信号与系统第1讲
合集下载
信号与系统课件(奥本海姆+第二版)+中文课件.pdf

解:因为 x[n] = e jω0n = cos ω0n + j sin ω0n (欧拉公式)
则有 e jω0n = 1
∑ ∑ ∞
∞
E∞ = x[n] 2 = 1= ∞
n=−∞
n=−∞
∑ P∞
=
lim
N→∞
1N 2N +1n=−N
x[n] 2
= lim N→∞
1 ×(2N 2N +1
+1)
=1
所以是功率信号
控制
执行机构
网络
图 1 控制系统
R+
uc (t)
x (t)
C
uc (t)
-
t
图 2 RC电路
6 / 94
二、信号的分类 信号的分类方法很多。
1、确定性信号与随机信号 按信号与时间的函数关系来分,信号可分为确定性信号与随
机信号。 1)、确定性信号——指能够表示为确定的时间函数的信号。 当给定某一时间值时,信号有确定的数值。 例如:正弦信号、指数信号和各种周期信号等。 2)、随机信号——不是时间t的确定函数的信号。 它在每一个确定时刻的分布值是不确定的。 例如:电器元件中的热噪声等。
11 / 94
5、连续时间信号和离散时间信号——按自变量的取值是否连续来分。
1、连续时间信号——自变量是连续可变的,因此信号在自变量的连续值上 都有定义。我们用t表示连续时间变量,用圆括号(.)把自变量括在里面。例 如 图一的 x(t)。
x (t)
x [n]
X[1] X[-1]
0
t
图一 连续时间信号
1)、时间特性——波形、幅度、重复周期及信号变化的快慢等。 ω
2)、频率特性——振幅频谱和相位频谱。即从频域 来研究信号的变化情 况。
《信号与系统》第一章知识要点+典型例题

y() 表示系统的输出。
1、线性系统与非线性系统 若系统满足下列线性性质: (1)可分解性 全响应 y () 可分解为零输入响应 y zi () 与零状态响应 y zs () 之和,即
y() y zi () y zs ()
(2)齐次性 零输入响应 y zi () 满足齐次性,零状态响应 y zs () 满足齐次性,即
( t ) 、 ( t ) 的重要性质
1
( t )dt 1 ,
t
( t )dt 0 , ( t )dt ( t ) ( k ) (k )
f ( k ) ( k ) f (0) ( k ) f ( k ) ( k k 0 ) f ( k 0 ) ( k k 0 )
f ( t ) ( t a )dt f (a )
k
f ( k ) ( k ) f (0)
(at )
5
1 (t ) a
1 b (at b) ( t ) a a f ( t ) ( t ) f (0) ( t ) f (0) ( t ) f ( t ) ( t ) f (0) ( t ) f (0) ( t )
2
。
而对离散的正弦(或余弦)序列 sin( k ) [或 cos( k ) ]( 称为数字角频率,单位为 rad ), 只有当
2
为有理数时才是周期序列,其周期 N M
2
, M 取使 N 为整数的最小整数。
如对信号 cos(6 k ) ,由于
2
2 1 为有理数,因此它是周期序列,其周期 N 1 。 6 3
信号与系统1

− t0 − 1 − t0 − t0 + 2
f (−t − t 0 )
1
t
1.2 连续时间信号的基本运算与波形变换
8. 尺度变换(横坐标展缩)
f (t )
f ( 2t )
1 f ( t) 2
−1
0
1
t
−
1 2
0
快速播放
1 2
t
− 2
0
2
t
慢速播放
f(at)
a为常数
|a|>1表示f(t)波形在时间轴上压缩1/|a|倍 |a|<1表示f(t)波形在时间轴上扩展|a|倍
f(n)
(2) (1) (1)
0
12 345
n
0
1 2 3 4 数字信号
n
离散时间信号(抽样信号)
1.1信号的描述与分类
2.按信号能量特点分类:
2 将信号f (t)施加于1Ω电阻上,它所消耗瞬时功率为 | f (t ) | ,在区间 (–∞ , ∞)的能量和平均功率定义为
(1)信号f(t)的能量
E = ∫ f (t ) dt
