高中数学必修3(人教B版)阶段性综合评估检测
高中数学 模块综合测评1(含解析)新人教B版必修第三册-新人教B版高一必修第三册数学试题

模块综合测评(一)(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知角α的终边过点P (-4m,3m )(m ≠0),则2sin α+cos α的值是( ) A .1或-1 B .25或-25C .1或-25D .-1或25B [当m >0时,2sin α+cos α=2×35+⎝⎛⎭⎫-45=25; 当m <0时,2sin α+cos α=2×⎝⎛⎭⎫-35+45=-25.] 2.已知向量a =(cos 75°,sin 75°),b =(cos 15°,sin 15°),则|a -b |的值为( ) A .12B .1C .2D .3B [如图,将向量a ,b 的起点都移到原点,即a =OA →,b =OB →,则|a -b |=|BA →|且∠xOA =75°,∠xOB =15°,于是∠AOB =60°,又因|a |=|b |=1,则△AOB 为正三角形,从而|BA →|=|a -b |=1.]3.函数f (x )=sin(2x +φ)(0<φ<π)的图像如图所示,为了得到g (x )=sin 2x 的图像,可将f (x )的图像( )A .向右平移π6个单位B .向右平移π12个单位C .向左平移π12个单位D .向左平移π6个单位A [因为f (x )=sin(2x +φ)(0<φ<π),函数图像过点⎝⎛⎭⎫7π12,-1,所以-1=sin ⎝⎛⎭⎫7π6+φ⇒φ=π3, 因此函数f (x )=sin ⎝⎛⎭⎫2x +π3的图像向右平移π6个单位得到函数g (x )=sin 2x 的图像,故选A .] 4.已知函数f (x )=(1+cos 2x )sin 2x ,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π2 的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数D [f (x )=(1+cos 2x )1-cos 2x 2=12(1-cos 22x )=12-12×1+cos 4x 2=14-14cos 4x ,所以T =2π4=π2,f (-x )=f (x ),故选D .]5.如图所示是曾经在召开的国际数学家大会的会标,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是125,则sin 2θ-cos 2θ的值等于( )A .1B .-2425C .725D .-725D [依题意可知拼图中的每个直角三角形的长直角边长cos θ,短直角边为sin θ,小正方形的边长为cos θ-sin θ,因小正方形的面积是125,即(cos θ-sin θ)2=125,得cos θ=45,sin θ=35.即sin 2θ-cos 2θ=-725.]6.已知|p |=22,|q |=3,p ,q 的夹角为π4,如图,若AB →=5p +2q ,AC →=p -3q ,D 为BC的中点,则|AD →|为( )A .152B .152C .7D .18A [因为AD →=12(AC →+AB →)=12(6p -q ),所以|AD →|=|AD →|2=12(6p -q )2=1236p 2-12p·q +q 2=1236×(22)2-12×22×3×cos π4+32=152.]7.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图像( ) A .关于点⎝⎛⎭⎫π12,0对称 B .关于点⎝⎛⎭⎫π6,0对称 C .关于直线x =π12对称D .关于直线x =π3对称C [因为T =2πω=π,所以ω=2,于是f (x )=sin ⎝⎛⎭⎫2x +π3,因为f (x )在对称轴上取到最值, 所以f ⎝⎛⎭⎫π12=sin ⎝⎛⎭⎫2×π12+π3=1≠0,A 不对; f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫2×π6+π3≠0,B 不对;又因为f ⎝⎛⎭⎫π12=sin ⎝⎛⎭⎫2×π12+π3=1,C 符合题意;f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2×π3+π3≠±1,D 不对.] 8.如图所示,半圆的直径AB =4,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值是( )A .2B .0C .-1D .-2D [由平行四边形法则得P A →+PB →=2PO →,故(P A →+PB →)·PC →=2PO →·PC →,又|PC →|=2-|PO →|,且PO →,PC →反向,设|PO →|=t (0≤t ≤2), 则(P A →+PB →)·PC →=2PO →·PC →=-2t (2-t )=2(t 2-2t )=2[(t -1)2-1]. 因为0≤t ≤2,所以当t =1时,(P A →+PB →)·PC →有最小值,最小值为-2.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知|a |=1,|b |=2,a =λb ,λ∈R ,则|a -b |可以为( ) A .0 B .1 C .2D .3BD [由a =λb 可知:a ∥b ,即a 与b 夹角为0或π,|a -b |2=a 2+b 2-2|a |·|b |·cos 0=|a |2+|b |2-2|a |·|b |=1+4-4=1或|a -b |2=a 2+b 2-2|a |·|b |cos π=|a |2+|b |2+2|a |·|b |=1+4+4=9,所以|a -b |=1或3.]10.下列选项中,值为14的是( )A .cos 72°cos 36°B .sinπ12sin 5π12C .1sin 50°+3cos 50°D .13-23cos 215°AB [对于A ,cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14,故A 正确;对于B ,sinπ12sin 5π12=sin π12cos π12=12·2sin π12cos π12=12sin π6=14,故B 正确; 对于C ,原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝⎛⎭⎫32sin 50°+12cos 50°12sin 100°=2sin 80°12sin 100°=2sin 80°12sin 80°=4,故C 错误;对于D ,13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36,故D 错误.]11.△ABC 中,AB →=c ,BC →=a ,CA →=b ,在下列命题中,是真命题的有( ) A .若a ·b >0,则△ABC 为锐角三角形 B .若a ·b =0,则△ABC 为直角三角形 C .若a ·b =c ·b ,则△ABC 为等腰三角形 D .若c ·a +c 2=0,则△ABC 为直角三角形 BCD [如图所示△ABC 中,AB →=c ,BC →=a ,CA →=b ,①若a ·b >0,则∠BCA 是钝角,△ABC 是钝角三角形,A 错误; ②若a ·b =0,则BC →⊥CA →,△ABC 为直角三角形,B 正确; ③若a ·b =c ·b ,b ·(a -c )=0,CA →·(BC →-AB →)=0,CA →·(BC →+BA →)=0,取AC 中点D ,则CA →·2BD →=0,所以BA =BC ,即△ABC 为等腰三角形,C 正确;④因为c ·a +c 2=AB →·BC →+AB →2=AB →·(BC →+AB →)=0,所以AB →·AC →=0,所以AB →⊥AC →,即D 正确.故选BCD .]12.对于函数f (x )=12cos ⎝⎛⎭⎫2x -π2,给出下列结论,正确的是( ) A .函数f (x )的最小正周期为2πB .函数f (x )在⎣⎡⎦⎤π6,π2上的值域是⎣⎡⎦⎤34,12 C .函数f (x )在⎣⎡⎦⎤π4,3π4上是减函数 D .函数f (x )的图像关于点⎝⎛⎭⎫-π2,0对称 CD [由诱导公式可得:f (x )=12cos ⎝⎛⎭⎫2x -π2=12sin 2x ,所以T =2πω=2π2=π≠2π,A 错误;若x ∈⎣⎡⎦⎤π6,π2,则2x ∈⎣⎡⎦⎤π3,π,12sin 2x ∈⎣⎡⎦⎤0,12,故函数f (x )在⎣⎡⎦⎤π6,π2上的值域是⎣⎡⎦⎤0,12,B 错误;令π2+2k π≤2x ≤3π2+2k π(k ∈Z ),即π4+k π≤x ≤3π4+k π(k ∈Z ),函数f (x )在⎣⎡⎦⎤π4+k π,3π4+k π(k ∈Z )上单调递减,当k =0时,函数f (x )在⎣⎡⎦⎤π4,3π4上是减函数,所以C 正确;令2x =k π(k ∈Z ),则x =k π2(k ∈Z ),函数f (x )=12sin 2x 的对称中心为⎝⎛⎭⎫k π2,0(k ∈Z ),当k =-1时,函数f (x )的图像关于点⎝⎛⎭⎫-π2,0对称,故D 正确.] 三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ(θ为锐角),且a ∥b ,则tan θ=________. 1[因为a ∥b ,所以(1-sin θ)(1+sin θ)-12=0.所以cos 2θ=12,因为θ为锐角,所以cos θ=22,所以θ=π4, 所以tan θ=1.]14.已知A (1,2),B (3,4),C (-2,2),D (-3,5),则向量AB →在CD →上的投影的数量为________.2105[AB →=(2,2),CD →=(-1,3). 所以AB →在CD →上的投影的数量为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=2×(-1)+2×3(-1)2+32=410=2105.] 15.函数y =cos 2x -4sin x 的最小值为________;最大值为________.(本题第一空2分,第二空3分)-4 4[y =cos 2x -4sin x =1-sin 2x -4sin x =-(sin x +2)2+5, 因为sin x ∈[-1,1],所以当sin x =-1时,y max =-1+5=4; 当sin x =1时,y min =-9+5=-4.]16.若函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫0<ω<π2,|φ|<π2的部分图像如图所示,A (0,3),C (2,0),并且AB ∥x 轴,则cos ∠ACB 的值为________.5714[由已知f (0)=2sin φ=3,又|φ|<π2, 所以φ=π3,所以f (x )=2sin ⎝⎛⎭⎫ωx +π3, 由f (2)=0,即2sin ⎝⎛⎭⎫2ω+π3=0, 所以2ω+π3=2k π+π,k ∈Z ,解得ω=k π+π3,k ∈Z ,而0<ω<π2,所以ω=π3,所以f (x )=2sin ⎝⎛⎭⎫π3x +π3,令f (x )=3,得π3x +π3=2k π+π3或π3x +π3=2k π+2π3,k ∈Z ,所以x =6k 或x =6k +1,由题干图可知,B (1,3). 所以CA →=(-2,3),CB →=(-1,3), 所以|CA →|=7,|CB →|=2,所以cos ∠ACB =CA →·CB →|CA →||CB →|=527=5714.]四、解答题(本大题共6小题,共70分. 解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知向量a =⎝⎛⎭⎫sin x ,32,b =(cos x ,-1). (1)当a ∥b 时,求2cos 2x -sin 2x 的值; (2)求f (x )=(a +b )·b 在⎣⎡⎦⎤-π2 ,0上的最大值. [解] (1)因为a ∥b ,所以32cos x +sin x =0,所以tan x =-32,2cos 2x -sin 2x =2cos 2x -2sin x cos x sin 2x +cos 2x =2-2tan x 1+tan 2x =2013.(2)f (x )=(a +b )·b =22sin ⎝⎛⎭⎫2x +π4. 因为-π2≤x ≤0,所以-3π4≤2x +π4≤π4,所以-1≤sin ⎝⎛⎭⎫2x +π4≤22, 所以-22≤f (x )≤12, 所以f (x )max =12.18.(本小题满分12分)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥B . [解] (1)因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0,因此tan(α+β)=2.