积分中值定理(开区间)证明的几种方法
高等数学 第5章 第二节 定积分的性质 中值定理

(2)记 f ( x) e x2 x , x 0,2 , 则 f ( x) e x2 x 2x 1 ,
令 f ( x) 0, 得唯一驻点 x 1 ,
2
又
f
(
1
)
e
1 4
,
f (0) 1, f (2) e 2 ,
2
1
所以 m e 4 , M e 2
1
e 4 2 0
y gx
推论1 若 f x gx, x a, b,
y
则
b
a
f xdx
b
a
g
x
dx
a b.
推论 2
b
a
f
xdx
b
a
f xdx
(a b).
性质6 (估值不等式)
y f x
O xa
xbx
设 M max f x, m min f x, 则
x[ a ,b ]
x[ a ,b ]
mb
a
b
a
f
xdx
加性
c
b
c
a f ( x)dx a f ( x)dx b f ( x)dx
b
a
f ( x)dx
c
a
c
f ( x)dx b
f ( x)dx
c
a
b
f ( x)dx c
f ( x)dx
1
性质4
b
b
1dx dx b a
a
a
性质5
若 f x 0, x a,b,
则
b
a
f
xdx
0
a b.
M b
a
a b.
如
一元函数的积分中值定理

一元函数的积分中值定理首先,我们需要明确一元函数的积分的概念。
对于定义在闭区间[a, b]上的连续函数f(x),我们可以通过划分[a, b]为若干小区间,然后用矩形逼近每个小区间上的函数值,最后求和得到一个逼近积分的结果。
通过无限地增加划分的数目,我们可以得到一个更加精确的结果,这就是函数f(x)在闭区间[a, b]上的积分。
用符号表示为∫[a, b] f(x) dx。
接下来,我们来介绍一元函数的积分中值定理。
假设函数f(x)在闭区间[a, b]上连续,且函数g(x)是函数f(x)的一个原函数(即 g'(x) = f(x)),则存在一个点c ∈ (a, b),使得积分∫[a, b] f(x) dx等于函数f(x)在区间[a, b]上的平均值f(c)与区间长度(b - a)的乘积,即∫[a, b] f(x) dx = f(c) * (b - a)其中,点c被称为积分中值点。
为了证明一元函数的积分中值定理,我们需要使用一个重要的定理,即拉格朗日中值定理。
根据拉格朗日中值定理,如果函数f(x)在闭区间[a,b]上连续且可导,那么存在一个点ξ∈(a,b),使得f'(ξ)=(f(b)-f(a))/(b-a)。
在积分中值定理的证明中,我们将应用拉格朗日中值定理来找到积分中值点c。
证明过程如下:1.由于函数g(x)是函数f(x)的一个原函数,根据函数的可导性质,我们可以得到函数g(x)在闭区间[a,b]上连续且可导。
2.根据拉格朗日中值定理,存在一个点ξ∈(a,b),使得g'(ξ)=(g(b)-g(a))/(b-a)。
由于g'(x)=f(x),因此有f(ξ)=(g(b)-g(a))/(b-a)。
3. 由于g(x)是函数f(x)的一个原函数,根据积分的定义和原函数的性质,我们有∫[a, b] f(x) d x = g(b) - g(a)。
4. 将上述结果代入到∫[a, b] f(x) dx = f(ξ) * (b - a)中,我们可以得到∫[a, b] f(x) dx = f(ξ) * (b - a)。
积分中值定理开区间和闭区间

积分中值定理开区间和闭区间积分中值定理开区间和闭区间积分中值定理是微积分中的一个重要定理,它描述了函数在某个区间上的平均值与积分值之间的关系。
而对于开区间和闭区间,积分中值定理也有着不同的表现和应用。
在本文中,我们将深入探讨积分中值定理在开区间和闭区间上的应用,以及对这一概念的个人理解和观点。
一、积分中值定理的概念积分中值定理是微积分中的一个基本定理,它描述了函数在某个区间上的平均值与积分值之间的关系。
它可以形式化地表述为:若函数f(x)在区间[a, b]上连续,那么在这个区间上一定存在一个点c,使得f(c)等于函数f(x)在区间[a, b]上的平均值。