例:已知f(5-2t)的波形如图所示,试画出f(t)的波形。
f (5 − 2t ) 2δ (t − 3)
0
3 2
5 2
3
t
⎯→ ⎯ ⎯→ ⎯ ⎯→ ⎯ 分析: f (t ) ⎯压缩 f (2t ) ⎯反转 f (−2t ) ⎯平移 f (5 − 2t ) 5 Q−(t − ) 5 − 2t = 2 2 5 ∴右移 2 求解过程 f (5 − 2t ) → f (−2t ) → f (2t ) → f (t ) :
电脑或终端
调制解调器
电话网
f (−t − t 0 )
1
t
1.2 连续时间信号的基本运算与波形变换
8. 尺度变换(横坐标展缩)
f (t )
f ( 2t )
1 f ( t) 2
−1
0
1
t
−
1 2
0
快速播放
1 2
t
− 2
0
2
t
慢速播放
f(at)
a为常数
|a|>1表示f(t)波形在时间轴上压缩1/|a|倍 |a|<1表示f(t)波形在时间轴上扩展|a|倍
f(n)
(2) (1) (1)
0
12 345
n
0
1 2 3 4 数字信号
n
离散时间信号(抽样信号)
1.1信号的描述与分类
2.按信号能量特点分类:
2 将信号f (t)施加于1Ω电阻上,它所消耗瞬时功率为 | f (t ) | ,在区间 (–∞ , ∞)的能量和平均功率定义为
(1)信号f(t)的能量
E = ∫ f (t ) dt
例:已知f(5-2t)的波形如图所示,试画出f(t)的波形。
f (5 − 2t ) 2δ (t − 3)
0
3 2
5 2
3
t
⎯→ ⎯ ⎯→ ⎯ ⎯→ ⎯ 分析: f (t ) ⎯压缩 f (2t ) ⎯反转 f (−2t ) ⎯平移 f (5 − 2t ) 5 Q−(t − ) 5 − 2t = 2 2 5 ∴右移 2 求解过程 f (5 − 2t ) → f (−2t ) → f (2t ) → f (t ) :
电脑或终端
调制解调器
电话网
信号与系统——第一章 信号与系统概论(1)

图1-1 各类信号:
二、周期信号与非周期信号
如图1-1(c)所示,周期信号是按某一固定周期重 复出现的信号,它可表示为
f (t ) f (t nT )
其中,T为周期,任何周期信号都可表示为仅在 基本周期内取非零值的有限长信号的周期延拓, 即
f (t ) t 0, T f1 (t ) f (t ) f1 (t nT ) t 0, T 0 n
第一章 信号与系统概论
学习要点: 1. 信号与系统课程的重要性; 2. 信号的概念、分类与运算; 3. 系统的概念、分类与联接形式; 4. 系统的线性性、时不变性、因果性和稳定性的定 义与判断。
§ 1-1 引
言
信号与系统是在电工原理的基础上发展起 来的,并随着电子工程、通信工程、计算 机和信息技术的飞速发展而不断地发展与 完善。 在信号与系统学科的发展中,微分方程、 差分方程理论,傅里叶(Fourier)变换、 拉普拉斯(Laplace)变换、离散傅里叶 变换和Z变换等正交变换理论起着十分重 要的作用。 二十世纪四十年代创立的系统论、信息论 与控制论极大地推动了信号与系统学科的 发展。
能量信号和功率信号的判断方法
判断能量信号和功率信号的方法: 先计算信号能量,若为有限值则为能量信号, 同时也必是功率信号;否则,计算信号功率,若 为有限值则为功率信号;若上述两者均不符合, 则信号既不是能量信号,也不是功率信号。
连续时间信号能量:E
f (t ) dt
2
1 连续时间信号功率:P lim T 2T
+ -
T
T
f (t ) dt
2
西安电子科技大学信号与系统课件ppt-第1章信号与系统

般步骤: (1)若信号 f(t)→f(at+b),则先反转,后展缩,再平 移; ( 2 ) 若信号 f(mt+n)→f(t) ,则先平移,后展缩,再
反转;
(3)若信号f(mt+n)→f(at+b),则先实现f(mt+n)→f(t), 再进行f(t)→f(at+b)。