(2)由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=(sin β+cos β)2+(4cos β-4sin β)2=17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2. (3)证明:由tan αtan β=16得4cos αsin β=sin α4cos β, 所以a ∥B .19.(本小题满分12分)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝⎛⎭⎫0,π2. (1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2 ,求cos φ的值.[解] (1)因为a·b =0,所以a·b =sin θ-2cos θ=0, 即sin θ=2cos θ.又因为sin 2θ+cos 2θ=1, 所以4cos 2θ+cos 2θ=1, 即cos 2θ=15,所以sin 2θ=45.又θ∈⎝⎛⎭⎫0,π2,所以sin θ=255,cos θ=55.(2)因为5cos(θ-φ)=5(cos θcos φ+sin θsin φ)=5cos φ+25sin φ=35cos φ, 所以cos φ=sin φ.所以cos 2φ=sin 2φ=1-cos 2φ,即cos 2φ=12.又因为0<φ<π2,所以cos φ=22.20.(本小题满分12分)已知函数f (x )=sin(π-ωx )cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)将函数y =f (x )的图像上各点的横坐标缩短到原来的12 ,纵坐标不变,得到函数y =g (x )的图像,求函数g (x )在区间⎣⎡⎦⎤0,π16上的最小值. [解] (1)因为f (x )=sin(π-ωx )cos ωx +cos 2ωx ,所以f (x )=sin ωx cos ωx +1+cos 2ωx 2=12sin 2ωx +12cos 2ωx +12=22sin ⎝⎛⎭⎫2ωx +π4+12. 由于ω>0,依题意得2π2ω=π,所以ω=1.(2)由(1)知f (x )=22sin ⎝⎛⎭⎫2x +π4+12, 所以g (x )=f (2x )=22sin ⎝⎛⎭⎫4x +π4+12. 当0≤x ≤π16时,π4≤4x +π4≤π2,所以22≤sin ⎝⎛⎭⎫4x +π4≤1. 因此1≤g (x )≤1+22.故g (x )在区间⎣⎡⎦⎤0,π16上的最小值为1. 21.(本小题满分12分)已知函数f (x )=4cos 4x -2cos 2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x .(1)求f ⎝⎛⎭⎫-1112 π的值; (2)当x ∈⎣⎡⎭⎫0,π4时,求g (x )=12f (x )+sin 2x 的最大值和最小值. [解] (1)f (x )=(1+cos 2x )2-2cos 2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x =cos 22x sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x =2cos 22x sin ⎝⎛⎭⎫π2+2x =2cos 22x cos 2x=2cos 2x , 所以f ⎝⎛⎭⎫-11π12=2cos ⎝⎛⎭⎫-11π6=2cos π6= 3. (2)g (x )=cos 2x +sin 2x =2sin ⎝⎛⎭⎫2x +π4. 因为x ∈⎣⎡⎦⎤0,π4, 所以2x +π4∈⎣⎡⎭⎫π4,3π4. 所以当x =π8时,g (x )max =2,当x =0时,g (x )min =1. 22.(本小题满分12分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255 . (1)求cos(α-β)的值;(2)若0<α<π2 ,-π2<β<0,且sin β=-513,求sin α. [解] (1)因为|a |=1,|b |=1,|a -b |2=|a |2-2a·b +|b |2=|a |2+|b |2-2(cos αcos β+sin αsin β)=1+1-2cos(α-β), |a -b |2=⎝⎛⎭⎫2552=45, 所以2-2cos(α-β)=45,得cos(α-β)=35. (2)因为-π2<β<0<α<π2, 所以0<α-β<π. 由cos(α-β)=35得sin(α-β)=45,由sin β=-513得cos β=1213.所以sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=45×1213+35×⎝⎛⎭⎫-513=3365.。
2020新课程同步人教B版高中数学必修第三册新学案课时跟踪检测(一)+角的推广

课时跟踪检测(一)角的推广A级——学考水平达标练1.(多选题)以下说法,其中正确的有()A.-75°是第四象限角B.265°是第三象限角C.475°是第二象限角D.-315°是第一象限角解析:选ABCD由终边相同角的概念知:A、B、C、D都正确.2.将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是()A.-165°+(-2)×360°B.195°+(-3)×360°C.195°+(-2)×360°D.165°+(-3)×360°解析:选B-885°=195°+(-3)×360°,0°≤195°<360°,故选B.3.在0°≤α<360°中,与-510°角的终边相同的角为()A.150°B.210°C.30°D.330°解析:选B与-510°角终边相同的角可表示为β=-510°+k·360°,k∈Z.当k=2时,β=210°.4.若角α的终边在y轴的负半轴上,则角α-150°的终边在()A.第一象限B.第二象限C.y轴的正半轴上D.x轴的负半轴上解析:选B因为角α的终边在y轴的负半轴上,所以α=k·360°+270°(k∈Z),所以α-150°=k·360°+270°-150°=k·360°+120°(k∈Z),所以角α-150°的终边在第二象限.故选B.5.下列说法正确的是()A.三角形的内角一定是第一、二象限角B.钝角不一定是第二象限角C.终边相同的角之间相差180°的整数倍D.钟表的时针旋转而成的角是负角解析:选D A错,如90°既不是第一象限角,也不是第二象限角;B错,钝角在90°到180°之间,是第二象限角;C错,终边相同的角之间相差360°的整数倍;D正确,钟表的时针是顺时针旋转,故是负角.6.12点过14小时的时候,时钟分针与时针的夹角是________.解析:时钟上每个大刻度为30°,12点过14小时,分针转过-90°,时针转过-7.5°,故时针与分针的夹角为82.5°.答案:82.5°7.已知锐角α,它的10倍与它本身的终边相同,则角α=________.解析:与角α终边相同的角连同角α在内可表示为{β|β=α+k·360°,k∈Z},因为锐角α的10倍角的终边与其终边相同,所以10α=α+k·360°,k∈Z,即α=k·40°,k∈Z.又α为锐角,所以α=40°或80°.答案:40°或80°8.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B=______________________.解析:当k=-1时,α=-126°;当k=0时,α=-36°;当k=1时,α=54°;当k=2时,α=144°.∴A∩B={-126°,-36°,54°,144°}.答案:{-126°,-36°,54°,144°}9.已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,请作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.解:作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角.(2)由图②可知:855°是第二象限角.(3)由图③可知:-510°是第三象限角.10.写出图中阴影部分(不含边界)表示的角的集合.解:在-180°~180°内落在阴影部分的角的集合为大于-45°且小于45°,所以终边落在阴影部分(不含边界)的角的集合为{α|-45°+k·360°<α<45°+k·360°,k∈Z}.B级——高考水平高分练1.若α=k·180°+45°(k∈Z),则α在()A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限解析:选A当k=2m+1(m∈Z)时,α=2m·180°+225°=m·360°+225°,故α为第三象限角;当k=2m(m∈Z)时,α=m·360°+45°,故α为第一象限角.2.若α与β终边相同,则α-β的终边落在()A.x轴的非负半轴上B.x轴的非正半轴上C.y轴的非负半轴上D.y轴的非正半轴上解析:选A∵α=β+k·360°,k∈Z,∴α-β=k·360°,k∈Z,∴其终边在x轴的非负半轴上.3.若角α和β的终边满足下列位置关系,试写出α和β的关系式:(1)重合:________________;(2)关于x轴对称:________________.解析:根据终边相同的角的概念,数形结合可得:(1)α=k·360°+β(k∈Z),(2)α=k·360°-β(k∈Z).答案:(1)α=k·360°+β(k∈Z)(2)α=k·360°-β(k∈Z)4.如图所示,写出终边落在直线y=3x上的角的集合(用0°到360°间的角表示).解:终边落在y=3x(x≥0)上的角的集合是S1={α|α=60°+k·360°,k∈Z},终边落在y=3x(x≤0)上的角的集合是S2={α|α=240°+k·360°,k∈Z},于是终边落在y=3x上的角的集合是S={α|α=60°+k·360°,k∈Z}∪{α|α=240°+k·360°,k∈Z}={α|α=60°+2k·180°,k∈Z}∪{α|α=60°+(2k+1)·180°,k∈Z}={α|α=60°+n·180°,n∈Z}.5.如图,半径为1的圆的圆心位于坐标原点,点P 从点A ⎝⎛⎭⎫22,22出发,依逆时针方向等速沿单位圆周旋转.已知P 在1秒钟内转过的角度为θ(0°<θ<180°),经过2秒钟到达第三象限,经过14秒钟后又恰好回到出发点A .求θ,并判断θ所在象限.解:根据题意知,14秒钟后,点P 在角14θ+45°的终边上,∴45°+k ·360°=14θ+45°,k ∈Z ,即θ=k ·180°7,k ∈Z . 又180°<2θ+45°<270°,即67.5°<θ<112.5°,∴67.5°<k ·180°7<112.5°,k ∈Z , ∴k =3或k =4,∴所求θ的值为540°7或720°7. ∵0°<540°7<90°,90°<720°7<180°, ∴θ在第一象限或第二象限.。
最新人教版高中数学必修三测试题及答案全套

最新人教版高中数学必修三测试题及答案全套阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2解析:选B当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为()A.17 B.19C.21 D.23解析:选C第一次循环,i=3,S=9,i=2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环,输出S=21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果最小是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63.8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.9.执行如图所示的程序框图,输出的结果为()A.55 B.89C.144 D.233解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y =3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y =13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x =34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20 D.35解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,第一次循环:v=4,i=1;第二次循环:v=9,i=0;第三次循环:v=18,i=-1.结束循环,输出当前v的值18.故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51. 答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1.答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.)15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序.