档
最新文档