高考数学立体几何题型总结

合集下载

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。

2023届高考数学总复习《立体几何》附答案解析

2023届高考数学总复习《立体几何》附答案解析

(2)若点 N 为 BC 的中点,求四面体 A'MNB 的体积.
【解答】证明:(1)连接 BD,设 BD∩EC=F,连接 MF,
由题意可得四边形 BCDE 为正方形,则 F 为 BD 的中点,
∴MF 为△A′BD 的中位线,可得 MF∥A′B,
又 A′B⊄平面 EMC,MF⊂平面 EMC,
∴A'B∥平面 EMC;
2023 年高考:立体几何复习题及答案
1.如图,已知直角梯形 ABCD,BC∥AD,BC=CD=2,AD=4,∠BCD=90°,点 E 为 AD 的中点,现将三角形 ABE 沿 BE 折叠,得到四棱锥 A'﹣BCDE,其中∠A'ED=120°, 点 M 为 A'D 的中点.
(1)求证:A'B∥平面 EMC;
第2页共3页
∵BE⊂平面 BEF,∴平面 BEF⊥平面 AMD, 结合题意分析知,点 F 在线段 AD 上,连接 MF, 过 A 作 AH⊥MF,交 MF 的延长线于点 H,
则结合已知条件得
,解得 AH ,
设 Dt ,
第3页共3页
【解答】解:(1)证明:由题意知 PC2+AC2=PA2,∴PC⊥AC, 同理,PC⊥BC,又 AC∩BC=C,∴PC⊥平面 ABC, ∵D,E 分别是 AC,PA 的中点,∴DE∥PC, ∴DE⊥平面 ABC, 又 DE⊂平面 BDE,∴平面 BDE⊥平面 ABC. (2)在△BDE 中,DE⊥BD,BD=2 ,DE=2,∴BE=4, 如图,过 A 作 AM⊥BE 于 M,连接 MD, 在△ABE 中,AB=BE=4,AE=2 ,解得 AM ,ME=1, ∵DM⊂平面 BDE,∴AC⊥DM, 在 Rt△ADM 中,AM ,AD=2,∴DM , ∴DM2+EM2=DE2,∴MD⊥BE, ∵AM∩MD=M,∴BE⊥平面 AMD,