例1―4试粗略地画出下列信号的波形图: (1) f1(t)=(2-3e-t)· u(t); (2) f2(t)=(5e-t-5e-3t)· u(t); (3) f3(t)=e-|t|(-∞<t<∞); (4) f4(t)=cosπ(t-1)· u(t+1); (5) f5(t)=sin π /2 (1-t)· u(t-1); (6) f6(t)=e-tcos10πt(u(t-1)-u(t-2));
系统的输入和输出是连续时间变量 t 的函数,叫作
连续时间系统。输入用f(t)表示,输出用y(t)表示。
图1.6 连续时间信号及反转波形
图1.7 离散时间信号及反转波形
7.平移
以变量t- t0代替信号f(t)中的独立变量t,得信号f(tt0) ,它是信号 f(t) 沿时间轴平移 t0 的波形。这里 f(t) 与 f(t-t0)的波形形状完全一样,只是在位置上移动了t0(t0为 一实常数)。 t0 >0,f(t)右移; t0 <0,f(t)左移;平移距 离为| t0 |。 图1.8表示连续时间信号的平移。这类信号在雷 达、声纳和地震信号处理中经常遇到。利用位移信号
图1.9 f(t)、f(2t)、f(t/2)的波形
9.综合变换 以变量at+b代替f(t)中的独立变量t,可得一新的信 号函数 f(at+b) 。当 a> 0时,它是 f(t) 沿时间轴展缩、平 移后的信号波形;当a<0时,它是f(t)沿时间轴展缩平 移和反转后的信号波形,下面举例说明其变换过程。
反转;
(3)若信号f(mt+n)→f(at+b),则先实现f(mt+n)→f(t), 再进行f(t)→f(at+b)。
例1―4试粗略地画出下列信号的波形图: (1) f1(t)=(2-3e-t)· u(t); (2) f2(t)=(5e-t-5e-3t)· u(t); (3) f3(t)=e-|t|(-∞<t<∞); (4) f4(t)=cosπ(t-1)· u(t+1); (5) f5(t)=sin π /2 (1-t)· u(t-1); (6) f6(t)=e-tcos10πt(u(t-1)-u(t-2));
系统的输入和输出是连续时间变量 t 的函数,叫作
连续时间系统。输入用f(t)表示,输出用y(t)表示。
图1.6 连续时间信号及反转波形
图1.7 离散时间信号及反转波形
7.平移
以变量t- t0代替信号f(t)中的独立变量t,得信号f(tt0) ,它是信号 f(t) 沿时间轴平移 t0 的波形。这里 f(t) 与 f(t-t0)的波形形状完全一样,只是在位置上移动了t0(t0为 一实常数)。 t0 >0,f(t)右移; t0 <0,f(t)左移;平移距 离为| t0 |。 图1.8表示连续时间信号的平移。这类信号在雷 达、声纳和地震信号处理中经常遇到。利用位移信号
图1.9 f(t)、f(2t)、f(t/2)的波形
9.综合变换 以变量at+b代替f(t)中的独立变量t,可得一新的信 号函数 f(at+b) 。当 a> 0时,它是 f(t) 沿时间轴展缩、平 移后的信号波形;当a<0时,它是f(t)沿时间轴展缩平 移和反转后的信号波形,下面举例说明其变换过程。
信号与系统基础-第1章

单位阶跃信号是从实际应用中抽象出来的。比如,图1-14中S 的在开t关 0 时刻闭合, 则理想情况下电阻R 上的电压uR (t) (t)
(t) 1
0
t
图1-12 单位阶跃信号
K
E 1V uR (t) (t) R
图1-13 单位阶跃信号实例
(t)
def
0, 1,
(t 0) (t 0)
确知信号虽然不用于通信,但可以作为基本信号对系统的特性进行分析研究, 其研究方法和结果可以直接推广或借鉴到随机信号的分析中去,这就是研究确知信号 的意义所在。
23
1.3 基本连续信号
现实生活中,信号的种类繁多,要想逐个研究是不可能的。因此,人们从各 种信号中挑选出一些基本信号加以研究。主要原因是
(1)基本信号可以通过数学手段去精确或近似表征其他信号,比如傅里叶级数 的基本形式是正弦和余弦信号,但它们可以表示绝大多数不同形式的周期信号( 详见第4章)。
11
1.2 信号的分类
S
f (t)
yS (t)
p(t)
0
t
0 Ts
t
0
t
(a)抽样概念示意图
F ( / f ) 低通型信号频谱