积分中值定理指出了在连续函数的情况下,必然存在一个点,使得该点的函数值等于函数在整个区间上的平均值。
二、积分中值定理在开区间上的应用对于开区间(a, b),积分中值定理也是成立的。
在开区间上,积分中值定理告诉我们,对于连续函数f(x),一定存在一个点c,使得f(c)等于函数f(x)在开区间(a, b)上的平均值。
这个结论在实际问题中有着重要的应用,比如在物理学和工程学中,我们常常需要求解一些变化率或平均速度等问题,而积分中值定理为我们提供了一个有力的工具。
三、积分中值定理在闭区间上的应用在闭区间[a, b]上,积分中值定理同样适用。
对于连续函数f(x),在闭区间上一定存在一个点c,使得f(c)等于函数f(x)在闭区间[a, b]上的平均值。
这个结论在数学分析和实际问题中都具有重要的应用价值,比如在统计学和经济学中,我们常常需要计算一些总量或平均数值,而积分中值定理为我们提供了一个非常方便的工具。
四、个人观点和理解从我的个人观点来看,积分中值定理是微积分中一个非常有用的定理,它不仅能够帮助我们理解函数在某个区间上的平均值,还能够提供我们一个快速求解的方法。
在实际应用中,积分中值定理为我们提供了一个非常方便和强大的工具,它不仅可以用来分析函数的性质,还可以用来解决一些实际问题。
积分中值定理的一种证法及应用

积分中值定理的一种证法及应用从19世纪末开始,积分中值定理已成为数学从业者潜心研究的一个关键性领域。
虽然这个定理已经有数千年的历史追溯,但它一直都受到很多数学家的关注和探究。
本文的目的是对积分中值定理的一种证法及其应用进行深入的研究,以说明它的实质及其重要性。
积分中值定理是一个重要的数学定理,它强调了积分在函数下面的概念,即任意函数f(x)在区间a和b之间,可以用曲线下方的面积表示,即:∫a bf(x)dx=S(b)-S(a)其中S(x)是f(x)的积分函数。
积分中值定理则告诉我们,f(x)在区间a和b之间又称为积分中值,即在[a,b]之间有:∫a bf(x)dx=2f(c (a, b))其中c (a, b)是[a,b]的积分中值点,它的选择有多种,可以是区间内任意的数字,也可以是两个端点之间的等距数。
有了积分中值定理,我们可以对某种函数的特殊性质进行探讨。
例如,f(x)如果是一个奇函数,即f(-x)=-f(x),则可以推出:∫a bf(x)dx=[f(a)+f(b)]/2因而,积分中值定理可以用来证明一类函数的平均值性质,从而可以在数学上给出更强的结论。
同时,积分中值定理也可以用来解决许多实际问题。
例如,对于一类抛物线问题,积分中值定理可以用来计算抛物线函数下面围成的面积,从而给出更准确的解。
此外,在工程测量中,由于绝大多数的实际问题都是多项式的函数,积分中值定理可以用来准确估算某函数的实际物理量,从而给出更准确的结果。
此外,积分中值定理与另外一个重要的数学定理函数变换定理相关联。
换句话说,如果我们想求解一个特定函数的积分,那么我们可以用函数变换定理的概念来求解,并得出结果。
函数变换定理也可以结合积分中值定理,用来证明函数特性性质的精确性。
综上,积分中值定理既包含着数学的深刻内涵,又可以应用到多种实际问题中,其重要性无可陈词。
因此,本文对积分中值定理的一种证法及其应用进行了深入探讨,从而揭示了它博大精深的内涵及其丰富的应用。
定积分的性质中值定理

VS
详细描述
设函数f(x)和g(x)在区间[a, b]上可积,则有 ∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx。
区间可加性
总结词
定积分的区间可加性是指,对于任意两个子区间[a, c]和[c, b],其上的积分值等于整个区间[a, b]上的积分值。
详细描述
设函数f(x)在区间[a, b]上可积,则对于任意c∈[a,b],有∫(a,b)f(x)dx=∫(a,c)f(x)dx+∫(c,b)f(x)dx。
重要性及应用领域
在微积分学中,定积分的性质中值定理是理解积分概念和性质的关键,它为解决定积分问题提供了一 种有效的方法。
