高二年级下学期数学重点知识点
高二下学期数学知识点总结

【导语】因为⾼⼆开始努⼒,所以前⾯的知识肯定有⼀定的⽋缺,这就要求⾃⼰要制定⼀定的计划,更要⽐别⼈付出更多的努⼒,相信付出的汗⽔不会⽩⽩流淌的,收获总是⾃⼰的。
⾼⼆频道为你整理了《⾼⼆下学期数学知识点总结》,助你⾦榜题名!【篇⼀】⾼⼆下学期数学知识点总结 1.定义法: 判断B是A的条件,实际上就是判断B=>A或者A=>B是否成⽴,只要把题⽬中所给的条件按逻辑关系画出箭头⽰意图,再利⽤定义判断即可。
2.转换法: 当所给命题的充要条件不易判断时,可对命题进⾏等价装换,例如改⽤其逆否命题进⾏判断。
3.集合法 在命题的条件和结论间的关系判断有困难时,可从集合的⾓度考虑,记条件p、q对应的集合分别为A、B,则: 若A⊆B,则p是q的充分条件。
若A⊇B,则p是q的必要条件。
若A=B,则p是q的充要条件。
若A⊈B,且B⊉A,则p是q的既不充分也不必要条件。
【篇⼆】⾼⼆下学期数学知识点总结 1.抛物线是轴对称图形。
对称轴为直线 x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有⼀个顶点P,坐标为 P(-b/2a,(4ac-b^2)/4a) 当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.⼆次项系数a决定抛物线的开⼝⽅向和⼤⼩。
当a>0时,抛物线向上开⼝;当a<0时,抛物线向下开⼝。
|a|越⼤,则抛物线的开⼝越⼩。
4.⼀次项系数b和⼆次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
高二下册数学知识点总结

高二下册数学知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高二下册数学知识点总结本店铺为各位同学整理了《高二下册数学知识点总结》,希望对你的学习有所帮助!1.高二下册数学知识点总结篇一圆与圆的位置关系1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论。
高二下数学知识点

高二下数学知识点
高二下数学主要涵盖以下几个知识点:
1. 三角函数:三角函数是描述角度和边长之间关系的函数。
常见的三角函数有正弦函数、余弦函数、正切函数等。
它们在几何中的应用广泛,例如用于求解三角形的边长和角度。
2. 导数与微分:导数是描述函数变化率的概念,表示函数在某一点的瞬时变化速率。
微分是导数的几何意义,表示函数在某一点的切线斜率。
导数与微分在数学和物理等领域中有广泛的应用,例如求解函数的最值、描述曲线的形状等。
3. 不等式与函数的图像:不等式是描述数值关系的一种表达形式,函数的图像是函数在坐标系中的可视化表示。
学习不等式和函数的图像可以帮助我们理解函数的性质及其在数学和实际问题中的应用。
4. 数列与数列的求和:数列是按照一定规律排列的一组数,求和是将数列中的元素相加得到一个结果。
数列与求和在数学和实际问题中都有广泛的应用,例如在金融领域中用于计算投资的复利、在计算机科学中用于算法和数据结构等。
5. 二次函数与二次方程:二次函数是一个二次多项式函数,二次方程则是一个二次多项式的等式。
学习二次函数和二次方程可以帮助我们理解曲线的形状、解决实际问题以及解决数学中的各种方程和不等式。
以上是高二下学期数学的主要知识点,希望对您有所帮助。
如果您还有其他问题,请随时提出。
高二年级下学期数学复习知识点

高二年级下学期数学复习知识点【导语】高二变化的大背景,便是文理分科(或七选三)。
在对各个学科都有了初步了解后,学生们需要对自己未来的发展科目有所挑选、有所侧重。
这可谓是学生们第一次完全自己掌控、风险未知的主动挑选。
作者高二频道为你整理了《高二年级下学期数学复习知识点》,助你金榜题名!1.高二年级下学期数学复习知识点空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)2.高二年级下学期数学复习知识点一、变量间的相干关系常见的两变量之间的关系有两类:一类是函数关系,另一类是相干关系;与函数关系不同,相干关系是一种非肯定性关系.从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相干关系称为正相干,点散布在左上角到右下角的区域内,两个变量的相干关系为负相干.二、两个变量的线性相干从散点图上看,如果这些点从整体上看大致散布在通过散点图中心的一条直线邻近,称两个变量之间具有线性相干关系,这条直线叫回来直线.当r>0时,表明两个变量正相干;当r<0时,表明两个变量负相干.r的绝对值越接近于1,表明两个变量的线性相干性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相干关系.通常|r|大于0.75时,认为两个变量有很强的线性相干性.三、解题方法相干关系的判定方法一是利用散点图直观判定,二是利用相干系数作出判定.对于由散点图作出相干性判定时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相干性,若呈曲线型也是有相干性.由相干系数r判定时|r|越趋近于1相干性越强.3.高二年级下学期数学复习知识点复合函数定义域若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合推敲各部分的x的取值范畴,取他们的交集。
高二下册数学知识点人教版