高考数学中的立体几何解题方法总结

高考数学中的立体几何解题方法总结

高考数学中的立体几何解题方法总结在高考数学中,立体几何是一个重要的考点。

对于大部分学生来说,立体几何是比较新颖的知识点,需要掌握一些特定的解题方法。

本文将总结一些高考数学中的立体几何解题方法,以便于广大考生能够更好地应对高考数学考试。

一、立体几何基本概念在解决立体几何问题之前,首先需要理解一些基本概念。

立体几何主要包括三维图形、视图、棱锥、棱柱、圆锥、圆柱、球体等。

学生需要认真理解这些概念,并掌握绘制三维图形的技巧,以便于快速准确地分析问题。

二、立体几何定理掌握一些常见的立体几何定理十分必要。

例如,平行截面定理、截棱锥定理、圆锥与平面的位置关系、球的性质等等。

这些定理可以帮助学生在解决一些复杂的立体几何题目时,能够快速找到规律,从而准确解决问题。

三、快速计算体积的方法体积是立体几何题目中最常见的考点。

理解如何快速计算体积可以帮助学生在有限的时间内快速解决问题。

例如,计算实体的体积可以分别计算各部分的体积再相加;计算投影面积的体积可以利用截线公式或剖面法等方法。

此外,还应当掌握利用相似关系计算体积的方法,以便于解决一些复杂的题目。

四、快速计算表面积的方法表面积的计算同样是立体几何中常见的考点。

学生需要掌握表面积的计算方法,并能够快速灵活地运用这些方法。

例如,计算立体几何的表面积可以分解成各个面的表面积再相加;计算圆锥的表面积可以利用母线和圆周角的关系等等。

五、快速计算正多面体体积的方法对于正多面体的体积计算,学生需要掌握一些类比和相似关系等方法。

例如,正八面体的体积可以利用正四面体体积乘以3的方法;正二十面体的体积可以利用正四面体体积乘以5的方法。

这些方法可以帮助学生在复杂的题目中快速计算正多面体的体积。

以上五点是掌握高考数学中的立体几何解题方法的基础。

学生需要认真理解这些方法,并在解决立体几何题目时不断运用,直到形成自己的解题风格。

通过不断练习和总结,相信大家一定可以在高考数学中取得好成绩!。

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。

高中数学高考专题(5)立体几何的高考解答题型及求解策略

高中数学高考专题(5)立体几何的高考解答题型及求解策略

高中数学高考专题(5)立体几何的高考解答题型及求解策略立体几何的解答题型主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再计算几何体的体积.试题背景有折叠问题、探索性问题等,考查空间想象能力、逻辑思维能力及转化与化归思想的应用能力.题型一线面位置关系的证明题型概览:空间中线面的平行与垂直的证明有两种思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量法来论证,应用向量证明线、面的位置关系的关键是把空间线面位置关系的判定定理和性质定理与空间向量建立对应关系,把空间位置关系的证明转化为空间向量的运算,通过运算解决证明问题.这里以传统方法为例建立审题程序与答题模板,向量方法参照本专题题型二.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN⊥平面ABCD,E、F分别为MA、DC的中点,求证:(1)EF∥平面MNCB;(2)平面MAC⊥平面BND.[审题程序]第一步:利用中位线、平行四边形的性质在四边形MNCB内确定与EF平行的直线;第二步:在平面MAC和平面BND中寻找与另一平面垂直的直线;第三步:应用面面垂直、菱形的性质,由线线垂直解决.[规范解答](1)如图,取NC的中点G,连接FG,MG.因为ME∥ND且ME=12ND,F、G分别为DC、NC的中点,FG∥ND且FG=12ND,所以FG与ME平行且相等,所以四边形MEFG是平行四边形,所以EF∥MG,又MG⊂平面MNCB,EF⊄平面MNCB,所以EF∥平面MNCB.(2)如图,连接BD、MC.因为四边形MADN是矩形,所以ND⊥AD.因为平面MADN⊥平面ABCD,平面ABCD∩平面MADN=AD,DN⊂平面MADN,所以ND⊥平面ABCD,所以ND⊥AC.因为四边形ABCD是菱形,所以AC⊥BD.因为BD∩ND=D,所以AC⊥平面BDN.又AC⊂平面MAC,所以平面MAC⊥平面BDN.[答题模板]解决这类问题的答题模板如下:1.(2016·北京西城区高三期末)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE,CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH∥平面AEF;(3)求多面体ABCDEF的体积.[解](1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.(2)证明:在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF.又GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH.在△ACF中,因为OA=OC,CH=HF,所以OH∥AF.因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.(3)由(1)得AC⊥平面BDEF.因为AO=2,四边形BDEF的面积S▱BDEF=3×22=62,=4.所以四棱锥A-BDEF的体积V1=13×AO×S▱BDEF同理,四棱锥C-BDEF的体积V2=4.所以多面体ABCDEF的体积V=V1+V2=8.题型二求空间几何体的体积题型概览:计算几何体的体积,关键是根据条件找出相应的底面和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题.(1)直接法:对于规则几何体,直接利用公式计算即可.(2)割补法:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.(3)等体积法:一般利用三棱锥的“等积性”求三棱锥体积,可以把任何一个面作为三棱锥的底面.注意两点:一是求体积时,可选择“容易计算”的方式来计算;二是利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.(2016·全国卷Ⅲ)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.[审题程序]第一步:由线线平行或面面平行证明(1);第二步:由N 为PC 中点,推证四面体N -BCM 的高与P A 的关系; 第三步:利用直接法求四面体的体积.[规范解答] (1)由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. [答题模板] 解决这类问题的答题模板如下:2.(2016·深圳一模)如图所示,在四棱锥S-ABCD中,底面ABCD是平行四边形,侧面SBC是正三角形,E是SB的中点,且AE⊥平面SBC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.[解](1)证明:连接BD,交AC于点F,连接EF.∵四边形ABCD是平行四边形,∴F是BD的中点,又∵E是SB的中点,∴EF∥SD.∵SD⊄平面ACE,EF⊂平面ACE,∴SD∥平面ACE.(2)∵AB⊥AS,BC=BS=2,且E是SB的中点,∴AE=1.∵AE⊥平面SBC,BS、CE⊂平面SBC,∴AE⊥BS,AE⊥CE.∴AB=AE2+BE2= 2.又侧面SBC 是正三角形,∴CE =3, ∴AC =AE 2+CE 2=2,∴△ABC 是底边长为2,腰长为2的等腰三角形, ∴S △ABC =12×2×4-12=72.设点S 到平面ABC 的距离为h .由V 三棱锥S -ABC =V 三棱锥A -SBC ,得13h ·S △ABC =13AE ·S △SBC ,∴h =AE ·S △SBC S △ABC =237=2217.题型三 立体几何中的探索性问题题型概览:如果知道的是试题的结论,而要求的却是试题的某一个存在性条件(如存在某个定点、定直线、定值等),这种试题称为存在探索型试题.解题策略一般是先假设结论成立,然后以该结论作为一个已知条件,再结合题目中的其他已知条件,逆推(即从后往前推),一步一步推出所要求的特殊条件,即要求的存在性条件.若能求出,则存在;若不能求出,则不存在.(2016·石家庄调研)如图,在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,AC ⊥BC ,E 在线段B 1C 1上,B 1E =3EC 1,AC =BC =CC 1=4.(1)求证:BC ⊥AC 1;(2)试探究:在AC 上是否存在点F ,满足EF ∥平面A 1ABB 1?若存在,请指出点F 的位置,并给出证明;若不存在,请说明理由.[审题程序]第一步:由B 1E =3EC 1及EF ∥平面A 1ABB 1猜想点F 的位置;第二步:在平面A 1ABB 1内探求与EF 平行的直线或寻找经过EF 与平面A 1ABB 1平行的平面; 第三步:由线线平行或面面平行推理论证.[规范解答] (1)证明:∵AA 1⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥AA 1. 又∵BC ⊥AC ,AA 1∩AC =A ,∴BC ⊥平面AA 1C 1C . 又AC 1⊂平面AA 1C 1C ,∴BC ⊥AC 1.(2)解法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图1,在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.∵B1E=3EC1,∴EG=34A1C1.又AF∥A1C1且AF=3,4A1C1∴AF∥EG且AF=EG,∴四边形AFEG为平行四边形,∴EF∥AG.又EF⊄平面A1ABB1,AG⊂平面A1ABB1,∴EF∥平面A1ABB1.解法二:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图2,在平面BCC1B1内过点E作EG∥BB1交BC于点G,连接FG. ∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1.∵B1E=3EC1,∴BG=3GC,∴FG∥AB.又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.[答题模板]解决这类问题的答题模板如下:3.如图,三棱柱ABC-A1B1C1的底面是边长为4的正三角形,侧棱AA1⊥底面ABC,M为A1B1的中点.(1)证明:MC⊥AB;(2)若AA1=26,侧棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,求PC的长;若不存在,请说明理由.[解](1)证明:取AB的中点N,连接MN,CN,则MN⊥底面ABC,MN⊥AB.因为△ABC是正三角形,所以NC⊥AB.因为MN∩NC=N,MN⊂平面MNC,NC⊂平面MNC,所以AB⊥平面MNC,所以AB⊥MC.(2)由(1)知MC⊥AB,若存在点P使得MC⊥平面ABP,则必有MC⊥BP.过M作MQ⊥B1C1,垂足为Q,连接QC,则QC是MC在平面BCC1B1内的射影,只需QC⊥BP即可,此时Rt△QC1C与Rt△PCB相似,QC1C1C =PCCB,所以PC=QC1·CBC1C=3×426=6,点P恰好是CC1的中点.。

高考数学立体几何知识点总结(2篇)

高考数学立体几何知识点总结(2篇)

高考数学立体几何知识点总结(____)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(____)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高考数学立体几何知识点总结(二)高考数学的立体几何部分主要包括以下几个知识点:1. 空间几何图形的基础概念和性质:如点、线、面、角等的定义、相交关系、垂直关系等。