解:(1)①k<101?(k<=100?)②S=S+1k. (2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.解:程序框图如图所示:18.(本小题满分14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的( ) A .有穷性 B .确定性 C .普遍性 D .不唯一性 答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .3B .11C .38D .123解析:选B 根据框图可知第一步的运算为:a =1<10,满足条件,可以得到a =12+2=3,又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21C.25 D.27解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7).答案:53104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y PRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.②x =3 y =4 y =x PRINT x ,yEND解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x 6+x 5+x 4+x 3+x 2+x +1,当x =2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S =0i =0WHILE i ≤6S =S +2^i i =i +1WEND PRINT S END阶段质量检测(二)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6.10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12.答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100, x乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定. 16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a ×0.5, 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是() A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:选D由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4 解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:选D因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,①也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,①正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,①正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:选D运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株. (1)列出频率分布表; (2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几? 解:(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, ∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x 2i =280,∑i =17x i y i =3 487, (1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×62≈4.75. a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).阶段质量检测(三)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件D .必然事件解析:选B 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.2.已知集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B .12C.13D .16解析:选C 从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P =26=13.3.在区间[-3,3]上任取一个实数,所得实数是不等式x 2+x -2≤0的解的概率为( ) A.16 B .13C.12D .23解析:选C 由x 2+x -2≤0,得-2≤x ≤1, 所求概率为1-(-2)3-(-3)=12.4.在正方体ABCD A 1B 1C 1D 1中随机取点,则点落在四棱锥O ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13 B .16C.12D .14解析:选B 设正方体的体积为V ,则四棱锥O ABCD 的体积为V6,所求概率为V 6V =16.5.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 子集的概率是( ) A.35 B .25C.14D .18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.6.(全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19 B .29C.13D .49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有⎩⎪⎨⎪⎧m =1n =1,⎩⎪⎨⎪⎧ m =1n =2,⎩⎪⎨⎪⎧ m =1n =3,⎩⎪⎨⎪⎧ m =2n =1,⎩⎪⎨⎪⎧ m =2n =2,⎩⎪⎨⎪⎧ m =2n =3,⎩⎪⎨⎪⎧ m =3n =1,⎩⎪⎨⎪⎧m =3n =2,共8种,故概率为29.8.甲、乙、丙三人在3天节假日中值班,每人值班1天,则甲排在乙的前面值班的概率是( ) A.16 B .14C.13 D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲,乙,丙;甲,丙,乙;丙,甲,乙;丙,乙,甲;乙,甲,丙;乙,丙,甲共6种,其中符合题意的有2种,故所求概率为13.9.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个卡片,从中无放回...地每次抽一张卡片,共抽2次,则取得两张卡片的编号和不小于...14的概率为( )A.128 B .156C.356D .114 解析:选D 从中无放回地取2次,所取号码共有56种,其中和不小于14的有4种,分别是(6,8),(8,6),(7,8),(8,7),故所求概率为456=114.10.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各。
2019年人教版高中数学必修三综合测试题(含答案)

必修3综合模拟测试卷A(含答案)一、选择题:(本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、用冒泡排序算法对无序列数据进行从小到大排序,则最先沉到最右边的数是A、最大数B、最小数C、既不最大也不最小D、不确定2、甲、乙、丙三名同学站成一排,甲站在中间的概率是A、16B、12C、13D、233、某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是A、6,12,18B、7,11,19C、6,13,17D、7,12,174、甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是A、甲B、乙C、甲、乙相同D、不能确定5、从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是偶数的概率是A、16B、C、13D、6、如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为A 、34B 、38C 、14D 、187、阅读下列程序:输入x ;if x <0, then y :=32x π+;else if x >0, then y :=52x π-+;else y :=0; 输出 y .如果输入x =-2,则输出结果y 为A 、3+πB 、3-πC 、π-5D 、-π-5 8、一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8180,则此射手的命中率是 A 、31 B 、32 C 、41 D 、529、根据下面的基本语句可知,输出的结果T 为 i:=1; T:=1;For i:=1 to 10 do; Begin T:=T+1;End 输出T开始 S :=0 i :=3 i :=i +1S :=S +ii >5 输出S结束是 否A 、10B 、11C 、55D 、56 10、在如图所示的算法流程图中,输出S 的值为 A 、11 B 、12 C 、13 D 、15二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 11、一个容量为20的样本数据,分组后,组距与频数如下:(]10,20,2;(]20,30, 3;(]30,40,4;(]40,50,5;(]50,60,4 ;(]60,70,2。
2024学年高中数学选择性必修第二册(人教B版2019)全册综合检测(Word练习)(全解全析)

全册综合检测(时间:120分钟满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知随机变量X 的分布列如下表,则P (|X -1|=1)=()X 012P141214A.18B.14C.38D.12解析:选D依题意,得P (|X -1|=1)=P (X =0)+P (X =2)=14+14=12.2.4名同学分别报名参加学校的手工、绘画、机器人设计三个校本课程,每人限报其中一个课程,不同报名方案的种数是()A .81B .64C .24D .16解析:选A ∵每名同学都有3种报名方案,∴四名同学共有3×3×3×3=81(种)报名方案.3.为调查某企业环境污染整治情况,得到了7组成对数据如下表所示:由上表中数据求得Y 关于x 的回归直线方程为Y ^=-0.475x +a ,据此计算样本点(2,5.2)处的残差(残差=实际值-预测值)为()A .-0.25B .0.25C .0.15D .-0.15解析:选D由题表中数据可得x =17(1+2+3+4+5+6+7)=4,y =17(6.1+5.2+4.5+4.7+3.8+3.4+3.1)=4.4.将样本中心(4,4.4)代入Y ^=-0.475x +a ^得a ^=6.3,Y ^=-0.475x +6.3.因此当x =2时,Y ^=-0.475×2+6.3=5.35,所以样本点(2,5.2)处的残差为5.2-5.35=-0.15.4.有甲、乙、丙、丁、戊五位同学排队,若丙在甲、乙的中间(可不相邻),则不同的排法有()A .20种B .40种C .60种D .80种解析:选B满足条件的排法可分步完成,第一步,从五个位置中任取三个位置,并将甲、乙、丙排入其中,有C35A22=20种方法,第二步,将丁、戊排入余下的两个位置,有A22=2种方法,由分步乘法计数原理可得共有40种排法.5.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是35和13,在这个问题已被正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为()A.4 15B.11 15C.2 11D.3 11解析:选D设事件A表示“甲能正确解答该问题”,事件B表示“乙能正确解答该问题”,事件C表示“这个问题被正确解答”,则P(A)=35,P(B)=13,故P(C)=P(AB)+P(A B)+P(AB)=35××13+35×13=1115.所以在这个问题已被正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为P=P(AB)P(C)=35×131115=311.6.流感病毒分为甲、乙、丙三型,甲型流感病毒最容易发生变异,流感大流行就是甲型流感病毒出现新亚型或旧亚型重现引起的.