在应用领域,定积分的性质中值定理广泛应用于物理学、工程学、经济学等领域,例如在计算面积、 解决物理问题、预测经济趋势等方面都有重要的应用。
02 定积分的性质
线性性质
总结词
定积分的线性性质是指,对于两个函数 的积分和或差,其积分值等于各自积分 值的和或差。
可以用来研究函数的单调性、极值等问题, 并且在解决一些复杂的数学问题时也很有用。
04 定积分与中值定理的关系
定积分与连续函数的关系
01
定积分是研究连续函数的一种工具,它能够计算连 续函数在一定区间上的积分值。
02
连续函数在一定区间上的定积分等于该函数在区间 端点上取值的差与该区间长度乘积的一半。
拉格朗日中值定理是微分学中的基本定理之一,它说 明了一个函数在开区间上可导时,其导函数在区间内 至少存在一个中值点。
详细描述
拉格朗日中值定理是由法国数学家拉格朗日提出的,定 理表述为:如果一个函数f(x)在闭区间[a, b]上连续,在 开区间(a, b)上可导,那么在开区间(a, b)内至少存在一 点ξ,使得f'(ξ)=(f(b)-f(a))/(b-a)。这个定理说明了函数 在某区间的变化率与该区间两端函数值之差成正比,这 在研究函数的单调性、极值等问题时非常有用。
2017考研数学二复习之积分中值定理

2017考研数学二复习之积分中值定理来源:智阅网高数是考研数学二中,很重要的一个内容。
在考研数学二高数部分,积分中值定理,也是常考的内容。
那么,就让我们一起熟悉一下积分中值定理的内容吧!该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。
如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。
可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。
若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。
介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。
那么何去何从,已经不言自明了。
若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。
我们自然想到把积分中值定理的结论朝以上的形式变形。
等式两边同时除以区间长度,就能达到我们的要求。
当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。
这个数就相当于介值定理结论中的A。
接下来如何推理,这就考察各位对介值定理的熟悉程度了。
该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某点的函数值)。
再看若积分中值定理的条件成立否能推出介值定理的条件成立。
函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。
而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。
中值定理的应用方法与技巧
中值定理的应用方法与技巧中值定理的基本形式有三种:拉格朗日中值定理、柯西中值定理和罗尔中值定理。
它们分别适用于不同的函数类型和问题背景。
首先说一下拉格朗日中值定理。
对于一个在闭区间[a,b]上连续并可微的函数f(x),拉格朗日中值定理给出了这个函数在[a,b]上存在一个点c,使得f(b)-f(a)=f'(c)(b-a)。
也就是说,存在一个点c,这个点的导数等于函数在整个闭区间上的平均斜率。
这个定理的应用方法和技巧如下:1.利用导数等于0来找出函数在闭区间上的极值点。
因为根据导数中值定理,如果函数在闭区间[a,b]上连续并可微,且导数f'(x)在[a,b]的一些内点c处等于0,那么在[a,b]上存在至少一个点c,使得f(x)在c点取得极值。
2.利用中值定理来证明函数在一些区间上的性质。