高考数学复习考点题型专题讲解20 立体几何中的轨迹问题

高考数学复习考点题型专题讲解20 立体几何中的轨迹问题

高考数学复习考点题型专题讲解 第20讲 立体几何中轨迹问题7类【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )A B C D 【答案】D 【分析】连接GH 、HN ,有GH ∥BA 1,HN ∥BD ,证得面A 1BD ∥面GHN ,由已知得点M 须在线段GH 上运动,即满足条件,由此可得选项. 【详解】解:连接GH 、HN 、GN ,∵在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、CD 的中点,N 是BC 的中点,则GH ∥BA 1,HN ∥BD ,又GH ⊄面A 1BD ,BA 1⊂面A 1BD ,所以//GH 面A 1BD ,同理可证得//NH 面A 1BD ,又GH HN H ⋂=,∴面A 1BD ∥面GHN ,又∵点M 在四边形EFGH 上及其内部运动,MN ∥面A 1BD ,则点M 须在线段GH 上运动,即满足条件,GH ,则点M a . 故选:D.【变式演练】1.在三棱台111A B C ABC -中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是()A .三角形111ABC 边界的一部分 B .一个点 C .线段的一部分D .圆的一部分【答案】C 【分析】过D 作11//DE AC 交11B C 于E ,连接BE ,证明平面//BDE 平面11AAC C ,得M DE ∈,即得结论. 【详解】如图,过D 作11//DE AC 交11B C 于E ,连接BE ,1//BD AA ,BD ⊄平面11AAC C ,1AA ⊂平面11AAC C ,所以//BD 平面11AAC C ,同理//DE 平面11AAC C ,又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以平面//BDE 平面11AAC C ,所以M DE ∈,(M 不与D 重合,否则没有平面BDM ), 故选:C .2.已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为()A 1BCD 【答案】B 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P a b ,计算出平面BEF 的一个法向量m 的坐标,由已知条件得出10D P m ⋅=,可得出a 、b 所满足的等式,求出点P 的轨迹与线段AD 、BC 的交点坐标,即可求得结果. 【详解】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,2,0B 、()2,0,1E 、()1,0,2F 、()10,0,2D ,设点(),,0P a b ,()0,2,1BE =-uur,()1,0,1EF =-,设平面BEF 的法向量为(),,m x y z =, 由200m BE y z m EF x z ⎧⋅=-+=⎨⋅=-+=⎩,取2z =,可得()2,1,2m =, ()1,,2D P a b =-,由题意可知,1//D P 平面BEF ,则1240D P m a b ⋅=+-=,令0b =,可得2a =;令2b =,可得1a =.所以,点P 的轨迹交线段AD 于点()2,0,0A ,交线段BC 的中点()1,2,0M ,所以,点P 的轨迹长度为AM =故选:B.3.在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为()A .1BC .2D .【答案】B 【分析】由分别取棱11A B 、11A D 的中点M 、N ,连接MN ,由线面平行得面面平行,得动点轨迹,从而可计算其长度. 【详解】如图所示,分别取棱11A B 、11A D 的中点M 、N ,连接MN ,连接11B D , ∵M 、N 、E 、F 为所在棱的中点,∴11//MN B D ,11//EF B D ,∴//MN EF ,又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∴//MN 平面BDEF ,连接NF ,由11//NF A B ,11NF A B =,11//A B AB ,11A B AB =,可得//NF AB ,NF AB =,则四边形ANFB 为平行四边形,则//AN FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则//AN 平面BDEF . 又ANNM N =,∴平面//AMN 平面BDEF .又P 是上底面1111D C B A 内一点,且//AP 平面BDEF ,∴P 点在线段MN 上.又1112MN B D =,∴P【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11AQ BC ⊥,则Q 点的轨迹是() A .点1B B .线段1B CC .线段11B CD .平面11B BCC【答案】B 【分析】如图,连接1AC ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解. 【详解】如图,连接1AC ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂平面11A B Q ,所以1BC ⊥平面11A B Q , 又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B【变式演练】1.在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为()A .线段1CBB .线段1BCC .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段【答案】A 【分析】利用直线与平面垂直的判定可得1BD ⊥面1ACB ,又点P 在侧面11BCC B 及其边界上运动,并且总是保持AP 与1BD 垂直,得到点P 的轨迹为面1ACB 与面11BCC B 的交线. 【详解】如图,连接AC ,1AB ,1B C ,在正方体1111ABCD A B C D -中,有1BD ⊥平面1ACB ,又点P 在侧面11BCC B 及其边界上运动,∴故点P 的轨迹为平面1ACB 与平面11BCC B 的交线段1CB .故选:A.2.在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法: ①点P 可以是棱1BB 的中点; ②线段MP 的最大值为34; ③点P 的轨迹是正方形;④点P 轨迹的长度为2 其中所有正确说法的序号是________.【答案】②④【分析】以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴建立空间直角坐标系,求出MP 的坐标,从而得到MP 的最大值,即可判断选项②,通过分析判断可得点P 不可能是棱1BB 的中点,从而判断选项①,又1EF GH ==,EH FG ==,可判断选项③和选项④. 