根据以往的临床记录,某种诊断甲型流感病毒的试验具有如下的效果:若以A表示事件“试验反应为阳性”,以C表示事件“被诊断者患有甲型流感”,则有P(A|C)=0.9,P(A|C)=0.9.现对自然人群进行普查,设被试验的人患有甲型流感的概率为0.005,即P(C)=0.005,则P(C|A)=()A.9 208B.19 218C.1 22D.7 108解析:选A因为P(A|C)=0.9,所以P(A|C)=1-P(A|C)=0.1.因为P(C)=0.005,所以P(C)=0.995.所以P(C|A)=P(AC)P(A)=P(A|C)·P(C)P(A|C)·P(C)+P(A|C)·P(C)=0.9×0.0050.9×0.005+0.1×0.995=9208.7.已知ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1,则P(ξ=1)=()A.1 11B.411C.611D.711解析:选C若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有C18C23对相交棱,因此P(ξ=0)=C18C23C212=8×366=411;若两条棱平行,则它们之间的距离为1或2,其中距离为2的共有6对,故P(ξ=2)=6C212=111,于是P(ξ=1)=1-P(ξ=0)-P(ξ=2)=1-411-111=611.8.若(x2+x+2y)5的展开式中x4y2的系数为M展开式中各项系数和为N,则M,N大小关系为()A.M>N B.M<NC.M=N D.无法确定解析:选B(x2+x+2y)5=[(x2+x)+2y]5,T k+1=C k5·(x2+x)5-k·(2y)k=2k·C k5(x2+x)5-k·y k.令k=2,则(x2+x)3的展开式的通项公式为T′k′+1=C k′3·(x2)3-k′·x k′=C k′3·x6-k′,令6-k′=4,得k′=2,所以M=22C25·C23=120.又N=27=128,所以M<N.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.一个不透明箱子中有大小形状均相同的2个红球,2个白球,从中不放回地任取2个球,每次取1个.记事件A i为“第i次取到的球是红球(i=1,2)”,事件B为“两次取到的球颜色相同”,事件C为“两次取到的球颜色不同”,则()A.A1与A2互斥B.P(A2)=12C.P(A1|C)=12D.A1与B相互独立解析:选BCD A1与A2可以同时发生,即两次取到的都是红球,则A1与A2不互斥,故A错误.箱子中有大小形状均相同的2个红球,2个白球,则P(A2)=2×1+2×24×3=12,故B正确.P(C)=2×2+2×24×3=23,P(A1C)=2×24×3=13,则P(A1|C)=P(A1C)P(C)=1323=12,故C正确.P(A1)=12,P(B)=1-P(C)=13,P(A1B)=2×14×3=16,则有P(A1)P(B)=P(A1B),所以A1与B相互独立,故D正确.10.已知随机变量X 的概率密度函数为φ(x )=12πa e-(x -b )22a 2(a >0,b >0),且φ(x )的极大值点为x =2a ,记f (k )=P (X <k ),g (k )=P (X >k +a ),则()A .X ~N (b ,a )B .X ~N (2a ,a 2)C .f (a )=g (2a )D .f (2a )+g (2a )=f (a )+g (a )解析:选BCD根据已知可得,μ=b ,σ=a .因为φ(x )的极大值点为x =2a ,所以有b =2a ,所以X ~N (2a ,a 2),故A 错误,B 正确.由A 分析可知,μ=2a .又f (a )=P (X <a ),g (2a )=P (X >2a +a )=P (X >3a ),根据正态分布的对称性,可知P (X <a )=P (X >3a ),所以f (a )=g (2a ),故C 正确.因为μ=2a ,所以f (2a )=P (X <2a )=12,g (a )=P (X >2a )=12.所以f (2a )+g (2a )=12+f (a )=f (a )+g (a ),故D 正确.11.已知(n ≥3,n ∈N +)的展开式中,第3项的二项式系数是第2项的二项式系数的3倍,则()A .n =7B .展开式中有理项有2项C .第4项为-358x54D .第3项二项式系数最大解析:选ABC 第3项的二项式系数是第2项的二项式系数的3倍,故有C 2n =3C 1n ,即n (n -1)2×1=3n ,化简整理得n 2-7n =0,解得n =7或n =0(舍),故A 正确.T r +1=C r 7(x )7-=C x 7-r 2x -r 4C x 14-3r 4.当r =2和r =6时,14-3r 4为整数,故当r =2和r =6时,展开式为有理项,故B 正确.T 4=C x 14-3×34=-358x 54,故C 正确.令f (r )=C r 7,根据二项式系数性质可知当r =3或r =4时,二项式系数C r7最大,即第4或第5项的二项式系数C r 7最大,故D 错误.12.某中学共有三栋女生宿舍楼,分别为1号楼、2号楼、3号楼,学校在本周安排了甲、乙、丙、丁、戊5名女教师去这三栋宿舍楼协助宿管阿姨值守,每栋宿舍楼至少安排一名教师,每名教师只能去其中一栋楼,则下列说法正确的是()A .共有300种不同的安排方法B.若其中1号楼需要有两名教师去,则共有60种不同的安排方法C.若甲、乙两名教师不能去同一栋宿舍楼,则共有114种不同的安排方法D.若学校新购入25个相同型号的灭火器,准备全部分配给这三栋女生宿舍楼作为应急使用,每栋宿舍楼至少6个,则共有15种不同的分配方法解析:选BC5名教师按1∶1∶3去到三栋楼有C35A33种方法;按1∶2∶2去到三栋楼有C25C23A22·A33种方法,因此不同的安排方法种数是C35A33+C25C23A22·A33=60+90=150,A错误;安排2名教师去1号楼,不同的安排方法种数是C25C23A22=60,B正确;甲、乙两名教师去同一栋宿舍楼,另3名教师去另两栋楼有C23A33种,另3名教师去三栋楼有C13A33种,则不同的安排方法种数是C23A33+C13A33=36,由选项A知,共有150种不同安排方法,所以甲、乙两名教师不能去同一栋宿舍楼,安排方法种数是150-36=114,C正确;每栋宿舍楼先放5个灭火器,再将余下10个灭火器排成一排,在9个间隙中插入2块板子,有C29=36种,D错误.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(1+x)(2-x)4的展开式中x2的系数为________.(用数字作答)解析:(1+x)(2-x)4=(2-x)4+x(2-x)4,所以展开式中x2的系数为C24·22-C14·23=-8.答案:-814.现有6个三好学生名额,计划分到三个班级,则恰有两个班分到三好学生名额的概率为________.解析:将6个三好学生名额分到三个班级,有3种类型:第一种是只有一个班分到名额,有3种情况,第二种是恰好有两个班分到名额,由隔板法知有C15C13=15种情况,第三种是三个班都分到了名额,由隔板法得有C25=10种情况,则恰有两个班分到三好学生名额的概率为15 28 .答案:15 2815.某种品牌手机的使用寿命ξ(单位:年)服从正态分布,且使用寿命不少于3年的概率为0.78,使用寿命不少于7年的概率为0.22.某人同时购买了3部该种品牌的手机,则在5年内这3部手机至少有2部手机能正常使用的概率为________.解析:由题意知P(ξ≥3)=0.78,P(ξ≥7)=0.22,所以P(ξ<3)=P(ξ>7)=0.22,所以正态分布曲线的对称轴为ξ=5,即P(ξ≤5)=12,即1部该种品牌的手机在5年内能正常使用的概率为12.所以这3部手机中至少有2部手机能正常使用的概率为C+C=12.答案:1216.一离散型随机变量X 的分布列为X 0123P0.1abc其中a ,b 为变数,c 为正常数,且当a =b ≠0时方差D (X )有最大值,则c 的值为________.解析:由题意得,a +b +c =0.9,E (X )=a +2b +3c =0.9+b +2c ,E (X 2)=a +4b +9c =0.9+3b +8c ,D (X )=E (X 2)-[E (X )]2=0.9+3b +8c -(0.9+b +2c )2=-b 2+(1.2-4c )b +0.09+4.4c -4c 2.∴当b =0.6-2c 时有最大值,此时1.2-4c +c =0.9,解得c =0.1.答案:0.1四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)(1)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n 的展开式中x 的系数为7,对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数;(2)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求b a.解:(1)根据二项式定理可知,f (x )=(1+x )m +(1+x )n 的展开式的通项为T r +1=C r m ×1m -r×x r +C r n ×1n -r ×x r =(C r m +C r n )x r ,r 0,1,2,…,min {m ,n }.根据题意,得C 1m +C 1n =7,即m +n =7,①f (x )中的x 2的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n =7-m ,代入上式得x 2的系数为m 2-7m +21+354,故当m =3或m =4时,x 2的系数最小.当m =3,n =4时,x 3的系数为C 33+C 34=5;当m =4,n =3时,x 3的系数为C 34+C 33=5.故当x 2系数最小时,x 3的系数为5.(2)由题意可得a =C 48=70.(1+2x )8展开式的通项为T r +1=C r 8×18-r ×(2x )r =2r ·C r 8·x r .设第r +1项的系数最大,r 8·2r ≥C r +18·2r +1,r 8·2r ≥C r -18·2r -1,≥5,≤6.又r ∈N +,所以r =5或6,此时b =25×C 58=1792,所以ba=179270=1285.18.(12分)中国国家流感中心3月2日发布的2023年第8周流感检测周报称:本周南、北方省份流感病毒检测阳性率继续上升.某医院用甲、乙两种疗法治疗流感患者,为了解两种治疗方案的效果,现随机抽取105名患者,调查每人的恢复期,得到如下列联表.(注:恢复期大于7天为恢复期长)恢复期长恢复期短甲1045乙2030(1)是否有95%的把握认为恢复期长短与治疗方案有关;(2)现按分层随机抽样的方法,从采用乙治疗方案的样本中随机抽取10人,从这10人中再随机抽取3人,求其中恢复期长的人数X的分布列和均值;(3)假设甲方案治疗的恢复期为Y,统计发现Y近似服从正态分布N(5,1),若某患者采用甲方案治疗,则7天后是否有大于95%的把握恢复健康?请说明理由.附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)P(χ2≥x0)0.10.050.0100.001 x0 2.706 3.841 6.63510.828若ξ~N(μ,σ2),则P(μ-σ<ξ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544(μ-3σ<ξ<μ+3σ)=0.9974.解:(1)由题意可得如下列联表:恢复期长恢复期短总计甲104555乙203050总计3075105因为χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=105×(10×30-45×20)255×50×30×75=33655≈6.11>3.841,所以有95%的把握认为恢复期长短与治疗方案有关.(2)由分层随机抽样得,抽取恢复期长的为4人,恢复期短的为6人.根据题意X的可能取值为0,1,2,3,则P(X=0)=C36C310=20120=16,P(X=1)=C14C26C310=60120=12,P(X=2)=C24C16C310=36120=310,P(X=3)=C34C310=4120=130,所以X的分布列为X0123P 1612310130E(X)=0×16+1×12+2×310+3×130=1.2.(3)因为Y~N(5,1),所以μ=5,σ=1.又因为P(5-2<Y<5+2)=0.9544,所以7天后有大于95%的把握恢复健康.19.(12分)为了解汉服体验店广告支出和销售额之间的关系,在洛阳洛邑古城附近抽取7家汉服体验店,得到了广告支出与销售额数据如下:体验店A B C D E F G广告支出/万元3468111516销售额/万元6101517233845对进入G体验店的400名游客进行统计得知,其中女性游客有280人,女性游客中体验汉服的有180人,男性游客中没有体验汉服的有80人.(1)请将下列2×2列联表补充完整,依据小概率值α=0.001的独立性检验,能否认为体验汉服与性别有关联?