F ( / f ) 带通型信号频谱
0
fL
fH
/ f 0
fL fH
/ f
(b)低通、带通信号示意图
图1-4 抽样及低通、带通信号概念示意图
12
1.2 信号的分类
离散信号有以下主要特点: (1)虽然自变量取离散值,但因变量(幅值) 的取值可以是连续的(即有无穷个可能的取值), 也可以是离散的。 (2)其图形是出现在离散自变量点上的一系列 垂直线段。
1 2
(t) 1
0
t
图1-12 单位阶跃信号
K
E 1V uR (t) (t) R
图1-13 单位阶跃信号实例
(t)
def
0, 1,
(t 0) (t 0)
确知信号虽然不用于通信,但可以作为基本信号对系统的特性进行分析研究, 其研究方法和结果可以直接推广或借鉴到随机信号的分析中去,这就是研究确知信号 的意义所在。
23
1.3 基本连续信号
现实生活中,信号的种类繁多,要想逐个研究是不可能的。因此,人们从各 种信号中挑选出一些基本信号加以研究。主要原因是
(1)基本信号可以通过数学手段去精确或近似表征其他信号,比如傅里叶级数 的基本形式是正弦和余弦信号,但它们可以表示绝大多数不同形式的周期信号( 详见第4章)。
11
1.2 信号的分类
S
f (t)
yS (t)
p(t)
0
t
0 Ts
t
0
t
(a)抽样概念示意图
F ( / f ) 低通型信号频谱
F ( / f ) 带通型信号频谱
0
fL
fH
/ f 0
fL fH
/ f
(b)低通、带通信号示意图
图1-4 抽样及低通、带通信号概念示意图
12
1.2 信号的分类
离散信号有以下主要特点: (1)虽然自变量取离散值,但因变量(幅值) 的取值可以是连续的(即有无穷个可能的取值), 也可以是离散的。 (2)其图形是出现在离散自变量点上的一系列 垂直线段。
1 2
第1章 信号与系统的基本知识
f1(t) ,sin(2t) cos(3t)
为周期信号,其周期为T1和T2的最小公倍数 2( 2T1或3T2)。
cos(2t) 和 sin(t)的周期分别为
由于
K T1 T2 2
为无理数,故
T1
2 1
T2
2 2
2
f2(t) sin(t) cos(2t) 为非周期信号。
X
2. 系统的描述
第 9
页
• 系统可用数学模型和方框图来表示。
• 一个系统可以用一个矩形方框图简单地表示,方 框图左边为输入x(t),右边为系统的输出y(t),方 框表示联系输入和输出的其他部分,是系统的主 体。
• 系统的组合连接方式有串联、并联及混合连接。
• 连续系统可以用一些输入输出关系简单的基本单 元(子系统)连接起来表示。这些基本单元有加 法器、数乘器(放大器)、积分器。
ay1(t) by2 (t)
和 y1(t) T[x1(t)] y2 (t) T[x有2 (t:)] (1.3.1)
• 式中a、b为任意常数,该式具有满足叠加性和(或齐次性)的特 点。不满足该式的为非线性系统。
• 线性系统具有“零输入产生零输出”的特性,可以由此判断是否 为线性系统。
• “信息(information)”,它是信息论中的一个术语。通过各 种消息的传递,使人们获取各种不同的信息。因此,通俗的 说,“信息”是指具有新内容、新知识的“消息”。为了有 效地传播和利用信息,常常需要将信息转换成便于传输和处 理的信号。在本课程中对“信息”和“消息”两词不加严格 区分。
• “信号(signal)”也称为“讯号”,是运载消息的工具,是 消息的载体,“消息”通过“信号”表现出来。也就是说: “信号”是“消息”的表现形式与传送载体。“信号”是反 映“信息”的各种物理量,是系统直接进行加工、变换和处 理的对象。
信号与系统第一章第二节
例子
0 (当t 2 ) 1 vc (t ) (t ) (当 t ) 2 2 2 1 (当t ) 2 电流ic(t)为
:
从物理方面理解函数的意义。电路图如下: 电压源vc(t)接向电容元件C,假定vc(t)是斜变信号。
vc (t )
ic (t )
c
vc (t )
ic (t )
dvc (t ) ic (t ) c dt c [u (t ) u (t )] 2 2