【详解】解:在正方体1111ABCD A B C D -中,以D 为坐标原点,1DC 为x 轴,y 轴, ∵该正方体的棱长为1,M ,N 分别为1BD ,11B C 的中点, ∴()0,0,0D ,M (12,12,12),1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C ∴1,0,12CN ⎛⎫= ⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,∵MP CN ⊥,∴1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=当1x =时,14z =,当0x =时,34z =,取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连结EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭,∴四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥,又EF 和EH 为平面EFGH 中的两条相交直线, ∴CN ⊥平面EFGH ,又111,,224EM ⎛⎫=- ⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,∴M 为EG 的中点,则M ∈平面EFGH , 为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体表面上运动,∴点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,故选项①错误;又1EF GH ==,EH FG ==,∴EF EH ≠,则点P 的轨迹不是正方形且矩形EFGH 周长为222+= 故选项③错误,选项④正确;∵1,0,12CN ⎛⎫= ⎪⎝⎭,111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,又MP CN ⊥,则1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=,∴322x z =-,点P 在正方体表面运动, 则30212z ≤-≤,解1344z ≤≤,∴MP =故当14z =或34z =,0y =或1,MP 取得最大值为34,故②正确.故答案为:②④.3.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是()A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD -的体积为定值 【答案】A 【分析】设平面1D AE 与直线BC 交于G ,连接AG ,EG ,则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N ,连接1A M ,MN ,1A N ,证明平面1//A MN 平面1D AE ,即可分析选项ABC 的正误;再由//MN EG ,得点F 到平面1D AE 的距离为定值,可得三棱锥1F ABD -的体积为定值判断D . 【详解】解:设平面1D AE 与直线BC 交于G ,连接AG ,EG , 则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N , 连接1A M ,MN ,1A N ,如图,∵11//A M D E ,1A M Ë平面1D AE ,1D E ⊂平面1D AE , ∴1//A M 平面1D AE ,同理可得//MN 平面1D AE ,又1A M 、MN 是平面1A MN 内的两条相交直线,∴平面1//A MN 平面1D AE ,而1//A F 平面1D AE ,∴1A F ⊂平面1A MN , 得点F 的轨迹为一条线段,故C 正确;并由此可知,当F 与M 重合时,1A F 与1D E 平行,故A 错误;∵平面1//A MN 平面1D AE ,BE 和平面1D AE 相交,∴1A F 与BE 是异面直线,故B 正确; ∵//MN EG ,则点F 到平面1D AE 的距离为定值,∴三棱锥1F ABD -的体积为定值,故D 正确. 故选:A .【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是()A .直线B .椭圆C .抛物线D .双曲线【答案】D【分析】以D 为坐标原点建立空间直角坐标系D xyz -,求出点P 的轨迹方程即可判断.【详解】如图示,过P 作PE ⊥AB 与E ,过P 作PF ⊥AD 于F ,过F 作FG ∥AA 1交A 1D 1于G ,连结PG ,由题意可知PE=PG以D 为坐标原点建立空间直角坐标系D xyz -,设(),,0P x y ,由PE=PG 得:1x -=()2211x y --=即点P 的轨迹是双曲线.故选:D.【变式演练】1.如图,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A .B .C .D .【答案】A 【分析】如图,以D 为坐标原点,建立空间直角坐标系,设(),,0M x y ,正方形ABCD 的边长为a ,求出MC ,MP 的坐标,利用MP MC =可得x 与y 的关系,即可求解.【详解】如图,以D 为坐标原点,DA ,DC 所在的直线分别为x ,y 轴建立如图所示的空间直角坐标系,设正方形ABCD 的边长为a ,(),,0M x y ,则0x a ≤≤,0y a ≤≤,2a P ⎛ ⎝⎭,()0,,0C a ,则2MC x =2a MP ⎛= MP MC =,得2x y =,所以点M 在正方形ABCD 内的轨迹为一条线段()102y x x a =≤≤, 故选:A .2.如图,在棱长为4的正方体ABCD A B C D ''''-中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为()A .43π B .23π C .6πD .3π 【答案】D 【分析】连接PF 、NF ,分析得出1FP =,可知点P 的轨迹是以点F 为球心,半径长为1的球面,作出图形,结合球体的体积公式可求得结果. 【详解】连接PF 、NF ,因为//AD A D '',AD A D ''=,且E 、F 分别为AD 、A D ''的中点, 故//AE A F '且AE A F '=,所以,四边形AA FE '为平行四边形,故//EF AA '且4EF AA ='=,AA '⊥平面A B C D '''',则EF ⊥平面A B C D '''', 因为FN ⊂平面A B C D '''',所以,EF FN ⊥,P 为MN 的中点,故112FP MN ==, 所以,点P 的轨迹是以点F 为球心,半径长为1的球面,如下图所示:所以,线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体为球F 的14, 故所求几何体的体积为3141433V ππ=⨯⨯=.故选:D.3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ⊥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是()A .B .C .D .6【答案】B 【分析】由题意结合选项可特殊化处理,即取OP 与底面垂直,求得Q 的轨迹,结合球的表面积求解.【详解】解:不妨令OP ⊥OC ,则OP ⊥底面OABC , 如图,∵D 是OP 上的动点,∴OD ⊥底面OABC ,可得OD ⊥OE ,又Q 为DE 的中点,∴OQ 1122DE a ==,即Q 的轨迹是以O 为球心,以12a 为半径的18球面,其表面积为S 214384a ππ=⨯⨯=,得a =故选:B .【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为()A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【答案】D 【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q所在轨迹的形状. 【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线; 当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D【变式演练】1.