高二下册数学知识点人教版高二下册的数学知识点包含了各个方面的数学内容,从代数、几何到概率统计等等。
下面将对其中一些重要的知识点进行介绍。
一、代数部分:1. 幂指数运算:包括幂运算的定义与性质、指数运算规律、零指数与负指数的运算等。
2. 二次函数与二次方程:包括二次函数的定义、图像特征、二次方程的求解方法等。
3. 多项式函数与方程:包括多项式函数的表示与性质、多项式函数图像分析、多项式方程解法等。
4. 不等式与绝对值:包括一元一次不等式与一元二次不等式的解法、绝对值与绝对值不等式的性质与解法等。
二、几何部分:1. 平面几何基础知识:包括平行线与垂直线的性质、三角形的性质与判定等。
2. 二维几何应用题:包括面积计算问题、角度测量问题、相似与全等三角形等。
3. 空间几何基础知识:包括空间中的角的概念与性质、空间图形的投影与轴测、空间几何体的表面积与体积等。
三、概率统计部分:1. 随机事件与概率:包括随机事件的定义与运算、概率的基本概念与性质等。
2. 统计与抽样:包括频率分布表与频率直方图、统计量与抽样分布等。
四、函数部分:1. 常用函数与函数的运算:包括一元一次函数、二次函数、指数函数、对数函数等常用函数的性质与运算。
2. 函数的图像与性质:包括函数图像的绘制、函数的奇偶性与周期性、函数的单调性与最值等。
五、解析几何部分:1. 坐标系与距离:包括坐标系的建立与性质、点与点之间的距离计算等。
2. 直线方程与圆方程:包括直线的方程、直线与圆的位置关系、圆的方程等。
六、导数与微分部分:1. 导数的定义与求法:包括导数基本定义、导数的四则运算与求法、高阶导数与隐函数求导等。
2. 函数的极值与最值:包括函数的单调性与极值判定、函数的最值计算等。
以上仅为高二下册数学知识点的部分内容,通过学习这些知识点,可以全面掌握数学的基础概念与方法,为高三的数学学习打下坚实的基础。
希望同学们能够认真学习,逐步提高自己的数学水平,取得优异的成绩。
高二下数学知识点总结.doc

高二数学知识点总结大全(必修)第1章 空间几何体11 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则:长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R S π= (二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)222r rl S ππ+= DC BA α(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
最全面高二下册数学知识点归纳总结

最全面高二下册数学知识点归纳总结高二下册数学是一门重要的学科,它-般分为三个大的部分:函数、解析几何和概率统计。
下面我就从这三个部分进行总结。
一、函数部分1. 函数的概念与性质:自变量、因变量、定义域、值域、单调性、奇偶性、周期性等。
2. 常见函数:一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等,以及它们的图像、性质和应用。
3. 函数运算:函数的和、差、积、商、复合等,以及它们的性质和应用。
4. 导数:导数的定义、符号表示、求导法则、导数的应用(函数的单调性、最值、曲线的切线方程等)。
5. 等差数列与等比数列:概念、通项公式、求和公式、应用等。
二、解析几何部分1. 空间解析几何:向量的概念、数量积、向量积、三角形面积、空间平面及其方程、直线及其方程、平面与直线的位置关系等。
2. 解析几何中的圆:圆的方程、切线、法线、过定点的圆等。
3. 空间直角坐标系中曲面方程的解法:一次曲面、二次曲面、旋转曲面(二次曲面、抛物面)、双曲面等。
三、概率统计部分1. 随机变量:离散型随机变量、连续型随机变量、随机变量的分布函数。
2. 概率论的基础概念:概率、条件概率、全概率公式、贝叶斯公式等。
3. 常见的概率分布:离散型分布(0-1分布、二项分布、泊松分布等)和连续型分布(均匀分布、正态分布、指数分布等)。
4. 统计学基础知识:统计量、假设检验、方差分析、回归分析等。
总体说来,高二下册数学为数学爱好者或者数学专业者提供了更加深入和广泛的数学知识,需要更加努力的学习和理解。
在高二下册数学学习中,学生需要更加深入地了解函数、解析几何和概率统计等方面的知识,为以后成功的学习和职业生涯打下基础。
在函数部分,学生需要掌握各种函数的性质和应用,如幂函数、指数函数、对数函数、三角函数等。
此外,学生需要理解导数的概念和用途,以及如何求导数。
导数的应用涉及到最优化问题(如求函数的最大值和最小值)、函数的图像的性质(如函数的单调性和凸性)、切线和曲线的切线方程等。
高二数学知识点及公式下册

