简述运动规律的概念和特点
第四章曲线运动第三节圆周运动的基本概念和规律

►
知识点二 匀速圆周运动
保持不变 的圆周运动. 1.定义:线速度大小____________ 2.性质:向心加速度大小不变,方向____________ 时刻变化 ,是 变加速曲线运动. 大小不变 ,方向始终与速度方向垂直 3.条件:合力____________ 且指向圆心.
2017/7/29
►
2017/7/29
变式题 如图 18-5 所示,两段长均为 L 的轻质线共同系 住一个质量为 m 的小球, 另一端分别固定在等高的 A、 B 两点, A、B 两点间距也为 L.现使小球在竖直平面内做圆周运动,当 小球到达最高点时速率为 v,两段线中张力恰好均为零;若小 球到达最高点时速率为 2v,则此时每段线中张力大小为( A.2 3mg B. 3mg C.3mg D.4mg )
2017/7/29
2017/7/29
[答案] C
[解析] 在松手前,甲、乙两小孩做圆周运动的向心力均由静 摩擦力及拉力的合力提供, 且静摩擦力均达到了最大静摩擦力. 因 为这两个小孩在同一个圆盘上转动,故角速度 ω 相同,设此时手 中的拉力为 F, 则对甲: fm-F=mω2R 甲, 对乙: F+fm=mω2R 乙.当 松手时,F=0,乙所受的最大静摩擦力小于所需要的向心力,故 乙做离心运动,然后落入水中;甲所受的静摩擦力变小,直至与它 所需要的向心力相等, 故甲仍随圆盘一起做匀速圆周运动, 选项 C 正确.
2017/7/29
[点评] 解决圆周运动问题的基本步骤: (1)审清题意,确定研究对象; (2)分析物体的运动情况,即物体的线速度、角速度、周期、 轨道平面、圆心、半径等; (3)分析物体的受力情况,画出受力示意图,并确定向心力的 来源; (4) 根据牛顿第二定律列方程; (5)求解,必要时进行讨论.
高一物理机械振动及其产生条件;简谐运动的特点、规律北师大版知识精讲

高一物理机械振动及其产生条件;简谐运动的特点、规律北师大版【本讲教育信息】一. 教学内容:机械振动及其产生条件;简谐运动的特点、规律;简谐运动的图像二. 知识总结归纳1. 机械振动及其产生条件:机械振动是指物体(或物体的一部分)在某一中心位置两侧所做的往复运动。
它的产生条件是:回复力不为零;阻力足够小。
回复力是使振动物体回到平衡位置的力。
它是以效果命名的力,类似于向心力,一般由振动方向上的某个力或某几个力的合力来提供。
2. 简谐运动的特点:回复力的大小与位移大小始终成正比,方向始终相反,即符合公式F =-kx 。
这也是判断一个机械振动是否是简谐运动的依据。
我们常见的两个简谐运动模型是弹簧振子和单摆。
大家想一想这两个典型运动的回复力由哪些力提供?在这里需要强调两个概念:一是平衡位置。
平衡位置是指物体在振动方向上所受合力为零的位置。
简谐运动一定有平衡位置,而机械振动有中心位置,不一定有平衡位置。
另一个是位移。
振动中物体的位移是表示物体即时位置的物理量,它始终以平衡位置为初始位置,可以用一个由平衡位置指向某一时刻位置的有向线段来表示。
3. 简谐运动的规律:简谐运动是一种复杂的非匀变速运动,要结合牛顿运动定律、动量定理、动能定理、机械能守恒定律来分析解决简谐运动的问题。
(1)简谐运动的对称性:振动物体在振动的过程中,在关于平衡位置对称的位置上,描述物体振动状态的物理量(位移、速度、加速度、动量、动能、势能等)大小相等。
(2)简谐运动的周期性:振动物体完成一次全振动(或振动经过一个周期),描述物体振动状态的物理量(位移、速度、加速度、动量、动能、势能等)又恢复到和原来一样。
简谐运动的周期是由振动系统的特性决定的,与振幅无关。
弹簧振子的周期只决定于弹簧的劲度系数和振子的质量,与其放置的环境和方式无关。
单摆在小角度摆动下的振动可视为简谐运动,其周期公式为=,其T 2 L g中L 为摆长(悬点到球心间的距离),g 为重力加速度,单摆周期与振幅、摆球质量无关。
公转与自转知识点总结