如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30PAB ∠=︒,则点P 的轨迹是()A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C 【分析】由题可知点P 在以AB 为轴的圆锥的侧面上,再结合条件可知P 的轨迹符合圆锥曲线中椭圆定义,即得. 【详解】用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.此题中平面α上的动点P 满足30PAB ∠=︒,可理解为P 在以AB 为轴的圆锥的侧面上, 再由斜线段AB 与平面α所成的角为60︒,可知P 的轨迹符合圆锥曲线中椭圆定义. 故可知动点P 的轨迹是椭圆. 故选:C.2.如图所示,1111ABCD A B C D -为长方体,且AB =BC =2,1AA =4,点P 为平面1111A B C D 上一动点,若11PBC BC C ∠=∠,则P 点的轨迹为()A .抛物线B .椭圆C .双曲线D .圆【答案】B【分析】建立空间直角坐标系,利用空间向量的坐标运算和轨迹方程思想求得P 的轨迹方程,进而根据方程判定轨迹类型. 【详解】如图,建立直角坐标系,则()()10,0,4,0,2,0B C,1BC ==设(),,0P x y ,则向量(),,4BP x y =-,向量()10,2,4BC =-,111211cos ||CC BP BC PBC BC BP BC x ∠=====,∴()()2228416y x y +=++,即2243160x y y +-=,228644333x y ⎛⎫+-= ⎪⎝⎭,22831166439y x ⎛⎫- ⎪⎝⎭+=,这方程表示的轨迹是平面1111A B C D 上的椭圆,故选:B.3.在长方体1111ABCD A B C D -中,6AB AD ==,12AA =,M 为棱BC 的中点,动点P 满足APD CPM ∠=∠,则点P 的轨迹与长方体的侧面11DCC D 的交线长等于___________.【答案】23π【分析】由题意画出图形,由角的关系得到边的关系,然后再在平面11DCC D 内建系,求出P 的轨迹方程,确定点P 的轨迹与长方体的面11DCC D 的交线,进而求得交线长. 【详解】如下图所示:当P 在面11DCC D 内时,AD ⊥面11DCC D ,CM ⊥面11DCC D ; 又APD MPC ∠=∠,在Rt PDA 与Rt PCM 中,∵6AD =,则3MC =,∴tan tan AD MCAPD MPC PD PC∠==∠=,则63PD PC=,即2PD PC =. 在平面11DCC D 中,以DC 所在直线为x 轴,以DC 的垂直平分线为y 轴建立平面直角坐标系,则()3,0D -,()3,0C ,设(),P x y ,由2PD PC =整理得:221090x x y -++=,即()22516x y -+=.∴点P 的轨迹是以F (5,0)为圆心,半径为4的圆.设圆F 与面11DCC D 的交点为E 、M ,作EK 垂直x 轴于点K ,如图,则21sin 42EK EFK EF ∠===;∴6EFK π∠=;故点P 的轨迹与长方体的面11DCC D 的交线为劣弧ME ,所以劣弧ME 的长为2463ππ⨯=.故答案为:【题型五】投影求轨迹【典例分析】1822年,比利时数学家Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为()A .23B .45 C .13D .25【答案】A 【分析】设21A F x =,从而可得15AA =,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解. 【详解】在21Rt AA A 中,设21A F x =,2DA x ∴=15AA =,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+,10x ∴=, ∴长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A【变式演练】1.如图,已知水平地面上有一半径为3的球,球心为O ',在平行光线的照射下,其投影的边缘轨迹为椭圆C .如图,椭圆中心为O ,球与地面的接触点为E ,4OE =.若光线与地面所成角为θ,椭圆的离心率e =__________.【答案】45【分析】根据平行投影计算出椭圆C 的短半轴长b ,再求出光线与水平面所成锐角的正弦,进而求得椭圆C 的长轴长2a 而得解. 【详解】连接OO ',则O OE θ'∠=,因为34,O E OE '==,如图:所以5OO '=,所以3sin 5O E OO θ'==' 在照射过程中,椭圆的短半轴长b 是球的半径R ,即3b =,过球心与椭圆长轴所在直线确定的平面截球面所得大圆及对应光线,如图:椭圆的长轴长2a 是AC ,过A 向BC 做垂线,垂足是B ,则,AB O O O E AC ''⊥⊥,由题意得:326sin sin 5AB R ACB θ==∠==,,又sin ABACB AC∠=, 则35AB AC =,10AC =,即2105a a ==,,所以椭圆的离心率为45c e a ====.故答案为:45【题型六】翻折与动点求轨迹(难点)【典例分析】如图,将四边形ABCD 中,ADC 沿着AC 翻折到1AD C ,则翻折过程中线段DB 中点M 的轨迹是()A .椭圆的一段B .抛物线的一段C .双曲线的一段D .一段圆弧【答案】D 【分析】过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,再分别分析翻折前、后的变化量与不变量,在翻折后的图形中取BE 中点O ,进而可得答案. 【详解】解:在四边形ABCD 中,过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,如图1,所以当四边形ABCD 确定时,DEF 和BEF 三边长度均为定值,当ADC 沿着AC 翻折到1AD C ,形成如图2的几何体,并取BE 中点O ,连接OM , 由于在翻折过程中,1DE D E =,所以由中位线定理可得112OM D E =为定值, 所以线段DB 中点M 的轨迹是以BE 中点O 为圆心的圆弧上的部分.故选:D【变式演练】1.已知△ABC 的边长都为2,在边AB 上任取一点D ,沿CD 将△BCD 折起,使平面BCD ⊥平面AC D .在平面BCD 内过点B 作BP ⊥平面ACD ,垂足为P ,那么随着点D 的变化,点P 的轨迹长度为() A .6π B .3π C .23π D .π【答案】C 【分析】根据题意,先确定点P 轨迹的形状,进而求出轨迹的长度即可. 【详解】由题意,在平面BCD 内作BQ ⊥CD ,交CD 于Q ,因为平面BCD ⊥平面ACD ,平面BCD 与平面ACD 交于CD ,所以BQ ⊥平面ACD ,又BP ⊥平面ACD ,所以P ,Q 两点重合,于是随着点D 的变化,BP ⊥CD 始终成立,可得在平面ABC 中,BP ⊥CP 始终成立,即得点P 的轨迹是以BC 为直径的圆的一部分,由题意知随着点D 的变化,∠BCD 的范围为0,3π⎡⎤⎢⎥⎣⎦,可得点P 的轨迹是以BC 为直径(半径为1)的圆的13,即得点P 的轨迹长度为2122133ππ⨯⨯=.故选:C.2.如图,等腰梯形ABCD 中,//AB CD ,2AB =,1AD BC ==,AB CD >,沿着AC 把ACD △折起至1ACD △,使1D 在平面ABC 上的射影恰好落在AB 上.当边长CD 变化时,点1D 的轨迹长度为()A .2πB .3π C .4π D .6π【答案】B 【分析】根据1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上,因此考虑CD 的长度缩短到0时和CD 变长到AB 的长度两种情况,从而求出夹角大小,进而求出弧长. 【详解】因为1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上.