1
1 2
c
2
0 2
t
0 2
t 0 2
t
如果0的极限情况,则vc(t)成为阶跃信号,它的微分— —电流ic(t)是冲激函数其表达式为: vc (t ) u (t ) v (t )
信号与系统
孔艳岩
495239861
1.4 阶跃信号和冲激信号 1.单位斜变信号
斜变信号也称斜升信号。 它是从某一时刻开始随时间正比例增长的信号。 如果增长的变化率是1,就称为单位斜变信号。
(1)单位斜变信号
f (t )
如果将起始点移至t0,则可写成
0 t 0 f (t ) t t 0
1
0
1
t
与阶跃函数类似,对于符号函数在跳变点也可不予定义,或 规定sgn(0)=0. 显然,阶跃信号来表示符号函数
sgn( t ) 2u (t ) 1
2、阶跃函数的性质:
(1)可以方便地表示某些信号
f(t) = 2u(t)- 3u(t-1) +u(t-2)
(2)用阶跃函数表示信号的作用区间
信号与系统_王明泉_课件第1章
1
O
f t 1 O
通常把 称为指数信号的时间常数,记作,代表信 号衰减速度,具有时间的量纲。 重要特性:其对时间的微分和积分仍然是指数形式。
t
信号与系统
第1章 信号与系统概述
22 /48
衰减正弦信号:
K e t sint f (t ) 0
重要特性:同指数信号
f (t )
应用数学知识较多,用数学工具分析物理概念; •常用数学工具: 微分、积分(定积分、无穷积分、变上限积分) 线性代数 微分方程、差分方程 傅里叶级数、傅里叶变换、拉氏变换、z 变换
•经典教材:信号与系统 奥本海姆著 信号与系统 郑君里
信号与系统
第1章 信号与系统概述
5 /48
学习方法
•注重物理概念与数学分析之间的对照,不要盲 目计算; •注意分析结果的物理解释,各种参量变动时的 物理意义及其产生的后果; •同一问题可有多种解法,应寻找最简单、最合 理的解法,比较各方法之优劣; •在学完本课程相当长的时间内仍需要反复学习 本课程的基本概念。
t
2
f t
E
0.78 E
E e
O
2
t
钟形脉冲(高斯)信号最重要的性质是其傅立 叶变换也是钟形脉冲(高斯)信号,在信号分析中 占有重要地位。
返回
信号与系统
第1章 信号与系统概述
28 /48
1.4 奇异信号ቤተ መጻሕፍቲ ባይዱ其基本特性
1.4.1 单位斜变信号
单位斜变信号
0 t 0 f (t ) t t 0
????ttt???jjeej21sin???????ttt???jjee21cos???第1章信号与系统概述2448信号与系统1322复指数信号为复数称为复频率j????????s均为实常数??????tktktktfttst????sinejcosee????????讨论??????????????????????衰减指数信号升指数信号直流衰减指数信号升指数信号直流000000????????????振荡衰减增幅等幅振荡衰减增幅等幅????????????????????????????????000000????????????均为实常数??第1章信号与系统概述2548信号与系统133矩形脉冲和三角脉冲矩形脉冲信号的表示式为????????2021??tttf?三角脉冲信号的表示式为?????????20221???ttttf第1章信号与系统概述2648信号与系统134抽样信号tttsinsa?t??tsa123o?性质
O
f t 1 O
通常把 称为指数信号的时间常数,记作,代表信 号衰减速度,具有时间的量纲。 重要特性:其对时间的微分和积分仍然是指数形式。
t
信号与系统
第1章 信号与系统概述
22 /48
衰减正弦信号:
K e t sint f (t ) 0
重要特性:同指数信号
f (t )
应用数学知识较多,用数学工具分析物理概念; •常用数学工具: 微分、积分(定积分、无穷积分、变上限积分) 线性代数 微分方程、差分方程 傅里叶级数、傅里叶变换、拉氏变换、z 变换
•经典教材:信号与系统 奥本海姆著 信号与系统 郑君里
信号与系统
第1章 信号与系统概述
5 /48
学习方法