公转与自转知识点总结一、公转的概念和特点1.1 公转的概念公转是指天体围绕着另一个天体旋转的运动形式。
例如,地球围绕太阳旋转、月球围绕地球旋转都是公转的运动。
在这种运动中,天体的位置和轨道都是固定的,而围绕其公转的天体则是受到引力作用产生的距离和速度变化,因此公转是一个周期性的运动。
1.2 公转的特点公转是一个重要的天体运动形式,它决定了天体的轨道和周期性运动。
其特点主要表现在以下几个方面:(1)周期性:公转是一个周期性的运动,天体围绕着另一个天体沿着固定的轨道进行旋转,形成不断重复的运动过程。
例如,地球围绕太阳的公转周期为一年。
(2)椭圆轨道:在公转运动中,天体的轨道通常是椭圆形的,这是由于天体之间的引力作用导致的。
例如,地球围绕太阳的轨道就是一个稍微偏离圆形的椭圆。
(3)公转速度:根据开普勒定律,天体的公转速度与其距离天体的距离成反比。
即离地球越近的行星,公转速度越快,反之越慢。
(4)公转轴倾斜:在公转运动中,天体的轴倾角通常会发生变化,这是由于引力和惯性力的作用所致。
例如,地球的自转轴倾角就会周期性地发生变化。
二、自转的概念和特点2.1 自转的概念自转是指天体本身围绕自身轴线旋转的运动形式。
在自转运动中,天体的自转轴通常是固定的,而围绕自转轴旋转的则是天体本身。
例如,地球的自转就是指地球围绕自身轴旋转。
2.2 自转的特点自转是天体的基本运动形式之一,它决定了天体的日夜交替、自身的形态和旋转速度。
其特点主要表现在以下几个方面:(1)周期性:自转也是一个周期性的运动,天体围绕自身轴进行旋转,形成不断重复的运动过程。
例如,地球的自转周期为一天。
(2)自转轴:在自转运动中,天体的自转轴通常是固定的,不会随着时间的推移而发生改变。
例如,地球的自转轴指向恒星北极星。
(3)自转速度:天体的自转速度通常是固定的,与其自身形态和密度有关。
例如,地球的赤道速度约为1670公里/小时。
(4)自转倾角:自转倾角是指天体自转轴与其轨道平面的夹角,它的大小会影响天体的季节变化。
运动学进阶曲线运动与圆周运动的分析与计算

运动学进阶曲线运动与圆周运动的分析与计算运动学进阶—曲线运动与圆周运动的分析与计算运动学是研究物体运动规律的分支学科。
在运动学的基础上,曲线运动和圆周运动是其中的两个重要概念。
本文将对曲线运动和圆周运动进行分析与计算,探究其特点和运动规律。
一、曲线运动曲线运动指物体在运动过程中路径不是直线的运动。
曲线运动可以分为弯曲运动和曲线运动两种情况。
1. 弯曲运动弯曲运动是物体运动轨迹发生局部弯曲的运动形式。
其运动轨迹可以被细分为多个小段,每一小段都可以看作是近似的直线运动。
通过将这些小段拼接起来,就可以计算整个曲线运动的特性。
2. 曲线运动曲线运动是物体在运动过程中路径发生连续弯曲的运动形式。
物体在曲线运动中会存在曲率变化的情况,这对于运动的分析与计算带来一定的困难。
研究曲线运动可以通过运动的微分几何学方法,对曲线的切线、曲率等进行精确计算和描述。
二、圆周运动圆周运动是物体在平面内绕固定点做圆形轨迹的运动形式。
圆周运动具有以下特点:1. 半径恒定在圆周运动中,物体到圆心的距离是恒定的。
这个距离称为圆周运动的半径,通常用字母r表示。
半径的长短对圆周运动的速度和加速度有重要影响。
2. 速度大小与角速度成正比在圆周运动中,物体的速度大小与角速度成正比。
角速度是物体单位时间内旋转的角度,它的单位是弧度/秒。
速度的大小可以通过以下公式计算:v = ω * r,其中v表示速度大小,ω表示角速度,r表示半径。
3. 向心加速度与速度平方成正比圆周运动物体的向心加速度是指指向轨迹圆心的加速度。
向心加速度的大小与速度的平方成正比。
向心加速度的大小可以通过以下公式计算:a = v² / r,其中a表示向心加速度,v表示速度大小,r表示半径。
三、曲线运动与圆周运动的比较与应用1. 特点比较曲线运动相比于圆周运动更为复杂,曲率的变化对于运动的分析和计算带来更多的挑战。
而圆周运动在分析与计算上相对简单,可以通过一些简洁的公式进行求解。
高中地理基础知识复习-第一章行星地球-第四节 地球公转的地理意义(一)——基本特征及昼夜长短的变化