考虑极端情况:当CD 的长度缩短到0时,1,,C D D 都汇聚到线段AB 的中点(D 2);当CD 变长到AB 的长度时(1D 的射影为D 3),如图,设3AD t =,则32BD t =-,在13D D ARt中,22131D D t =-,同理:()22312CD t =+-,()22221313412D D CD CD t ⎡⎤=-=-+-⎣⎦∴()22141212t t t ⎡⎤-+-=-⇒=⎣⎦,即1D 在线段AB 上的投影与点A 的距离为12,从而1AD 与AB 夹角为3π,故点1D 的轨迹为1=33ππ⨯.故选:B.3.已知矩形ABCD 中,1AB =,AE =如图,将ABE △沿着BE 进行翻折,使得点A 与点S 重合,若点S 在平面BCDE 上的射影在四边形BCDE 内部(包含边界),则动点S 的轨迹长度是()A B C D【分析】过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.由翻折过程可知,SM AM =S 的轨迹是以点M角,利用弧长公式求出弧长. 【详解】如图(1),过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.在Rt ABE △中,1AB =,AEBE =AM ==翻折的过程中,动点S满足SM S 的轨迹是以点M.易得BM =,EM =,AME GMB ∽△△,所以12MG MB MA ME ==,则MG SM =<,如图(2),在圆M 中,0S M AG ⊥,1S G AG ⊥,所以点S 的轨迹是01S S ,且111co s 2MG S MG MS ∠==,则1π3SM G ∠=,10π6S MS ∠=,从而点S的轨迹长度为π6=【课后练习】1.(多选题)(海南省海口市北京师范大学海口附属学校12月月考)如图,已知正方体1111ABCD A B C D -的棱长为112,,M DD 的中点,N 为正方形ABCD 所在平面内一动点,则下列结论正确的是( )A .若N 到直线1BB 与直线DC 的距离相等,则N 的轨迹为抛物线 B .若2MN =,则MN 的中点的轨迹所围成图形的面积为π C .若1D N 与AB 所成的角为60,则N 的轨迹为双曲线 D .若MN 与平面ABCD 所成的角为60,则N 的轨迹为椭圆 【答案】ABC 【分析】A :由1BB ⊥平面ABCD ,可得NB 即为N 到直线1BB 的距离,由抛物线的定义即可判断;B :由题意可得MN 中点的轨迹为以MD ABCD 的圆,计算可判断;C :建立空间直角坐标系,设(N x ,y ,0),由1D N 与AB 所成的角为60°,可得点N 的轨迹方程,从而可判断;D :由MN 与平面ABCD 所成的角为MND ∠,计算可得DN 为定值,可判断点N 的轨迹为以D 为圆心,DN 为半径的圆,从而可判断. 【详解】对于A ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∴点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故A 正确; 对于B ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∴点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故B 正确; 对于C ,如图,建立空间直角坐标系,(0D ,0,0),1(0D ,0,2),(2A ,0,0),(2B ,2,0),设(N x ,y ,0),则1(D N x =,y ,2)-,(0AB =,2,0),111cos602D N AB D N ABx ⋅︒===⨯, 化简得2234y x -=,即2214134y x -=,∴N 的轨迹为双曲线,故C 正确;对于D ,MN 与平面ABCD 所成的角为MND ∠,∴60MND ∠=︒, 则DN =∴点N 的轨迹为以D D 错误. 故选:ABC ﹒2.(广东省六校高三上学期第三次联考数学试题)(多选题)如图的正方体1111ABCD A B C D -中,棱长为2,点E 是棱1DD 的中点,点F 在正方体表面上运动.以下命题正确的有()A .侧面11CDD C 上不存在点F ,使得11B F CD ⊥B .点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13C .若点F 满足1//B F 平面1A BE ,则动点F 的轨迹长度为D .若点F 到点A F 的轨迹长度为 【答案】BD 【分析】先找到点F 满足1//B F 平面1A BE 的轨迹,可判断选项AC ,将平面1A BE 补全,利用比例判断选项B ,找到满足点F 到点A D 【详解】取11C D 中点M ,1C C 中点N ,连接1B M ,1B N ,MN ,易证11//B N A E ,又1B N ⊄平面1A BE ,1A E ⊂平面1A BE ,所以1//B N 平面1A BE , 又1//MN A B ,同理得到//MN 平面1A BE , 所以平面1//B MN 平面1A BE ,所以若点F 满足1//B F 平面1A BE ,则点F 在1B MN △的三边上运动,11MN B M B N ==F 的轨迹长度为C 错误;当点F 在侧面11CDD C 上运动时,点F 的运动轨迹为线段MN ,当F 运动到MN 中点时,因为△1B MN 是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 错误;取CD 中点G ,连接BG ,EG ,易证1//A B EG ,则1,,,A B E G 共面,令1C D EG H ⋂=,则易得113DH C H =, 所以点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13,故B 正确;F 到点A 则动点F 的轨迹在正方形11B BCC 和正方形11CC D D 及正方形1111D C B A 上,若在正方形11B BCC 上,则满足2222BF BA BF +=⇒=,所以在正方形11B BCC 上,动点F 的轨迹为以B ,同理点F 在正方形1111D C B A 及正方形11CC D D 面上运动时,轨迹分别为以1,A D的四分之一圆弧,所以动点F 3⨯=,所以D 正确; 故选:BD3.(多选题)(全国著名重点中学领航高考冲刺试卷(六))如图,在正方体1111ABCD A B C D -中,E为1AA 的中点,点F 在线段1AD 上运动,G 为底面ABCD 内一动点,则下列说法正确的是()A .11C F CB ⊥B .若1//FG CD ,则点G 在线段AC 上C .当点F 从A 向1D 运动时,三棱锥1D BFC -的体积由小变大D .若1GD ,GE 与底面ABCD 所成角相等,则动点G 的轨迹为圆的一部分 【答案】ABD 【分析】结合线面垂直的知识来判断A 选项的正确性.结合平面的知识来判断B 选项的正确性.结合锥体体积的求法来确定C 选项的正确性.结合阿波罗尼斯圆的知识来判断D 选项的正确性. 【详解】连接1A D ,∵1C F 在平面11ADD A 内的射影为1D F ,11CB A D ∥,且11A D D F ⊥,则1A D ⊥平面11C D F ,11A D C F ⊥,∴11C F CB ⊥,故A 正确;∵1FG CD ∥,∴FG 与1CD 确定唯一的平面α,而平面1ACD 与α有F ,1D ,C 三个不在一条直线上的公共点,∴平面1ACD 与α重合,又G 为底面ABCD 内一动点,则点G 必在平面1ACD 与平面ABCD 的交线AC 上,故B 正确;∵11AD BC ∥,1AD ⊄平面1DBC ,1BC ⊂平面1DBC ,∴1AD ∥平面1DBC ,故当点F 在1AD 上运动时,点F 到平面1DBC 的距离不变,于是三棱锥1F BDC -的体积不变,即三棱锥1D BFC -的体积不变,故C 错误;连接GD ,GA ,当1GD ,GE 与底面ABCD 所成角相等时,易得2GD GA =,∵AD 为定值,由阿波罗尼斯圆易知点G 的轨迹为圆的一部分,故D 正确. 