性别是否体验汉服总计体验汉服没有体验汉服女180280男80总计400(2)设广告支出为变量x(单位:万元),销售额为变量y(单位:万元),根据统计数据计算相关系数r,并据此说明可用线性回归模型拟合y与x的关系(若|r|>0.75,则线性相关程度很强,可用线性回归模型拟合);(3)建立y 关于x 的回归方程,并预测广告支出为18万元时的销售额(精确到0.1).参考数据及公式:错误!2i =727,错误!2i =4648,错误!i y i =1827,14≈3.74,10≈3.16,7≈2.64,解:(1)根据题意,列联表完成如下.性别是否体验汉服总计体验汉服没有体验汉服女180100280男4080120总计220180400根据列联表数据,经计算得χ2=400×(180×80-100×40)2280×120×220×180≈32.516>10.828=x 0.001.根据小概率值α=0.001的独立性检验,认为体验汉服与性别之间有关联,此推断犯错误的概率不超过0.001.(2)由数据可知,x =17(3+4+6+8+11+15+16)=9,y =17(6+10+15+17+23+38+45)=22,r =错误!=1827-7×9×22727-7×924648-7×222=441160·1260=44112014≈0.98.因为0.98>0.75,所以线性相关程度很强,可用线性回归模型拟合y 与x 的关系.(3)由数据及公式可得b ^=错误!=441160≈2.8,a ^=y -b ^x=22-2.8×9=-3.2,故y 关于x 的回归直线方程为y ^=2.8x -3.2.当x =18万元时,销售额预计为y ^=2.8×18-3.2=47.2万元.20.(12分)随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题.为了了解公众对“延迟退休”的态度,某校课外研究性学习小组对某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:年龄[20,25)[25,30)[30,35)[35,40)[40,45)人数45853年龄[45,50)[50,55)[55,60)[60,65)[65,70]人数67354年龄在[25,30),[55,60)的被调查者中赞成人数分别是3人和2人,现从这两组的被调查者中各随机选取2人,进行跟踪调查.(1)求年龄在[25,30)的被调查者中选取的2人都是赞成的概率;(2)求选中的4人中,至少有3人赞成的概率;(3)若选中的4人中,不赞成的人数为X,求随机变量X的分布列和数学期望.解:(1)设“年龄在[25,30)的被调查者中选取的2人都赞成”为事件A,所以P(A)=C23 C25=3 10 .(2)设“选中的4人中,至少有3人赞成”为事件B,所以P(B)=C23C12C11C25C23+C13C12C22C25C23+C23C22C25C23=12.(3)X的可能取值为0,1,2,3所以P(X=0)=C23C22C25C23=110,P(X=1)=C13C12C22+C23C12C11C25C23=25,P(X=2)=C22C22+C13C12C12C11C25C23=1330,P(X=3)=C22C12C11C25C23=115.所以X的分布列为X0123P110251330115E(X)=0×110+1×25+2×1330+3×115=2215.21.(12分)已知外形完全一样的某品牌电子笔6支装一盒,每盒中的电子笔次品最多一支,每盒电子笔有次品的概率是1 10 .(1)现有一盒电子笔,抽出两支来检测.①求抽出的两支均是正品的概率;②已知抽出的两支是正品,求剩余产品有次品的概率.(2)已知甲、乙两盒电子笔均有次品,由于某种原因将两盒笔完全随机的混合在了一起,现随机选3支电子笔进行检测,记ξ为选出的3支电子笔中次品的数目,求ξ的分布列和期望.解:(1)①记事件A :该盒有次品;事件B :抽出的两支均是正品,则P (A )=110,P (B |A )=C 25C 26=1015=23,P (B |A )=1,∴P (B )=P (A )P (B |A )+P (A )·P (B |A )=110×23+910×1=2930.②P (A |B )=P (A )P (B |A )P (B )=110×232930=229.(2)由题意知,两盒笔中共有10支正品,2支次品,∴ξ所有可能的取值为0,1,2,P (ξ=0)=C 310C 312=120220=611,P (ξ=1)=C 210C 12C 312=90220=922,P (ξ=2)=C 110C 22C 312=10220=122.∴ξ的分布列为E (ξ)=0×611+1×922+2×122=1122=12.22.(12分)一企业生产某种产品,通过加大技术创新投入降低了每件产品成本,为了调查年技术创新投入x (单位:千万元)对每件产品成本y (单位:元)的影响,对近10年的年技术创新投入x i 和每件产品成本y i (i =1,2,3,…,10)的数据进行分析,得到如图所示的散点图,并计算得x =6.8,y =70,错误!1x i3,错误!1x 2i =1.6,错误!y i x i=350.(1)根据散点图可知,可用函数模型y =b x +a 拟合y 与x 的关系,试建立y 关于x 的回归方程;(2)已知该产品的年销售额m (单位:千万元)与每件产品成本y 的关系为m =-y 210+2y +100.该企业的年投入成本除了年技术创新投入,还要投入其他成本10千万元,根据(1)的结果回答:当年技术创新投入为何值时,年利润的预报值最大?(注:年利润=年销售额-年投入成本)参考公式:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线方程y ^=b ^x +a ^的斜率和截距的最小二乘估计公式分别为b ^=错误!,a ^=y -b ^x .解:(1)令u =1x,则y 关于u 的回归直线方程为y ^=b ^u +a ^,则y =70,u =110错误!1x i =0.3,错误!2i =错误!1x 2i=1.6,错误!i y i =错误!y ix i=350.由题意可得b ^=错误!=350-2101.6-0.9=200,a ^=y -b ^u =70-200×0.3=10.所以y ^=200u +10.所以y 关于x 的回归方程为y ^=200x+10.(2)由(1)得y =200x +10可得x =200y -10,y >10.所以年利润M =m -x -10=-y 210+2y +100-200y -10-10=-(y -10)210+200y -10+100=-(y -10)210+100y -10+100y -10+100≤-33(y -10)210·100y -10·100y -10+100=-30+100=70,当且仅当(y -10)210=100y -10,即y =20时,年利润M 取得最大值,此时x =20020-10=20.所以当年技术创新投入为20千万元时,年利润的预报值最大。
高中数学第二章平面解析几何初步2.1~2.2阶段检测(三)(含解析)新人教B版必修2

高中数学第二章平面解析几何初步2.1~2.2阶段检测(三)(含解析)新人教B 版必修2对应学生用书P61(范围:2.1~2.2)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.斜率为2的直线的倾斜角α所在的范围是( ) A .0°<α<45° B.45°<α<90° C .90°<α<135° D.135°<α<180° 答案 B解析 因为斜率为1的直线的倾斜角是45°,斜率为2的直线的倾斜角大于45°,倾斜角大于90°且小于180°时,直线的斜率是负值,所以斜率为2的直线的倾斜角α的范围是45°<α<90°,故选B .2.在x 轴上的截距为2且倾斜角为60°的直线方程为( ) A .y =3x -2 3 B .y =3x +2 3 C .y =-3x -2 3 D .y =-3x +2 3 答案 A解析 由题可知直线的斜率k =ΔyΔx =tan60°=3,所以直线方程为y =3(x -2),即y =3x -23.3.若三点A(4,3),B(5,a),C(6,b)共线,则下列结论正确的是( ) A .2a -b =3 B .b -a =1 C .a =3,b =5 D .a -2b =3 答案 A解析 由k AB =k AC 可得2a -b =3,故选A .4.若实数m ,n 满足2m -n =1,则直线mx -3y +n =0必过定点( ) A .⎝ ⎛⎭⎪⎫2,13 B .⎝⎛⎭⎪⎫-2,13C .⎝ ⎛⎭⎪⎫2,-13D .⎝ ⎛⎭⎪⎫-2,-13 答案 D解析 由已知得n =2m -1,代入直线mx -3y +n =0得mx -3y +2m -1=0,即(x +2)m+(-3y -1)=0,由⎩⎪⎨⎪⎧x +2=0,-3y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =-13,所以此直线必过定点⎝⎛⎭⎪⎫-2,-13,故选D .5.设点A(-2,3),B(3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是( )A .⎝ ⎛⎦⎥⎤-∞,52∪⎣⎢⎡⎭⎪⎫43,+∞B .⎝ ⎛⎭⎪⎫-43,52C .⎣⎢⎡⎦⎥⎤-52,43 D .⎝ ⎛⎦⎥⎤-∞,-43∪⎣⎢⎡⎭⎪⎫52,+∞ 答案 B解析 直线ax +y +2=0过定点C(0,-2),k AC =-52,k BC =43.由图可知直线与线段没有交点时,斜率-a 的取值范围为-52<-a <43,解得a∈-43,52.6.和直线5x -4y +1=0关于x 轴对称的直线方程为( ) A .5x +4y +1=0 B .5x +4y -1=0 C .-5x +4y -1=0 D .-5x +4y +1=0 答案 A解析 设所求直线上的任一点为(x′,y′),则此点关于x 轴对称的点的坐标为(x′,-y′).因为点(x′,-y′)在直线5x -4y +1=0上,所以5x′+4y′+1=0,即所求直线方程为5x +4y +1=0.7.已知直线x =2及x =4与函数y =log 2x 图象的交点分别为A ,B ,与函数y =lg x 图象的交点分别为C ,D ,则直线AB 与CD( )A .平行B .垂直C .不确定D .相交 答案 D解析 易知A(2,1),B(4,2),原点O(0,0),∴k OA =k OB =12,∴直线AB 过原点,同理,C(2,lg 2),D(4,2lg 2),k OC =k OD =lg 22≠12,∴直线CD 过原点,且与AB 相交.8.过点M(1,-2)的直线与x 轴、y 轴分别交于P ,Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为( )A .2x +y =0B .2x -y -4=0C .x +2y +3=0D .x -2y -5=0 答案 B解析 设P(x 0,0),Q(0,y 0).∵M(1,-2)为线段PQ 的中点,∴x 0=2,y 0=-4,∴直线PQ 的方程为x 2+y-4=1,即2x -y -4=0.故选B .9.若三条直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n)到原点的距离的最小值为( )A . 5B . 6C .2 3D .2 5 答案 A解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2.把(1,2)代入mx +ny +5=0可得m +2n +5=0, ∴m=-5-2n ,∴点(m ,n)到原点的距离 d =m 2+n 2=5+2n2+n 2=5n +22+5≥5,当n =-2时等号成立,此时m=-1.∴点(m ,n)到原点的距离的最小值为5.故选A .10.点F(3m +3,0)到直线3x -3my =0的距离为( ) A . 3 B .3m C .3 D .3m 答案 A解析 由点到直线的距离公式得点F(3m +3,0)到直线3x -3my =0的距离为3·3m +33m +3=3.11.若直线l 经过点A(1,2),且在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .⎝⎛⎭⎪⎫-1,15 B .⎝⎛⎭⎪⎫-∞,12∪(1,+∞) C .(-∞,-1)∪⎝ ⎛⎭⎪⎫15,+∞D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 在平面直角坐标系中作出点A(1,2),B(-3,0),C(3,0),过点A ,B 作直线AB ,过点A ,C 作直线AC ,如图所示,则直线AB 在x 轴上的截距为-3,直线AC 在x 轴上的截距为3.因为k AB =2-01--3=12,k AC =2-01-3=-1,所以直线l 的斜率的取值范围为(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞.12.已知△ABC 的边AB 所在的直线方程是x +y -3=0,边AC 所在的直线方程是x -2y +3=0,边BC 所在的直线方程是2x -y -3=0.