B.东南 D.西南
()
6.北京下一次 06:42(北京时间)日出时,最接近下列哪个节日
()
A.中秋节
B.植树节
C.端午节
D.国庆节
解析:第 5 题,根据两地日出时间判断,甲地比北京更晚日出,故甲地位
于北京的西面。10 月 31 日,太阳直射点位于南半球,除出现极昼极夜的
地区外,昼长由北向南逐渐变长;此时,北京昼长 10 小时 31 分,甲地昼
3.对称性规律 在太阳直射同一纬度的两个日期时,昼夜长短状况相同。这
时间 两个日期是关于夏至日或冬至日是对称的。如 6 月 12 日(夏 对称 至日前 10 天)与 7 月 2 日(夏至日后 10 天)的两天中,某地的
昼夜长短状况相同 南北半球纬度数相同的地区昼夜长短“对称”分布,即北半 空间 球各地的昼长与南半球相同纬度的夜长相等。例如,23°26′N 对称 的昼长等于 23°26′S 的夜长
机的正上方,C 错,D 正确。 [答案] (1)A (2)D
题点(一) 昼夜长短分布规律
如图为某一日期甲、乙、丙、丁四个地点的昼长状况
图。读图完成 1~2 题。
1.从南北半球来看,甲、乙、丙、丁四个地点中
A.甲位于南半球,乙位于北半球
()
B.乙与丙位于同一半球
C.丙位于北半球,丁位于南半球
D.甲与丁不在同一半球
a 与 b 两个时间的昼长、夜长是相同的,c 与 d 两个时间的昼长、夜长也 是相同的;b 与 c 两个时间中,b 时间的昼长等于 c 时间的夜长。
[典题例析]
(2021 年 1 月新高考 8 省联考·河北卷)飞机于地方时 5 时
30 分日出时刻从甲地出发,匀速飞行,降落乙地时正值日落,
物质运动规律

02
牛顿运动定律及其在日常生活中的应用
牛顿第一定律:惯性定律
惯性定律描述
惯性定律应用
• 当物体不受外力作用时,物体将保持静止状态或匀速直
• 在汽车突然刹车时,车内的乘客会向前冲,因为乘客具
线运动
有惯性
• 惯性定律揭示了物体的惯性,即物体保持原有运动状态
• 在桌面上放置的书本,当桌子突然被拉开时,书本会沿
的性质
着原来的方向滑落,因为书本具有惯性
牛顿第二定律:力的作用与加速度
牛顿第二定律表达式
牛顿第二定律应用
• F = ma
• 在弹簧秤上挂一个物体,当物体重量增加时,弹簧秤的
• F 代表作用力,m 代表物体质量,a 代表物体加速度
读数也会增加,因为作用力与加速度成正比
动量守恒定律应用
• 在工程力学中,可以通过动量守恒定律计算物体受到的冲量和碰撞过程中的速度
变化
• 在物理实验中,可以通过动量守恒定律设计实验方案和测量数据
动量守恒定律实例
• 在台球运动中,碰撞后的两个球动量之和保持不变
• 在火箭发射过程中,火箭的动量增加,火箭燃料的动量减少
角动量守恒定律及其与动量守恒定律的关系
• 宏观运动运动
• 微观运动是指微观粒子(如原子、分子等)的运动
• 微观运动的特点是速度较快,加速度较大
• 微观运动的研究方法主要是量子力学
⌛️
量子运动
• 量子运动是指量子系统(如电子、光子等)的运动
• 量子运动的特点是波粒二象性和不确定性原理
• 量子运动的研究方法主要是量子力学
• 在信息技术、材料科学等领域,量子力学为电子器件设
1、深刻理解简谐运动、振幅、周期和频率的概念

机械振动和机械波考点例析一、夯实基础知识1、深刻理解简谐运动、振幅、周期和频率的概念(1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
特征是:F=-kx,a=-kx/m(2)简谐运动的规律:○1在平衡位置: 速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。
○2在离开平衡位置最远时: 速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。
○3振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。
加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。
(3)振幅A :振动物体离开平衡位置的最大距离称为振幅。
它是描述振动强弱的物理量。
它是标量。
(4)周期T 和频率f :振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹(Hz )。
周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f.2、深刻理解单摆的概念(1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。
(2)单摆的特点:○1单摆是实际摆的理想化,是一个理想模型; ○2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100时,单摆的振动是简谐运动,其振动周期T=gL π2。
(3)单摆的应用:○1计时器;○2测定重力加速度g=224TL π.3、深刻理解受迫振动和共振(1)受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。
(2)共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。
关于动画运动规律的一些基本概念 一