高二数学知识点及公式下册在高二数学下册中,学生将进一步学习数学的各个领域,包括代数、几何、概率与统计等。
这些知识点和公式不仅对考试备考有着重要的作用,也对日常生活中的问题解决和思维发展起到了积极的推动作用。
下面将介绍一些高二数学下册的重要知识点和公式。
一、代数知识点及公式1. 二次函数:二次函数是高中数学中的重要概念,其一般式可表示为f(x) = ax^2 + bx + c。
其中,a、b、c分别表示二次项系数、一次项系数和常数项。
二次函数的顶点坐标公式为(xv, yv),其中xv = -b / (2a),yv = f(xv)。
2. 不等式:不等式是代数中常见的问题形式之一。
常见的不等式有线性不等式和二次不等式。
解不等式时需要注意根据题目条件移项、分段讨论、去绝对值等操作。
3. 数列与级数:数列是一系列具有顺序关系的数按一定规律排列而成的序列。
数列的通项公式可以帮助我们计算指定位置处的数值。
级数是数列中各项的和,常见的级数有等差级数和等比级数。
二、几何知识点及公式1. 三角函数:在三角函数中,我们熟悉的有正弦函数、余弦函数和正切函数。
它们在解决各类三角形问题中起到了重要的作用。
三角函数的定义包括对于任意角度的正弦、余弦和正切值的计算。
2. 向量:向量是有大小和方向的量。
在几何中,我们可以通过向量来表示位置、位移和力等概念。
向量的加法、减法和数量积等运算规则可以帮助我们解决复杂的几何问题。
3. 平面几何:平面几何是指在平面上研究的几何学。
其中包括了直线与平面的关系、多边形、圆、圆锥曲线等。
了解平面几何的基本定理和公式可以帮助我们在解决几何问题时更加高效和准确。
三、概率与统计知识点及公式1. 概率:概率是描述随机事件发生可能性的一种数值。
常见的概率计算包括事件的总体数与有利结果数的比例计算,也可以通过概率树或频率法来求解复杂的概率问题。
2. 统计:统计是对统计对象进行调查、观察和实验然后进行数据整理、分析和解释的一个过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二年级下学期数学重点知识点
1.高二年级下学期数学重点知识点篇一
函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a ︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
2.高二年级下学期数学重点知识点篇二
有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无_。
单调性
设函数f(x)的定义域为D,区间I包含于D。
如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。
单调递增和单调递减的函数统称为单调函数。
奇偶性
设为一个实变量实值函数,若有f(-x)=-f(x),则f(x)为奇函数。
几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。
奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
设f(x)为一实变量实值函数,若有f(x)=f(-x),则f(x)为偶函数。
几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。
偶函数的例子有|x|、x2、cos(x)和cosh(x)。
偶函数不可能是个双射映射。
连续性
在数学中,连续是函数的一种属性。
直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。
如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
3.高二年级下学期数学重点知识点篇三
概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则
P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B 相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.
(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发
生,各次试验结果相互独立)时,要考虑二项概率公式.
4.高二年级下学期数学重点知识点篇四
判断函数零点个数的常用方法
1、解方程法:
令f(x)=0,如果能求出解,则有几个解就有几个零点。
2、零点存在性定理法:
利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且
f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。
3、数形结合法:
转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。
已知函数有零点(方程有根)求参数取值常用的方法
1、直接法:
直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
2、分离参数法:
先将参数分离,转化成求函数值域问题加以解决。
3、数形结合法:
先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。
5.高二年级下学期数学重点知识点篇五
分层抽样
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。
分层的比例问题
(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。
如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。