若△ABC 夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A .355B . 2C .322D . 5答案 B解析 联立直线方程,易得A(1,2),B(2,1).如图所示,当两条平行直线间的距离最小时,两平行直线分别过点A ,B ,又两平行直线的斜率为1,直线AB 的斜率为-1,所以线段AB 的长度就是过A ,B 两点的平行直线间的距离,易得|AB|=2,即两条平行直线间的距离的最小值是2.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知直线l 的倾斜角是直线y =x +1的倾斜角的2倍,且过定点P(3,3),则直线l 的方程为________.答案 x =3解析 直线y =x +1的斜率为1,倾斜角为45°.直线l 的倾斜角是已知直线y =x +1的倾斜角的2倍,所以直线l 的倾斜角为90°,直线l 的斜率不存在,所以直线l 的方程为x =3.14.直线x 3+y4=t 被两坐标轴截得的线段长度为1,则t =________.答案 ±15解析 直线与x ,y 轴的交点分别为(3t ,0)和(0,4t),所以线段长为3t2+4t2=1,解得t =±15.15.已知点A(2,4),B(6,-4),点P 在直线3x -4y +3=0上,若满足|PA|2+|PB|2=λ的点P 有且仅有1个,则实数λ的值为________.答案 58解析 设点P 的坐标为(a ,b).∵A(2,4),B(6,-4),∴|PA|2+|PB|2=[(a -2)2+(b -4)2]+[(a -6)2+(b +4)2]=λ,即2a 2+2b 2-16a +72=λ.又∵点P 在直线3x -4y +3=0上,∴3a-4b +3=0,∴509b 2-803b +90=λ.又∵满足|PA|2+|PB|2=λ的点P 有且仅有1个,∴Δ=⎝ ⎛⎭⎪⎫-8032-4×509×(90-λ)=0,解得λ=58.16.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则a 的值为________.答案 -12解析 因为y =|x -a|-1=⎩⎪⎨⎪⎧x -a -1,x≥a,-x +a -1,x<a ,所以该函数的大致图象如图所示.又直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则2a =-1,即a =-12.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知Rt△ABC 的顶点坐标A(-3,0),直角顶点B(-1,-22),顶点C 在x 轴上.(1)求点C 的坐标; (2)求斜边所在直线的方程.解 (1)解法一:依题意,Rt△ABC 的直角顶点坐标为B(-1,-22), ∴AB⊥BC ,∴k AB ·k BC =-1.又∵A(-3,0), ∴k AB =0+22-3--1=-2,∴k BC =-1k AB =22,∴边BC 所在的直线的方程为y +22=22(x +1),即x -2y -3=0. ∵直线BC 的方程为x -2y -3=0,点C 在x 轴上,由y =0,得x =3,即C(3,0). 解法二:设点C(c ,0),由已知可得k AB ·k BC =-1,即0+22-3--1·0+22c +1=-1,解得c =3,所以点C 的坐标为(3,0).(2)由B 为直角顶点,知AC 为直角三角形ABC 的斜边. ∵A(-3,0),C(3,0),∴斜边所在直线的方程为y =0.18.(本小题满分12分)点M(x 1,y 1)在函数y =-2x +8的图象上,当x 1∈[2,5]时,求y 1+1x 1+1的取值范围. 解y 1+1x 1+1=y 1--1x 1--1的几何意义是过M(x 1,y 1),N(-1,-1)两点的直线的斜率.点M 在直线y =-2x +8的线段AB 上运动,其中A(2,4),B(5,-2).∵k NA =53,k NB =-16,∴-16≤y 1+1x 1+1≤53,∴y 1+1x 1+1的取值范围为⎣⎢⎡⎦⎥⎤-16,53. 19.(本小题满分12分)已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0.(1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积S .解 (1)联立两直线方程⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,则两直线的交点为P(-2,2).∵直线x -2y -1=0的斜率为k 2=12,所求直线垂直于直线x -2y -1=0,那么所求直线的斜率k =-112=-2,∴所求直线方程为y -2=-2(x +2),即2x +y +2=0.(2)对于方程2x +y +2=0,令y =0则x =-1,则直线与x 轴交点坐标A(-1,0), 令x =0则y =-2,则直线与y 轴交点坐标B(0,-2), 直线l 与坐标轴围成的三角形为直角三角形AOB , ∴S=12|OA||OB|=12×1×2=1.20.(本小题满分12分)一条光线经过点P(2,3)射在直线l :x +y +1=0上,反射后经过点Q(1,1),求:(1)入射光线所在直线的方程; (2)这条光线从P 到Q 所经路线的长度.解 (1)设点Q′(x′,y′)为点Q 关于直线l 的对称点,QQ′交l 于点M .∵k l =-1,∴k QQ′=1,。
模块综合试卷(一)-人教B版高中数学必修3检测卷
模块综合试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.要完成下列两项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况.宜采用的抽样方法依次为()A.①简单随机抽样;②系统抽样B.①分层抽样;②简单随机抽样C.①系统抽样;②分层抽样D.①②都用分层抽样答案 B解析①中总体由差异明显的几部分构成,宜采用分层抽样;②中总体中的个数较少,样本容量较小,宜采用简单随机抽样.2.一个射手进行射击,记事件E1:“脱靶”,E2:“中靶”,E3:“中靶环数大于4”,E4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有()A.1对B.2对C.3对D.4对答案 B解析E1与E3,E1与E4均为互斥而不对立的事件.3.执行如图所示的程序框图,若输出的结果为3,则可输入的实数x值的个数为()A.1 B.2 C.3 D.4答案 C解析若x≤2,则x2-1=3,∴x=±2.若x>2,则log2x=3,∴x=8.4.一个电路板上装有甲、乙两根保险丝,甲保险丝熔断的概率为0.085,乙保险丝熔断的概率为0.074,两根同时熔断的概率为0.063,则至少有一根熔断的概率是( ) A .0.159 B .0.085 C .0.096 D .0.074 答案 C解析 设“甲保险丝熔断”为事件A ,“乙保险丝熔断”为事件B ,则A ∪B 表示“甲、乙至少有一根熔断”,所以P (A ∪B )=P (A )+P (B )-P (AB ) =0.085+0.074-0.063=0.096.5.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为( ) A.65 B.65C. 2 D .2 答案 D解析 ∵样本的平均数为1, 即15×(a +0+1+2+3)=1,∴a =-1. ∴样本方差s 2=15×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.6.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差 答案 C解析 由图知,甲的成绩稳定,方差较小.7.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5 C .5,8 D .8,8 答案 C解析 由于甲组中有5个数,比中位数小的有两个数为9,12,比中位数大的也有两个数24,27,所以10+x =15,x =5.又因为9+15+10+y +18+245=16.8,所以y =8,故选C.8.某调查机构调查了某地100个新生婴儿的体重,并根据所得数据画出了样本的频率分布直方图(如图所示),则新生婴儿的体重(单位:kg)在[3.2,4.0)的人数是( )A .30B .40C .50D .55 答案 B解析 频率分布直方图反映样本的频率分布,每个小矩形的面积等于样本数据落在相应区间上的频率,故新生婴儿的体重在[3.2,4.0)的人数为100×(0.4×0.625+0.4×0.375)=40. 9.阅读如图所示的程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( )A .S =2i -2B .S =2i -1C .S =2iD .S =2i +4 答案 C解析 当i =2时,S =2×2+1=5<10;当i =3时,仍然循环,排除D ;当i =4时,S =2×4+1=9<10;当i =5时,不满足S <10,即此时S ≥10,输出i .此时A 项求得S =2×5-2=8,B 项求得S =2×5-1=9,C 项求得S =2×5=10,故只有C 项满足条件.10.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽取容量为n 的样本,其中甲种产品有18件,则样本容量n 等于( ) A .54 B .90 C .45 D .126 答案 B解析 依题意有33+5+7×n =18,解得n =90,即样本容量为90.11.如图所示,分别以A ,B ,C 为圆心,在△ABC 内作半径为2的扇形(图中的阴影部分),在△ABC 内任取一点P ,如果点P 落在阴影内的概率为13,那么△ABC 的面积是________.答案 6π解析 由题意可知,阴影部分的扇形面积为一个以2为半径的半圆的面积,所以2πS △ABC =13,所以S △ABC =6π.12.下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其回归直线方程是y ^=-0.7x+a ^,则a ^等于( )A .10.5B .5.15C .5.2D .5.25 答案 D解析 由于回归直线必经过点(x ,y ),而x =52,y =72,∴72=-0.7×52+a ^,∴a ^=5.25. 二、填空题(本大题共4小题,每小题5分,共20分)13.已知样本数据x 1,x 2,…,x n 的平均数x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的平均数为________. 答案 11解析 1n [(2x 1+1)+(2x 2+1)+…+(2x n +1)]=2(x 1+x 2+…+x n )n+1=2×5+1=11.14.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为________. 答案715解析 总体平均数为16(5+6+7+8+9+10)=7.5,设事件A 表示“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个.事件A 包含的结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共7个.所以所求的概率为P (A )=715.15.集合A ={2,4,6,8,10},集合B ={1,3,5,7,9},在集合A 中任取一个元素m 和在集合B 中任取一个元素n ,则所取两数m >n 的概率是________. 答案 0.6解析 基本事件总数为5×5=25.当m =2时,n =1;当m =4时,n =1,3;当m =6时,n =1,3,5;当m =8时,n =1,3,5,7;当m =10时,n =1,3,5,7,9.共1+2+3+4+5=15(个).∴P =1525=0.6. 16.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________. 答案 13解析 基本事件总数为6,事件包含的基本事件个数为2,∴P =26=13.三、解答题(本大题共6小题,共70分)17.(10分)甲、乙两艘货轮都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机到达,试求两货轮中有一艘在泊位停靠时,另一艘货轮必须等待的概率. 解 设甲、乙两货轮到达泊位的时刻分别为x ,y . 则{ 0≤x ≤24,≤y ≤24,x -y |≤6.作出如图所示的区域.本题中,区域D 的面积S 1=242=576,区域d 的面积S 2=242-182=252. ∴P =区域d 的面积区域D 的面积=716.即两货轮中有一艘在泊位停靠时,另一货轮必须等待的概率为716.18.(12分)某校举行运动会,高二一班有男乒乓球运动员4名、女乒乓球运动员3名,现要选一男一女运动员组成混合双打组合代表本班参赛,试列出全部可能的结果,若某女乒乓球运动员为国家一级运动员,则她参赛的概率是多少?