阿波罗尼斯圆:已知平面上两点A ,B ,则所有满足PAk PB=(0k >且1k ≠)的点P 的轨迹是一个以定比m :n 内分和外分定线段AB 的两个分点的连线为直径的圆,此圆称为阿波罗尼斯圆. 故选:ABD4.(吉林省梅河口市第五中学第一次月考)在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1AA ,1CC 的中点,O 为底面ABCD 的中心,点P 在正方体的表面上运动,且满足NP MO ⊥,则下列说法正确的是()A .点P 可以是棱1BB 的中点B .线段NPC .点P 的轨迹是平行四边形D .点P 轨迹的长度为1【答案】B 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据NP MO ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,因为该正方体的棱长为1,,M N 分别为1AA ,1CC 的中点,则()0,0,0D ,11,0,2M ⎛⎫ ⎪⎝⎭,10,1,2N ⎛⎫ ⎪⎝⎭,11,,022O ⎛⎫ ⎪⎝⎭,所以111,,222OM ⎛⎫=- ⎪⎝⎭,设(),,P x y z ,则1,1,2NP x y z ⎛⎫=-- ⎪⎝⎭,因为NP MO ⊥,所以0NP OM ⋅=所以()1111102222x y z ⎛⎫--+-= ⎪⎝⎭,即2221x y z -+=-,令0z =,当12x =时,1y =;当0x =时,12y =; 取1,1,02E ⎛⎫ ⎪⎝⎭,10,,02F ⎛⎫⎪⎝⎭,连接EF ,FN ,NE ,则11,,022EF ⎛⎫=-- ⎪⎝⎭,11,0,22EN ⎛⎫=- ⎪⎝⎭,则111110022222EF OM ⎛⎫⎛⎫⋅=-⨯+-⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭,111110022222EN OM ⎛⎫⋅=-⨯+⨯-+⨯= ⎪⎝⎭,所以EF OM ⊥,EN OM ⊥,又EF EN E ⋂=,且EF ⊂平面EFN ,EN ⊂平面EFN , 所以OM ⊥平面EFN ,所以,为使NP OM ⊥,必有点P ∈平面EFN ,又点P 在正方体的表面上运动, 所以点P 的轨迹为正三角形EFN ,故C 错误;因此点P 不可能是棱1BB 的中点,故A 错误;线段NP 的最大值为NF =B 正确;点P =D 错误; 故选:B5.(广东省深圳市平冈高级中学高三上学期9月第一次月考)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F ∥平面A 1BE ,则F 在侧面CDD 1C 1上的轨迹的长度是()A .aB .2aC D【答案】D 【分析】过1B 做与平面1A BE 平行的平面,该平面与侧面11CDD C 的交线,即为满足条件的轨迹,求解即可. 【详解】设G ,H ,I 分别为CD ,CC 1,C 1D 1边上的中点, 连接B 1I ,B 1H ,IH ,CD 1,EG ,BG ,则1A B ∥1CD ∥GE , 所以A 1,B ,E ,G 四点共面,由1B H ∥11,A E A E ⊄平面B 1HI ,1B H ⊂平面B 1HI , 所以A 1E ∥平面B 1HI ,同理A 1B ∥平面B 1HI , 111A BA E A =,所以平面A 1BGE ∥平面B 1HI ,又因为B 1F ∥平面A 1BE ,所以F 落在线段HI 上,因为正方体ABCD -A 1B 1C 1D 1的棱长为a ,所以112HI CD ==,即F 在侧面CDD 1C 1.故选:D. 6.(湖南省永州市高三上学期第一次适应性考试)已知在三棱锥S ABC -中,D 为线段AB 的中点,点E 在SBC △(含边界位置)内,则满足//DE 平面SAC 的点E 的轨迹为() A .线段SB ,BC 的中点连接而成的线段B .线段SB 的中点与线段BC 靠近点B 的三等分点连接而成的线段 C .线段BC 的中点与线段SB 靠近点B 的三等分点连接而成的线段D .线段BC 靠近点B 的三等分点与线段SB 靠近点B 的三等分点连接而成的线段 【答案】A【分析】利用面面平行得到线面平行,即可. 【详解】解:如图所示,P 、Q 分别为线段SB ,BC 的中点, 所以//PQ SC ,//,DQ AC PQ ⊄平面SAC ,AC ⊂平面SAC ,所以//PQ 平面SAC ,同理//DQ 平面SAC ,PQ DQ Q =,所以平面//PDQ 平面SAC ,若DE ⊆平面PDQ ,则会有//DE 平面SAC , 故点E 的轨迹为线段SB ,BC 的中点连接而成的线段, 故选A.7.(辽宁省实验中学上学期联考)已知正六棱柱111111ABCDEF A B C D E F -点P 在棱1AA上运动,点Q 在底面ABCDEF 内运动,PQ =R 为PQ 的中点,则动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分的体积为()A B C D 【答案】B【分析】根据题意,可判断出动点R 的轨迹为球,结合球的体积公式,即可求解. 【详解】由直角三角形的性质得AR ,所以点R 在以A 因为23BAF π∠=,所以动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分16球,其体积为31463π⨯=⎝⎭.故选:B.8.四棱锥P OABC -中,底面OABC 是正方形,OP OA ⊥,OA OP a ==.D 是棱OP 上的一动点,E是正方形OABC 内一动点,DE 的中点为Q ,当DE a =时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是()A .B .C .D .6【答案】B【分析】 首先假设OP OC ⊥,将四棱锥P OABC -放在正方体中,然后根据直角三角形斜边中线等于斜边的一半求得12OQ a =,得到点Q 的轨迹,最后根据题意列出方程求出a 的值 . 【详解】由题意不妨设OP OC ⊥,又OP OA ⊥,底面OABC 是正方形,所以可将四棱锥P OABC -放在一个正方体内,所以DO ⊥面OABC ,又OE ⊂面OABC ,则DO OE ⊥,又DE 的中点为Q , 所以1122OQ DE a ==,即Q 的轨迹是以O 为球心,12OQ a =为半径的球,且点Q 恒在正方体内部, 又因为8个一样的正方体放在一起,点Q 的轨迹就可以围成一个完整的球,所以Q 的轨迹是以O 为球心,12OQ a =为半径的球的18球面,所以2114382a ππ⎛⎫⨯= ⎪⎝⎭,解得a = 故选:B9.棱长为a 的正方体1111ABCD A B C D -中,点P 在平面..1111D C B A 内运动,点1B 到直线DP 的距离为定值,若动点P 的轨迹为椭圆,则此定值可能..为()A B C D 【答案】A【分析】设1B DP α∠=,分析出点P 在以1DB 为轴的圆锥的侧面上,计算出d <,并分析出45a ¹o ,可得出d ≠,由此可得出合适的选项. 【详解】如下图所示:因为点1B 到直线DP 的距离为定值,所以,点P 在以1DB 为轴的圆锥的侧面上,因为点P 的轨迹为椭圆,即圆锥被平面1111D C B A 所截的截面为椭圆,设圆锥轴截面的半顶角为α,则点1B 到直线DP 的距离为1sin sin d B D αα==<, 当截面与圆锥的母线平行时,即45α=时,截面为抛物线,不合乎题意,所以,6sin 452d ≠=. 综合选择,可知A 选项合乎题意.故选:A.10.(上海市建平中学期中)已知菱形ABCD 边长为2,60ABC ∠=︒,沿对角线AC 折叠成三棱锥B ACD '-,使得二面角B AC D '--为60°,设E 为B C '的中点,F 为三棱锥B ACD '-表面上动点,且总满足AC EF ⊥,则点F 轨迹的长度为()A .B .CD 【答案】D【分析】。