•注重物理概念与数学分析之间的对照,不要盲 目计算; •注意分析结果的物理解释,各种参量变动时的 物理意义及其产生的后果; •同一问题可有多种解法,应寻找最简单、最合 理的解法,比较各方法之优劣; •在学完本课程相当长的时间内仍需要反复学习 本课程的基本概念。
t
2
f t
E
0.78 E
E e
O
2
t
钟形脉冲(高斯)信号最重要的性质是其傅立 叶变换也是钟形脉冲(高斯)信号,在信号分析中 占有重要地位。
返回
信号与系统
第1章 信号与系统概述
28 /48
1.4 奇异信号ቤተ መጻሕፍቲ ባይዱ其基本特性
1.4.1 单位斜变信号
单位斜变信号
0 t 0 f (t ) t t 0
????ttt???jjeej21sin???????ttt???jjee21cos???第1章信号与系统概述2448信号与系统1322复指数信号为复数称为复频率j????????s均为实常数??????tktktktfttst????sinejcosee????????讨论??????????????????????衰减指数信号升指数信号直流衰减指数信号升指数信号直流000000????????????振荡衰减增幅等幅振荡衰减增幅等幅????????????????????????????????000000????????????均为实常数??第1章信号与系统概述2548信号与系统133矩形脉冲和三角脉冲矩形脉冲信号的表示式为????????2021??tttf?三角脉冲信号的表示式为?????????20221???ttttf第1章信号与系统概述2648信号与系统134抽样信号tttsinsa?t??tsa123o?性质
(完整版)信号与系统教案
板书与PPT演示相结合介绍奇异信号包括单位冲激函数、阶跃函数,通过表达式、图形等方式理解及其相互的关系.
通过适当的例子加深巩固奇异信号的计算.
通过评定练习来了解学生所掌握知识的情况。
课堂练习、作业:
4。9 4。11(3) (6) (7)
课后小结:
此部分是该理解的重点内容,讲解速度偏慢,学生吸收效果良好。
教学重点、难点:
掌握线性时不变系统的辨别,强调线性、时不变性、因果性的独立.
教学方法及师生互动设计:
先列举部分系统,导入LTI系统,然后列举习题,让学生判别LTI系统。
板书与PPT演示相结合介绍其系统的描述方法和数学模型。
课堂练习、作业:
课后小结:
此部分内容稍易,大多数同学在学习过程中思路清晰,理解较为容易。
第10次课2学时 授课时间
课堂练习、作业:
7.1 (1)
课后小结:
该部分内容讲解学生较容易吸收,讲解效果良好.
第7次课2学时 授课时间
课题(章节)
6 零输入响应的求法
7 零状态响应的求法
教学目的与要求:
掌握零输入响应的概念与求法
掌握零状态响应的概念与求法
教学重点、难点:
几个概念的引入,冲激相应h(t)的求解.
零输入响应和零状态响应的求法。
课堂练习、作业:
7.14 7.16 (2)
课后小结:
该内容是教学重点,通过例举例题讲解系统全响应的计算方法,并通过习题巩固该内容,讲解还是偏快,应进一步降慢讲解速度。
第9次课2学时 授课时间
课题(章节)
第3 章 傅里叶变换
1 周期信号表示为傅里叶级数
2 周期信号的频谱
教学目的与要求:
正确掌握傅立叶级数的三种表示形式;掌握周期信号幅度谱﹑相位谱的特点。
通过适当的例子加深巩固奇异信号的计算.
通过评定练习来了解学生所掌握知识的情况。
课堂练习、作业:
4。9 4。11(3) (6) (7)
课后小结:
此部分是该理解的重点内容,讲解速度偏慢,学生吸收效果良好。
教学重点、难点:
掌握线性时不变系统的辨别,强调线性、时不变性、因果性的独立.
教学方法及师生互动设计:
先列举部分系统,导入LTI系统,然后列举习题,让学生判别LTI系统。
板书与PPT演示相结合介绍其系统的描述方法和数学模型。
课堂练习、作业:
课后小结:
此部分内容稍易,大多数同学在学习过程中思路清晰,理解较为容易。
第10次课2学时 授课时间
课堂练习、作业:
7.1 (1)
课后小结:
该部分内容讲解学生较容易吸收,讲解效果良好.