例如,如果能够证明函数f(x)在闭区间[a,b]上的导数f'(x)始终大于0,则可以得出结论:在该区间上函数是单调递增的。
接下来讨论柯西中值定理。
柯西中值定理是拉格朗日中值定理的推广,适用于两个函数同时存在的情况。
设有两个在闭区间[a,b]上连续并可微的函数f(x)和g(x),且g(x)≠0。
柯西中值定理给出了存在一个点c,使得[f(b)-f(a)]g'(c)=[g(b)-g(a)]f'(c)。
这个定理的应用方法和技巧如下:1.利用柯西中值定理证明函数的零点存在性。
例如,如果能够证明函数f(x)和g(x)在闭区间[a,b]上连续并可微,且f(a)≠f(b),f(x)和g(x)在闭区间上无共同的导数零点,则可以得出结论:在[a,b]上存在一个点c,使得f(c)=g(c)。
2.利用柯西中值定理证明函数在一些区间上的性质。
例如,如果能够证明函数f(x)和g(x)在闭区间[a,b]上连续并可微,且f(x)和g(x)的导数始终满足[f'(x)/g'(x)]>0,则可以得出结论:在该区间上函数f(x)和g(x)的增减情况相同。
积分中值定理的一般形式
积分中值定理的一般形式
积分中值定理表达式为:f(x)dx=f(ξ)(b-a)(a≤ξ≤b)。
若函数f(x)在闭区间上连续,则在积分区间上至少存在一个点ξ,使上式成立。
中值定理的主要作用在于理论分析和证明;同时由柯西中值定理还可导出一个求极限的洛必达法则。
积分中值定理在定积分的计算应用中具有重要的作用,下面我们给出几个具体的常见的例子,通过实际应用来加深对积分中值定理的理解。
积分中值定理的作用
中值定理的应用主要是以中值定理为基础,应用导数判断函数上升,下降,取极值,凹形,凸形和拐点等项的重要性态。
从而能把握住函数图象的各种几何特征。
在极值问题上也有重要的实际应用。
对于积分中值定理,在教材中提到的用法大多是去掉积分符号,把复杂的问题简单化,在解决积分不等式、含积分的极限等问题中,往往应用积分中值定理的这些作用,使得问题得到更容易的解决。
积分中值定理开区间和闭区间
积分中值定理开区间和闭区间1. 介绍对于初学者而言,积分中值定理可能是比较具有挑战性的数学概念之一。
积分中值定理是微积分的一个重要定理,它提供了一个关于函数在某个区间内的平均值和在该区间上某一点的函数值之间的关系。
在本文中,我们将讨论积分中值定理在开区间和闭区间上的应用和性质。
2. 积分中值定理的概念让我们回顾一下积分中值定理的定义。
对于一个连续函数f(x)在闭区间[a,b]上,我们可以将其积分表示为:b(x)dx∫fa根据积分中值定理,存在一个c∈(a,b),使得:b(x)dx=f(c)(b−a)∫fa其中,f(c)是函数f(x)在闭区间[a,b]上的平均值。
当我们应用积分中值定理于开区间(a,b)时,我们需要对定理进行一些调整。
在这种情况下,我们将积分中值定理表示为:b(x)dx=f(c)(b−a)∫fa其中,c∈(a,b)是函数f(x)在开区间(a,b)上的某一点。
3. 开区间上的积分中值定理应用现在,让我们来探讨积分中值定理在开区间上的一些应用和性质。
A. 区间平均值积分中值定理告诉我们,一个连续函数在某个区间内的平均值可以表示为该函数在该区间上的某一点的函数值。
这个特性在实际问题中有很好的应用。
假设我们有一个速度函数v(t),描述了某一段时间内物体的速度变化。
我们想要计算物体在该时间段内的平均速度。
根据积分中值定理,在时间段(t1,t2)内的平均速度可以表示为:1 t2−t1∫vt2t1(t)dt=v(c)其中,c∈(t1,t2)是某一点的时间。
这样,我们不需要知道速度函数在整个时间段内的变化情况,只需要找到一个时间点c,就可以得到平均速度。
B. 函数值和区间平均值的关系在开区间上的积分中值定理中,我们注意到函数值f(c)和区间平均值的乘积等于积分的结果。
这个关系是非常有意思的,因为它展示了函数在某点的取值与整个区间上的平均值之间的关系。
假设我们有一个连续函数f(x)在开区间(a,b)上的非负函数值。
高等数学——积分中值定理