关于动画运动规律的一些基本概念一关于动画运动规律的一些基本概念关于运动规律的一些基本概念动画片中的活动形象,不象其它影片那样,用胶片直接拍摄客观物体的运动,而是通过对客观物体运动的观察、分析、研究,用动画片的表现手法(主要是夸张、强调动作过中的某些方面),一张张地画出来,一格格地拍出来,然后连续放映,使之在银幕上活动起来的。
因此,动画片表现物体的运动规律既要以客观物体的运动规律为基础,但又有它自已的特点,而不是简单的模拟。
研究动画片表现物体的运动规律,首先要弄清时间、空间、张数、速度的概念及彼此之间的相互关系,从而掌握规律,处理好动画片中动作的节奏一、时间所谓“时间”,是指影片中物体(包括生物和非生物)在完成某一动作时所需的时间长度,这一动作所占胶片的长度(片格的多少)。
这一动作所需的时间长,其所占片格的数量就多;动作所需的时间短,其所占的片格数量就少。
由于动画片中的动作节奏比较快,镜头比较短(一部放映十分钟的动画片大约分切为100-200个镜头),因此在计算一个镜头或一个动作的时间(长度)时,要求更精确一些,除了以秒(呎)为单位外,往外还要以“格”为单位(1秒=24格,1呎=16格)。
动画片计算时间使用的工具是秒表。
在想好动作后,自己一面做动作,一面用秒表测时间;也可以一个人做动作,另一个人测时间。
对于有些无法做出的动作,如孙悟空在空中翻筋斗,雄鹰在高空翱翔或是大雪纷飞乌云翻滚等,往往用手势做些比拟动作,同时用秒表测时间,或根据自己的经验,用脑子默算的办法确定这类动作所需的时间。
对于有些自己不太熟悉的动作,也可以采取拍摄动作参考片的办法,把动作记录下来,然后计算这一动作在胶片上所占的长度(呎数、格数),确定所需的时间。
我们在实践中发现,完成同样的动作,动画片所占胶片的长度比故事片、记录片要略短一些。
例如,用胶片拍摄真人以正常速度走路,如果每步是14格,那么动画片往往只要拍12格,就可以造成真人每步用14格的速度走路的效果;如果动画片也用14格,在银幕上就会感到比真人每步用14格走路的速度要略慢一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述运动规律的概念和特点
运动规律是指在一定条件下,描述物体或系统运动的数量关系的规律。
它揭示了物体或系统运动的规律性,是物理学研究中的重要内容之一。
运动规律包括牛顿运动定律、运动方程、运动轨迹等。
运动规律有以下几个特点:
1.客观性:运动规律是客观存在的,不受人的主观意识和意愿的影响。
无论人们是否承认、知晓这些规律,物体或系统的运动都会按照规律进行。
2.客观性:运动规律是普遍存在的,具有普遍性。
它们适用于任何物体或系统的运动,不论其大小、质量、形状等的差异。
3.科学性:运动规律是科学研究的成果,是对实验观测和理论分析的总结和总结。
运动规律经过科学验证和实验检验,具有科学性和可靠性。
4.数量性:运动规律是数量关系的规律,运动的速度、加速度、位移等可以用数值表示和计算。
通过数学和物理方法,可以精确地描述和计算物体或系统的运动。
5.相对性:运动规律是相对的,是与其他物体或参考系相对的。
物体的运动状态和运动规律与观测者的运动状态和参考系的选择有关。
运动规律的概念和特点可以通过运动方程、牛顿运动定律和运动轨迹等进行具体说明。
运动方程是描述运动物体位移、速度和加速度的数学关系。
对于匀速直线运动,位移S与时间t的关系可以用S = vt表示,其中v是物体的速度;对于匀加速直线运动,位移S与时间t的关系可以用S = ut + 1/2at^2表示,其中u是物体的初速度,a是物体的加速度。
这些方程在描述物体的运动中,揭示了位移、速度和加速度之间的数量关系。
牛顿运动定律是描述物体运动的基本规律。
牛顿第一定律(惯性定律)指出,物体在不受力或受力平衡的情况下,将保持静止或匀速直线运动。
牛顿第二定律(力学定律)指出,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
牛顿第三定律(作用-反作用定律)指出,相互作用的两个物体之间的力大小相等、方向相反。
牛顿运动定律揭示了物体运动的原因和影响因素,揭示了力和物体的运动之间的关系。
运动轨迹是描述物体运动路径的几何形状。
在不同的运动条件下,物体的运动轨迹会有所不同。
例如,匀速直线运动的物体运动轨迹是一条直线;匀速圆周运动的物体运动轨迹是一个圆;匀加速直线运动的物体运动轨迹是一条抛物线。
运动轨迹揭示了物体运动的形态和运动路径。
总之,运动规律描述了物体或系统运动的数量关系,具有客观性、科学性、数量
性等特点。
在物理学研究中,运动规律是基本的理论规律,对于研究物体或系统的运动行为具有重要意义。