第7次课2学时 授课时间
课题(章节)
6 零输入响应的求法
7 零状态响应的求法
教学目的与要求:
掌握零输入响应的概念与求法
掌握零状态响应的概念与求法
教学重点、难点:
几个概念的引入,冲激相应h(t)的求解.
零输入响应和零状态响应的求法。
课堂练习、作业:
7.14 7.16 (2)
课后小结:
该内容是教学重点,通过例举例题讲解系统全响应的计算方法,并通过习题巩固该内容,讲解还是偏快,应进一步降慢讲解速度。
第9次课2学时 授课时间
课题(章节)
第3 章 傅里叶变换
1 周期信号表示为傅里叶级数
2 周期信号的频谱
教学目的与要求:
正确掌握傅立叶级数的三种表示形式;掌握周期信号幅度谱﹑相位谱的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论
初步了解本门课程所要研究的问题 了解信号的分类
熟练掌握信号的运算
熟练掌握线性系统的性质及判别 掌握LTI的分析方法
信号
A、信号的概念
1.消息(message): 人们常常把来自外界的各种报道统称为消息。 消息反映知识状态的改变。
2.信息(information): 通常把消息中有意义的内容称为信息。 信息量=【收到信息前对某事件的无知程度】【收到信息后对某事件的无知程度】 3.信号(signal): 信号是信息的载体。通过信号传递信息。
f (t ) dt
2
1 平均功率:lim t2 t1 t t 2 1
t2
t1
f (t ) dt
2
5 奇信号:满足等式f(t)=-f(-t)的信号。 偶信号:满足等式f(t)= f(-t)的信号。
C、奇异函数
1 熟练掌握阶跃函数及其表示信号的方法 2 **充分理解冲激函数的定义
3 熟练掌握冲激函数的性质
(A)
t0
t
4.冲激函数是一个偶函数(t)= (-t)
5 (t)f(t)= (t)f(0), (t-t0)f(t)= (t- t0)f(t0)
6.
f (t ) (t )dt f (0)
f (t ) (t t0 )dt f (t0 )
D、信号的运算
1.信号的加减f ( t ) f 1 ( t ) f 2 ( t )
f(t) (2)
A
4
t
t1 t2
t
(3)
2 1 -1
f(t)
1
t
总结:(t) 1.冲激函数的图形表示方法:位置,强度。 2.该函数只在t=0处为非零值,其它各处都为零;
t d 3. (t ) (t ) (t ) ( )d dt
f (t ) A (t t0 )
-1 f(t) 1 t 1
f(t) 1 t -1
f(-t)
f(t) 1 t -1
f(-2t)
f(t) 1 t -1 1
1
1
f(-2(t-1/2)1)
切记:所有操作都是对于自变量 t
练习 :信号f(t)的波形如图所示,画出信号f(-2-t0
y f(t) f(t-t x t
f(t+t0)
0
)
4.信号的反褶:
f (t ) f ( t ) f (k ) f ( k )
自变量取相反数
反褶
反褶
y
y
g(t)=f(-t)
f(t)
g(n)=f(-n)
f(n)
t x
tx
f(t) 1 t -1 1 2
运 算 都 是 关 于 自 变 量 (t) 的
B、信号的分类 1 确定性信号:信号可以用一个确定的时间函数加以确定; 随机信号:信号不可以用一个确定的时间函数加以确定 只能用统计特性加以描述. 2 连续信号:除若干不连续的时间点外,每个时间点t上都 有对应的信号值。 离散信号:信号只在某些不连续的时间点上有信号值,其它 时间点上信号没有定义。 信号f(t)中: t连续,f连续——>连续信号(模拟信号) t离散,f离散——>离散信号 3 周期信号:存在T,使得等式f(t+T)=f(t)对于任意时 间t 都成立。
冲激信号的另外一种理解:
0 单位冲激平移
0
t0
t
(2)冲激函数的性质
1偶函数 2 积分 3 筛选
(t ) ( t )
例:在t 0点连续的信号 ( t ) f 强度为f(0)的冲激函数 则f ( t ) ( t ) f (0) (t )