⾼等数学——积分中值定理本⽂始发于个⼈公众号:TechFlow,原创不易,求个关注今天是⾼等数学专题的第12篇,我们继续来看定积分。
之前在讲微分求导内容的时候,介绍过⼀系列微分中值定理的推导。
既然有微分中值定理,那么⾃然也有积分中值定理,我们下⾯就来看看积分中值定理的定义。
极值定理极值定理也叫最⼤最⼩值定理,它的含义⾮常直观:如果函数f(x)在区间[a,b]上连续的函数,必然存在最⼤值和最⼩值,并且取到最⼤值和最⼩值⾄少⼀次。
这是⼀个⾮常有名的定理,定理的内容很直观,也不难理解。
但是证明它不太容易,是由区间套定理与B-M定理等多个定理推导得到的,这段证明过程⽐较复杂,由于篇幅和⽔平的限制,本⽂当中只能跳过这部分,感兴趣的同学可以⾃⾏了解。
我们假设m和M分别是区间[a, b]上函数f(x)的最⼩值和最⼤值,那么根据极值定理,可以得到以下式⼦成⽴:这个式⼦光看可能会觉得有些复杂,但是我们把图画出来之后⾮常简单:上图当中灰⾊阴影部分就是定积分的结果,蓝⾊的矩形⾯积是m(b-a),⼤的矩形⾯积是M(b-a)。
通过⼏何⾯积的关系我们可以很容易证明结论。
数学证明也很简单,由于m和M分别是最⼩值和最⼤值,所以我们可以得到。
我们把常数也看成是函数,进⾏积分,于是可以得到:两边积分的结果就是矩形⾯积,于是我们就得到了证明。
积分中值定理极值定理⾮常简单,但是是很多定理的基础,⽐如我们的积分中值定理就和它密切相关。
我们对上⾯的式⼦做⼀个简单的变形,由于b-a是常数并且⼤于0,所以我们在这个不等式两边同时除以b-a,可以得到:我们把这个式⼦看成⼀个整体,它的值位于函数在区间的最⼤值和最⼩值之间。
根据连续函数的介值定理,我们⼀定可以在[a, b]上找到⼀点,使得f(x)在这点的取值与这个数值相等,也就是说:上⾯这个式⼦就是积分中值定理了,这⾥有两点要注意,我们先来说简单的⼀点,就是我们⽤到了连续函数介值定理。
所以限定了这必须是⼀个连续函数,否则的话,可能刚好函数在点处没有定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积分中值定理(开区间)的几种证明方法
定理:设f 在[a,b ]上连续,则 (a,b),使得
f (x) f ()在[a,b ]上连续,易证(可反证)
(这还是书上例2的结论)
(a,b),使得 F( ) f( ) f( ) 0,即 f ( ) f()。
x
[证二]:令F(x) f (t)dt ,则F(x)在[a,b ]上满足拉格朗日中值定理的条件,故
a
(a,b),使得 F(b) F(a) F ( )(b a),即结论成立。
(注:书上在后面讲的微积分基本定理 )
b
[证三]:反证:假设不 (a,b),使得 f(x)dx f( )(b a),由积分第一中值定理, a
知只能为a 或b ,不妨设为b ,即
1
b
x (a,b), f (x) f (b) - a f(x)dx 。
b a a 由于 f 连续,故 x (a,b), f (x) f(b)(或 f (x) f(b)),
(这一点是不是用介值定理来说明 )
这样
x b
(上限 x 改为 b ) f (x)dx f (b)dx f (b)(b a).
a a
(这个严格不等号不太显然要用书上例 2结论来说明)
矛盾。
[证四]:设f 在[a,b ]上的最大值为 M ,最小值为m 。
若m M ,则f c , 可任取。
b
若 m M ,则 x - [a,b ],有 M f(x -) 0,故[M f (x)]dx 0,即
a
b f (x)dx M (b a).
f(x)dx f( )(b a)。
[证一]:由积分第一中值定理(P217),
b
[a,b],使得 f (x)dx a f( )(b a)。
于是
a 【f (X ) f ( )]dx 0.
由于函数F(x)
同理有
m(b b
a) & f(x)dx.
由连续函数的介质定理知:
1 b (a,b),使得f ( ) f (x)dx.。
b a a
主:以上方法有的能推广到定理9.8的证明,有的不能,再思考吧!。