解 由于男生从4人中任意选取,女生从3人中任意选取,为了得到试验的全部结果,设男生为A ,B ,C ,D ,女生为1,2,3,用一个“数对”来表示随机选取的结果.如(A,1)表示:从男生中随机选取的是男生A ,从女生中随机选取的是女生1,可用列举法列出所有可能的结果.如下表所示,设“国家一级运动员参赛”为事件E .由上表可知,可能的结果总数是12.设该国家一级运动员为编号1,她参赛的可能事件有4个,故她参赛的概率为P (E )=412=13.19.(12分)一个包装箱内有6件产品,其中4件正品,2件次品.现随机抽出两件产品. (1)求恰好有一件次品的概率; (2)求都是正品的概率; (3)求抽到次品的概率.解 将6件产品编号,正品为a ,b ,c ,d ;次品为e ,f ,从6件产品中选2件,其包含的基本事件为ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15种. (1)设恰好有一件次品为事件A ,事件A 包含的基本事件为ae ,af ,be ,bf ,ce ,cf ,de ,df ,共有8种,则P (A )=815.(2)设都是正品为事件B ,事件B 包含的基本事件数为6,则P (B )=615=25.(3)设抽到次品为事件C ,事件C 与事件B 是对立事件,则P (C )=1-P (B )=1-25=35.20.(12分)已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0. (1)若a ,b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率; (2)若a ∈[2,6],b ∈[0,4],求方程没有实根的概率.解 (1)a ,b 是一枚骰子掷两次所得到的点数,总的基本事件(a ,b )共有36个. 设事件A 表示“方程有两正根”,则{Δ≥0,a -2>0,16-b 2>0,即{(a -2)2+b 2≥16,a >2,-4<b <4,则事件A 包含的基本事件有(6,1),(6,2),(6,3),(5,3),共4个, 故方程有两正根的概率为P (A )=436=19.(2)试验的全部结果构成的区域Ω={(a ,b )|2≤a ≤6,0≤b ≤4},其面积为S Ω=4×4=16. 设事件B 表示“方程无实根”,则事件B 的对应区域为{2≤a ≤6,0≤b ≤4,Δ<0,即{2≤a ≤6,0≤b ≤4,(a -2)2+b 2<16,如图所示,其面积S B =14×π×42=4π,故方程没有实根的概率为P (B )=4π16=π4.21.(12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(1)计算甲班的样本方差;(2)现从乙班10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.解 (1)x =158+162+163+168+168+170+171+179+179+18210=170(cm).甲班的样本方差s 2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2=57.2. (2)设“身高为176 cm 的同学被抽中”为事件A .从乙班10名同学中随机抽取两名身高不低于173 cm 的同学有:(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有4个基本事件:(181,176),(179,176),(178,176),(176,173).所以P (A )=410=25.22.(12分)假设关于某设备的使用年限x (年)和所支出的维修费用y (万元)有如下的统计资料:(1)画出散点图并判断是否线性相关; (2)如果线性相关,求回归直线方程;(3)估计使用年限为10年时,维修费用是多少? 解 (1)作散点图如下:由散点图可知是线性相关的. (2)列表如下:计算得:b ^=∑i =1nx i y i -n x y ∑i =1nx 2i -n x2=112.3-5×4×590-5×42=1.23,所以a ^=y -b ^x =5-1.23×4=0.08,即得回归直线方程y ^=1.23x +0.08.(3)把x =10代入回归直线方程y ^=1.23x +0.08, 得y =12.38,因此,估计使用10年维修费用是12.38万元.。
2021年高中数学 第二章 统计综合测试题(含解析)新人教B版必修3
2021年高中数学 第二章 统计综合测试题(含解析)新人教B 版必修3一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列哪种工作不能使用抽样方法进行( ) A .测定一批炮弹的射程B .测定海洋某一水域的某种微生物的含量C .高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D .检测某学校全体高三学生的身高和体重的情况 [答案] D[解析] 抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A 、B 、C 都是从总体中抽取部分个体进行检验,选项D 是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不能采取抽样的方法.故选D.2.高一·一班李明同学进行一项研究,他想得到全班同学的臂长数据,他应选择的最恰当的数据收集方法是( )A .做试验B .查阅资料C .设计调查问卷D .一一询问[答案] A[解析] 全班人数不是很多,所以做试验最恰当.3.设有一个回归方程为y ^=2-2.5x ,变量x 增加一个单位时,变量y ( ) A .平均增加1.5个单位 B .平均增加2个单位 C .平均减少2.5个单位D .平均减少2个单位 [答案] C[解析] 因为随变量x 增大,y 减小,x 、y 是负相关的,且b ^=-2.5,故选C. 4.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 且支出在[20,60)元的样本,其频率分布直方图如图所示,根据此图估计学生在课外读物方面的支出费用的中位数为( )元( )A .45B .3909C.4009D .46[答案] C [解析] 40+10×0.160.36=4009. 5.一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,按下述三种方法抽取:①将160人从1至160编上号,然后用白纸做成1~160号的签160个放入箱内拌匀,然后从中抽取20个签,与签号相同的20个人被选出;②将160人从1至160编上号,按编号顺序分成20组,每组8人,即1~8号,9~16号,…,153~160号.先从第1组中用抽签方法抽出k 号(1≤k ≤8),其余组的(k +8n )号(n =1、2、…、19)亦被抽出,如此抽取20人;③按20160=18的比例,从业务人员中抽取12人,从管理人员中抽取5人,从后勤人员中抽取3人,都用随机数表法从各类人员中抽取所需的人数,他们合在一起恰好抽到20人.上述三种抽样方法,按简单随机抽样、分层抽样、系统抽样的顺序是( ) A .①、②、③ B .②、①、③ C .①、③、② D .③、①、②[答案] C[解析] ①是简单随机抽样;②是系统抽样;③是分层抽样,故选C.6.样本中共有五个个体,其值分别为a 、0、1、2、3.若该样本的平均值为1,则样本方差为( )A.65 B .65C. 2 D .2[答案] D [解析] ∵a +0+1+2+35=1,∴a =-1,故S 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.7.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )8 9 79 3 1 6 4 0 2A .91.5和91.5 C .91和91.5 D .92和92[答案] A[解析] 将这组数据从小到大排列,得87、89、90、91、92、93、94、96. 故平均数x -=87+89+90+91+92+93+94+968=91.5,中位数为91+922=91.5,故选A.8.对变量x 、y 有观测数据理据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u 、v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 [答案] C[解析] 本题主要考查了变量的相关知识,考查学生分析问题和解决问题的能力.由散点图可以判断变量x与y负相关,u与v正相关.9.已知样本容量为30,在样本频率分布直方图中,各小长方形的高的比从左到右依次为2431,则第2组的频率和频数分别是( )A.0.4,12 B.0.6,16C.0.4,16 D.0.6,12[答案] A[解析]因为各小长方形的高的比从左到右依次为2431,所以第2组的频率为0.4,频数为30×0.4=12.10.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高y(单位:cm)对年龄x(单位:岁)的回归直线方程y=73.93+7.19x,用此方程预测儿子10岁时的身高,有关叙述正确的是( )A.身高一定为145.83 cmB.身高大于145.83 cmC.身高小于145.83 cmD.身高在145.83 cm左右[答案] D[解析]用回归直线方程预测的不是准确值,而是估计值.当x=10时,y=145.83,只能说身高在145.83 cm左右.11.设矩形的长为a,宽为b,其比满足b a=5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定[答案] A[解析]本小题主要考查学生的知识迁移能力和统计的有关知识.x -甲=0.598+0.625+0.628+0.595+0.6395=0.617,x -乙=0.618+0.613+0.592+0.622+0.6205=0.613,故选A.12.某示范农场的鱼塘放养鱼苗8万条,根所这几年的经验知道,鱼苗的成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼2.5 kg ,第二网捞出25条,称得平均每条鱼2.2 kg ,第三网捞出35条,称得平均每条鱼2.8 kg ,试估计鱼塘中鱼的总质量约为( )A .192 280 kgB .202 280 kgC .182 280 kgD .172 280 kg[答案] A[解析] 平均每条鱼的质量为x -=40×2.5+25×2.2+35×2.840+25+35=2.53(kg),所以估计这时鱼塘中鱼的总质量约为80 000×95%×2.53=192 280(kg).二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中的横线上.) 13.一支田径队有男女运动员98人,其中男运动员有56人.按男、女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.[答案] 12 [解析] ∵2898=27,即每7人抽取2人,又知女运动员人数为98-56=42, ∴应抽取女运动员人数为42×27=12(人).分层抽样中抓住“抽样比”是解决问题的关键.14.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数.则这10天甲、乙两人日加工零件的平均数分别为________和________.[答案] 24 23[解析] x -甲=110(10×2+20×5+30×3+17+6+7)=24,x -乙=110(10×3+20×4+30×3+17+11+2)=23.15.(xx·山东临沂高一期末测试)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55)、[55,65)、[65,75)、[75,85)、[85,95),由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[55,75)的人数是________.[答案]13[解析]由频率分布直方图知[55,75)之间的频率为(0.040+0.025)×10=0.65,故[55,75)之间的人数为0.65×20=13.16.某校甲、乙两个班级各有5名编号为1、2、3、4、5的学生进行投篮练习,每人投10次,投中的次数如下表:学生1号2号3号4号5号甲组67787乙组67679则以上两组数据的方差中较小的一个为s2=______.[答案]2 5[解析]x甲=6+7+7+8+75=7,x乙=6+7+6+7+95=7.∴s2甲=6-72+7-72+7-72+8-72+7-725=25,s2乙=7-62+7-72+7-62+7-72+7-925=65,则两组数据的方差中较小的一个为s2甲=25 .三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)下面的抽样方法是简单随机抽样吗?