f (t ) (t )
f(t)
6 标量乘法:
f (t ) a f (t )
x
例:已知 f(t)如下图所示,求f(1-2t)的波形。
f(t) 1 t -1 1
分析: f(t) 平移 f(t+1)
f(t+1) 反褶 f(-t+1)
f(-t+1) 尺度 f(-2t+1)
例:已知 f(t)如下图所示,求f(1-2t)的波形。 分析: f(t) 平移 f(t+1)
是指同一瞬时两信号之值对应相加所构成的"和信号"
y
f1(t) t x
y f2(t) y f1(t)+f2(t)
t x
tx
2.信号的乘除 ( t ) f 1 ( t ) f 2 ( t ) f
Sin(t)/t
y
O
t
1/t
O
t
3 平移
f (t ) f (t t0 ), (t0 0右移,t0 0左移)
-1 f(t) 1 t 1
f(t+1) 反褶 f(-t+1) f(-t+1) 尺度 f(-2t+1)
f(t) 1 t -2 -1 1
f(t) 1 t -1 1
f(-t+1)
f(t) 1 t -1 1 2 f(-2t+1)
2
f(t+1)
例:已知 f(t)如下图所示,求f(1-2t)的波形. f(-2(t-1/2)) 分析: f(t) 反褶 f(-t) f(-t) 尺度 f(-2t) f(t) 平移 f(-2(t-1/2)1)
3.表示定义域 例:画出f(t-2)(t-2)的波形 f(t)
f(t-2) (t-2)
1
1
-1 0 1 t
0
1
2
t
二 冲激函数 (1)冲激函数定义 •连续时间单位冲激信号: 持续时间无穷小,瞬间 幅度无穷大,涵盖面积恒为1的一种理想信号
0, t 0 ( t ) 0, t 0 ( t ) dt 1
非周期信号:不存在T,使……
4 能量信号:总能量有限的信号。
功率信号:平均功率有限且非零的信号。
瞬时功率:p( t ) f ( t )
t2 t1
2
2
时段总能量: p(t )dt
t2
t1
f (t ) dt
t2 1 t2 t1 t 1
时段平均功率:
1 t2 t1
t2
t1
p(t )dt
重要的专业基础课程, 主要讨论信号的分析方法,线性非时变系统对信 号的各种求解方法,以及一些工程应用中非常重要的 概念、理论和方法。
课程目标
掌握基本的信号分析的理论和方法, 掌握线性非时变系统的各种描述方法, 掌握线性非时变系统的时域和频域分析方法, 掌握有关系统的稳定性、频响、因果性等工程应用 中的一些重要结论。
教材
徐天成等编,信号与系统,电子工业出版
社,第3版
课程情况
教学:64学时 考试:期末考试70%, 平时成绩30%(出勤、作业)
先修课程
较强的数学背景,涉及到线性微分方程、复变函
数、积分变换、离散数学等多门数学课程
电路分析
后续课程
数字信号处理、图象处理、网络理论、通信理 论、控制理论等课程
课程地位
f ( 0)
3 筛选:f(t)在t0点连续
(t)
(1) f(0) 0
f(t) t
例: 2 ( t 8) ( t 4)dt
2 ( t 4) ( t 8)dt
例1:写出所示信号的时域表达式f(t),并画出f(t)的导数的波形。
f(t) (1)
4
例1:问信号f(-t+2)波形? 例2:一信号f(t-2),那么它的反褶信号是? 反褶是将信号中的 t 换为 -t 例3:问信号f(-t+2)波形是f(-t)如何平移得到?
5 尺度变换:
y
f (t )
f (at )
f(2t)
f(t)
f(t/2)
x
例:
f(t-2) t
-1 2 -0.5 1
t
y
af(t)
一
阶跃函数
1. 定义
(t)
0 ( t 0) (t ) 1 ( t 0)
1
0
t
用 (t ) 来描述开关的动作 t = 0合闸 u(t) = E (t )
E
K
u(t)
E(t )
u(t)
2. 单位阶跃函数的延迟
(t-t0)
1
0
t0
t
0 ( t t 0 ) (t t0 ) 1 ( t t 0 )