高考数学《立体几何》判断命题题型总汇

高考数学《立体几何》判断命题题型总汇

高考《立体几何》判断命题题型2008年高考1.(某某文理).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是()A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖2.(某某文)已知平面α⊥平面β,l αβ=,点A α∈,A l ∉,直线AB l ∥,直线AC l ⊥,直线m m αβ∥,∥,则下列四种位置关系中,不一定成立的是()A .AB m ∥ B .AC m ⊥C .AB β∥D .AC β⊥3.(某某文)已知直线m,n 和平面βα,满足βα⊥⊥⊥,,a m n m ,则 ( ).A n β⊥,//.βn B 或β⊂n α⊥n C .,//.αn D 或α⊂n4(某某理)设有直线m 、n 和平面α、β.下列四个命题中,正确的是( )A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α5.(某某文).设直线m 与平面α相交但不垂直,则下列说法中正确的是()A .在平面α内有且只有一条直线与直线m 垂直B .过直线m 有且只有一个平面与平面α垂直C .与直线m 垂直的直线不可能与平面α平行D .与直线m 平行的平面不可能与平面α垂直6.(某某文理)给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A.充分非必要条件 B.必要非充分条件 C .充要条件 D.既非充分又非必要条件7.(某某文理) 设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是()A .a b αβαβ⊥⊥,∥,B .a b αβαβ⊥⊥,,∥C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,8. (某某9)对两条不相交的空间直线a 和b ,必定存在平面α,使得 ( )A .,a b αα⊂⊂B .,//a b αα⊂C .,a b αα⊥⊥D .,a b αα⊂⊥2007年高考1.()平面α∥平面β的一个充分条件是( )A .存在一条直线a a ααβ,∥,∥B .存在一条直线a a a αβ⊂,,∥C .存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥D .存在两条异面直线a b a a b αβα⊂,,,∥,∥2.(某某)设l ,m ,n 均为直线,其中m ,n 在平面α内,“l α⊥”是l m ⊥且“l n ⊥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(某某)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是()A .,,//,////m n m n ααββαβ⊂⊂⇒B .,//m m n n αα⊥⊥⇒C .//,,//m n m n αβαβ⊂⊂⇒D .//,m n n m αα⊥⇒⊥4.(某某)平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是1m 和1n ,给出下列四个命题:①1m ⊥1n ⇒m ⊥n ;②m ⊥n ⇒1m ⊥1n ; ③1m 与1n 相交⇒m 与n 相交或重合;④1m 与1n 平行⇒m 与n 平行或重合;其中不正确的命题个数是()A.1B.2C.3D.45.(某某)已知两条直线,m n ,两个平面,αβ,给出下面四个命题:①//,m n m n αα⊥⇒⊥②//,,//m n m n αβαβ⊂⊂⇒③//,////m n m n αα⇒④//,//,m n m n αβαβ⊥⇒⊥其中正确命题的序号是()A .①③B .②④C .①④D .②③6.(某某)若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题是()A .若m βαβ⊂⊥,,则m α⊥B .若m αγ=n βγ=,m n ∥,则αβ∥C .若m β⊥,m α∥,则αβ⊥D .若αγ⊥,αβ⊥,则βγ⊥7.(某某)设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是() A.若a b ,与α所成的角相等,则a b ∥B.若a b αβ,∥∥,αβ∥,则a b ∥ C.若a b a b αβ⊂⊂,,∥,则αβ∥D.若a b αβ⊥⊥,,αβ⊥,则a b ⊥8.(某某)若P 是两条异面直线,l m 外的任意一点,则()A .过点P 有且仅有一条直线与,l m 都平行B .过点P 有且仅有一条直线与,l m 都垂直C .过点P 有且仅有一条直线与,l m 都相交D .过点P 有且仅有一条直线与,l m 都异面 2006年高考1.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 A.充分非必要条件 B.必要非充分条件 C .充要条件 D.既非充分又非必要条件2.设A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正确的是()(A )若AC 与BD 共面,则AD 与BC 共面(B )若AC 与BD 是异面直线,则AD 与BC 是异面直线(C) 若AB =AC ,DB =DC ,则AD =BC(D) 若AB =AC ,DB =DC ,则AD ⊥BC3. 对于任意的直线l 与平同a ,在平面a 内必有直线m ,使m 与l ()(A)平行 (B )相交 (C)垂直 (D)互为异面直线4.m 、n 是空间两条不同直线,αβ、是空间两条不同平面,下面有四个命题:①,;m n m n αβαβ⊥⇒⊥, ②,,;m n m n αβαβ⊥⊥⇒ ③,,;m n m n αβαβ⊥⇒⊥ ④,,;m m n n ααββ⊥⇒⊥ 其中真命题的编号是________(写出所有真命题的编号)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学立体几何题型总结
高考数学中的立体几何是一个重要的题型,它涉及到空间中各种图形的计算、分析和推导。

本文将对高考数学中常见的立体几何题型进行总结和分析。

一、空间几何体的计算
这种题型主要涉及到空间几何体的计算,包括立方体、长方体、正方体、圆锥、圆柱、球等。

通常需要求出它们的表面积、体积、侧面积等。

二、空间几何体的推导
这种题型主要根据给定的条件,推导出空间几何体的性质和关系。

如:
1.根据两个底面和高的长度,求出一个棱锥的体积。

2.已知一个球的体积,求出它的半径。

3.已知一个棱柱的高和底面形状,求出它的体积。

三、空间几何体的立体图形分析
这种题型主要涉及到空间几何体的立体图形分析,通常需要进行裁剪、拼接、变形等操作。

如:
1.已知一个长方体的长、宽、高,将它分成两个体积相等的部分。

2.将一个棱锥剖成两个部分,使得它们的体积相等。

四、空间几何体的立体坐标
这种题型主要涉及到空间几何体的立体坐标,通常需要根据坐标系中给定的点、直线、平面等条件,求出几何体的坐标、面积、体积
等。

如:
1.已知一个立方体的坐标,求出它的体积和表面积。

2.已知一个球的坐标和半径,求出它的体积和表面积。

以上就是高考数学中常见的立体几何题型总结。

想要在考试中得高分,需要对这些题型进行深入的理解和掌握。

相关文档
最新文档