为什么?(1)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛;(2)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回,再拿一件,连续玩了5件;(3)从200个灯泡中逐个抽取20个进行质量检查. [解析] (1)不是简单随机抽样,因为这不是等可能抽样. (2)不是简单随机抽样,因为它是有放回的抽样.(3)是简单随机抽样,因为它满足简单随机抽样的几个特点.18.(本题满分12分)已知某班4个小组的人数分别为10、10、x 、8,这组数据的中位数与平均数相等,求这组数据的中位数.[解析] 该组数据的平均数为14(28+x ),中位数一定是其中两个数的平均数,因为x不知是多少,所以要分几种情况讨论.(1)当x ≤8时,原数据按从小到大的顺序为x,8,10,10,其中位数为12(10+8)=9.若14(x+28)=9,则x =8,此时中位数为9.(2)当8<x ≤10时,原数据按从小到大顺序排列为8,x,10,10,其中位数为12(x +10),若14(x +28)=12(x +10),则x =8,而8不在8<x ≤10的范围内, ∴舍去.(3)当x >10时,原数据为8,10,10,x , 其中位数为12(10+10)=10.若14(x +28)=10,则x =12,∴此时中位数为10. 综上所述,这组数据的中位数为9或10.19.(本题满分12分)一箱方便面共有50包,从中用随机抽样方法抽取了10包称量其重量(单位:g)结果为:60.5 61 60 60 61.5 59.5 59.5 58 60 60(1)指出总体、个体、样本、样本容量; (2)指出样本数据的众数、中位数、平均数; (3)求样本数据的方差.[解析] (1)总体是这50包方便面所有的包重,个体是这一箱方便面中每一包的包重,样本是抽取的10包的包重,样本容量为10.(2)这组样本数据的众数是60,中位数为60,样本平均数x -=110×(60.5+61+60+60+61.5+59.5+59.5+58+60+60)=60.(3)样本数据的方差为s 2=110[(60.5-60)2+(61-60)2+(60-60)2+(60-60)2+(61.5-60)2+(59.5-60)2+(59.5-60)2+(58-60)2+(60-60)2+(60-60)2]=0.8.20.(本题满分12分)(xx·安徽黄山高一期末测试)某班的全体学生共有50人,参加数学测试(百分制)成绩的频率分布直方图如图,数据的分组依次为:[20,40)、[40,60)、[60,80)、[80,100].依此表可以估计这一次测试成绩的中位数为70分.(1)求表中a、b的值;(2)请估计该班本次数学测试的平均分.[解析](1)由中位数为70可得,0.005×20+0.01×20+a×10=0.5,解得a=0.02.又20(0.005+0.01+0.02+b)=1,解得b=0.015.(2)该班本次数学测试的平均分的估计值为30×0.1+50×0.2+70×0.4+90×0.3=68分.21.(本题满分12分)有一容量为50的样本,数据的分组以及各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5),4.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)根据频率分布直方图估计,数据落在[15.5,24.5)内的可能性约是多少?[解析](1)频率分布表为:分组频数频数频率[12.5,15.530.06)[15.5,18.580.16)[18.5,21.590.18)[21.5,24.5110.22)[24.5,27.5)100.20[27.5,30.5)50.10[30.5,33.5)40.08合计50 1.00(2)频率分布直方图如图所示:(3)数据落在[15.5,24.5)内的可能性为:8+9+1150=0.56.22.(本题满分14分)(x x·河南新乡市高一期末测试)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求线性回归方程y=b x+a;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是 3.5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本).(参考公式与数据:6i=1x i y i=4 066,∑i=16x2i=434.2,∑i=16x i=51,∑i=16y i=480.b^=∑i=16x i y i-n x y∑i=16x2i-n x2,a^=y-b^x)[解析](1)x=16(8+8.2+8.4+8.6+8.8+9)=516=8.5,y=16(90+84+83+80+75+68)=4806=80.b ^=∑i =16x i y i -n x y∑i =16x 2i -n x 2=4 066-6×8.5×80434.2-6×8.52=-20, a ^=y -b ^x =80-(-20)×8.5=250.∴线性回归直线方程为y ^=-20x +250. (2)设工厂的利润为y ,依题意得y =(-20x +250)(x -3.5)=-20(x -8)2+405,∴当x =8时,y 取最大值405.即该产品的单价应定为8元时,工厂获得最大利润.i25332 62F4 拴! 7 23630 5C4E 屎26225 6671 晱32922 809A 肚360488CD0 賐22375 5767 坧(NF。
高中数学人教B版必修3课时跟踪检测(七) 循环语句 Word版含解析
课时跟踪检测(七)循环语句.下面的程序运行的结果是( )<, =(+(*(+(;, =+;(((,(;))....解析:选循环体的执行次数为次,所以=..下列问题可以用循环语句设计程序的有( )①求+++…+的和;②比较, 两个数的大小;③对于分段函数,要求输入自变量,输出函数值;④求平方值小于的最大自然数..个.个.个.个解析:选①④可以用循环语句设计程序;②③要用条件语句设计程序..如果程序运行后输出的结果是,那么在程序中后面的表达式应为( )表达式, =*;, =-;(((,(;)).>=.>.<.<=解析:选=×,循环体执行了次,所以表达式为≥,即>=..程序如下:以上程序用来( ).计算×的值.计算的值.计算的值.计算×××…×的值解析:选=时,=×=;=时,=×=+;=时,=×+=++;=时,=×++=+++;…=时,=×+++…+=+++…+=..已知有下面的程序,如果程序执行后输出的结果是,则横线上的“条件”为.解析:由=×××,知中的数乘到时循环结束,此时=,但=时,循环继续,故条件为“>=(或>)”.答案:>=(或>).下面程序的结果是.<=, =+;, =+;(((,(;))解析:每次执行循环体时的值依次为.代入循环式中依次计算,=+++++=.答案:.下面程序表示的算法是.解析:由题意可知符合循环的条件是< ,即只要< 就执行=*.因此表示的应是×××…×≥的最小的值.答案:求×××…×≥的的最小值.小明第一天背一个单词,第二天背两个单词,以后每一天比前一天多背一个单词,问:他前十天共背了多少个单词?(写出程序)解:程序如下:.猴子第天摘下若干个桃子,当即吃一半,还不过瘾,又多吃了一个.第天早上又将剩下的桃子吃掉一半又多吃了一个.以后每天早上都吃了前一天剩下的一半零一个.到第天早上想再吃时,见只剩下一个桃子,设计第天共摘多少个桃子的程序框图,并写出程序.。
2020_2021学年新教材高中数学模块质量检测含解析新人教B版选择性必修第三册.doc
模块质量检测(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知S n 为等差数列{a n }的前n 项的和,a 2+a 5=4,S 7=21,则a 7的值为( )A .6B .7C .8D .92.已知等比数列{a n }满足a 1=2,且a 1,a 2,6成等差数列,则a 4=( ) A .6 B .8 C .16 D .323.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 ( )A.32fB.322f C.1225f D.1227f4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ) A .-e B .-1 C .1 D .e5.已知数列{a n }, 则“{a n }为等差数列”是“a 1+a 3=2a 2”的( ) A .充要条件 B .必要而不充分条件C .充分而不必要条件D .既不充分又不必要条件6.已知函数y =f (x )的导函数y =f ′(x )的图像如图所示,则( )A .函数f (x )有1个极大值点,1个极小值点B .函数f (x )有2个极大值点,2个极小值点C .函数f (x )有3个极大值点,1个极小值点D .函数f (x )有1个极大值点,3个极小值点7.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( ) A.94e 2 B .2e 2C .e 2D.e 228.已知等差数列{a n }单调递增且满足a 1+a 10=4,则a 8的取值范围是( ) A .(2,4) B .(-∞,2)C .(2,+∞)D .(4,+∞)9.函数f (x )=ax 3-x 在R 上为减函数,则( ) A .a ≤0 B .a <1 C .a <2 D .a ≤1310.在等差数列{a n }中,a 3,a 9是方程x 2+24x +12=0的两根,则数列{a n }的前11项和等于( )A .66B .132C .-66D .-13211.在数学归纳法的递推性证明中,由假设n =k 时成立推导n =k +1时成立时,f (n )=1+12+13+…+12n -1增加的项数是( )A .1B .2k +1C .2k -1D .2k12.在数列{a n }中,a 1=2,其前n 项和为S n .若点⎝ ⎛⎭⎪⎫S n n ,S n +1n +1在直线y =2x -1上,则a9等于( )A .1 290B .1 280C .1 281D .1 821二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=______;数列{a n }的前n 项和的最小值为______.14.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.15.已知等差数列{a n }满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N *),数列{b n }的前n 项和为S n ,则S 100的值为________.16.已知函数f (x )=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m +n =________ . 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.18.(本小题满分12分)已知函数f (x )=x 3+3ax 2+3x +1.(1)当a =-2时,讨论f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围.19.(本小题满分12分)已知数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N +.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .20.(本小题满分12分)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.21.(本小题满分12分)设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(2)若f(x )在x=2处取得极小值,求a的取值范围.22.(本小题满分12分)在各项为正的数列{a n}中,数列的前n项和S n满足S n=12⎝⎛⎭⎫a n+1a n.(1)求a1,a2,a3;(2)由(1)猜想数列{a n}的通项公式,并用数学归纳法证明你的猜想.20.解析:(1)由f (x )=x 22-k ln x ,(k >0)得f ′(x )=x -k x =x 2-k x .(x >0)由f ′(x )=0解得x =k .f (x )与f ′(x )在区间(0,+∞)上的情况如下:所以,f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞);f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2. 因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e.当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.。