数据挖掘与统计工作

数据挖掘与统计工作
数据挖掘与统计工作

台湾辅仁大学教授谢绑昌先生作的“数据挖掘与统计工作”

报告原文

数据发掘的工作(Data Mining)是近年来数据库应用领域中,相当热门的议题。它是个神奇又时髦的技术,但却也不是什么新东西,因为Data Mining使用的分析方法,如预测模型(回归、时间数列)、数据库分割(Database Segmentation)、连接分析(Link Analysis)、偏差侦测(Deviation Detection)等;美国政府从第二次世界大战前,就在人口普查以及军事方面使用这些技术,但是信息科技的进展超乎想象,新工具的出现,例如关连式数据库、对象导向数据库、柔性计算理论(包括Neural network、Fuzzy theory、Genetic Algorithms、Rough Set等)、人工智能的应用(如知识工程、专家系统),以及网络通讯技术的发展,使从数据堆中挖掘宝藏,常常能超越归纳范围的关系;使Data Mining成为企业智慧的一部份。

Data Mining是一个浮现中的新领域。在范围和定义上、推理和期望上有一些不同。时代不一样了,现在数据来得既多又便宜,多到了没有人有时间去看的程度。挖掘的信息和知识从巨大的数据库而来,它被许多研究者在数据库系统和机器学习当作关键研究议题,而且也被企业体当作主要利基的重要所在。有许多不同领域的专家,对Data Mining展现出极大兴趣,例如在信息服务业中,浮现一些应用,如在Internet之数据仓储和在线服务,并且增加企业的许多生机。

我们对于这种Data Mining的产品应该有一个正确的认知,就是它不是一个无所不能的魔法。它不是在那边监视你的数据的状况,然后告诉你说你的数据库里发生了某种特别的现象。也不是说有了Data Mining的工具,就连不了解业务、不了解资料所代表的意义、或是不了解统计原理的人也可以做Data Mining。Data Mining所挖掘出来的信息,也不是你可以不经确认,就可以照单全收应用到业务上的。事实上,Data Mining工具是用来帮助业务分析策画人员从资料中发掘出各

种假设(Hypothesis),但是它并不帮你查证(Verify)这些假设,也不帮你判断这些假设对你的价值。

The Evolution of Data Mining

何谓Data Mining

Data Mining是指找寻隐藏在数据中的讯息,如趋势(Trend)、特征(Pattern)及相关性(Relationship)的过程,也就是从数据中发掘信息或知识(有人称为Knowledge Discovery in Databases, KDD),也有人称为「资料考古学」(Data Archaeology)、「数据样型分析」(Data Pattern Analysis)或「功能相依分析」(Functional Dependency Analysis),目前已被许多研究人员视为结合数据库系统与机器学习技术的重要领域,许多产业界人士也认为此领域是一项增加各企业潜能的重要指标。此领域蓬勃发展的原因:现代的企业体经常搜集了大量资料,包括市场、客户、供货商、竞争对手以及未来趋势等重要信息,但是信息超载与无结构化,使得企业决策单位无法有效利用现存的信息,甚至使决策行为产生混乱与误用。如果能透过数据发掘技术,从巨量的数据库中,发掘出不同的信息与知识出来,作为决策支持之用,必能产生企业的竞争优势。

Data Mining可说会合了以下六种领域:

●Database systems, Data Warehouses, OLAP

●Machine learning

●Statistical and data analysis methods

●Visualization

●Mathematical programming

●High performance computing

Data Mining应用的行业包括了金融业、电信业、零售商、直效行销、制造业、医疗保健及制药业等等,应用领域如下表:

现今计算机运算能力的跃进,以及数据储存技术的进步,数据仓储的广泛建置,加上企业行销策略转为针对单一消费者个人行销,更突显Data Mining对于企业的迫切性。

Why do we need data mining?

–Large number of records (cases) (108-1012 bytes)

–High dimensional data (variables) (10-104 attributes)

–Only a small portion, typically 5% to 10%, of the collected data is ever analyzed.

–Data that may never be explored continues to be collected out of fear that something that may prove important in the future may be missing.

–Magnitude of data precludes most traditional analysis (more on complexity later).

Data Mining 和统计分析有什么不同?

硬要去区分Data Mining和Statistics的差异其实是没有太大意义的。一般将之定义为Data Mining技术的CART、CHAID或模糊计算等等理论方法,也都是由统计学者根据统计理论所发展衍生,换另一个角度看,Data Mining有相当大的比重是由高等统计学中的多变量分析所支撑。但是为什么Data Mining的出现会引发各领域的广泛注意呢?主要原因在相较于传统统计分析而言,Data Mining

有下列几项特性:

1.处理大量实际资料更强势,且无须太专业的统计背景去使用Data Mining的

工具;

2.数据分析趋势为从大型数据库抓取所需数据并使用专属计算机分析软件,

Data Mining的工具更符合企业需求;

3.纯就理论的基础点来看,Data Mining和统计分析有应用上的差别,毕竟Data

Mining目的是方便企业末端用者使用而非给统计学家检测用的。

数据仓储、KDD、Data mining的关系若将Data Warehousing(资料仓储)比喻作矿坑,Data Mining就是深入矿坑采矿的工作。毕竟Data Mining不是一种无中生有的魔术,也不是点石成金的炼金术,若没有够丰富完整的数据,是很难期待Data Mining能挖掘出什么有意义的信息的。

要将庞大的数据转换成为有用的信息,必须先有效率地收集信息。随着科技的进步,功能完善的数据库系统就成了最好的收集资料的工具。「数据仓储」,简单地说,就是搜集来自其它系统的有用数据,存放在一整合的储存区内。所以其实就是一个经过处理整合,且容量特别大的关系型数据库,用以储存决策支持系统(Design Support System)所需的数据,供决策支持或数据分析使用。从信息技术的角度来看,数据仓储的目标是在组织中,在正确的时间,将正确的数据交给正确的人。

许多人对于数据仓储(Data Warehouse)和数据挖掘(Data Mining)时常混淆,不知如何分辨。其实,数据仓储是数据库技术的一个新主题,在数据科技日渐普及下,利用计算机系统帮助我们操作、计算和思考,让作业方式改变,决策方式也跟着改变。另外,决策支持系统和主管信息系统也日渐普遍,它们操作数据的方式不尽相同,因而有必要把作业性数据库和数据仓储分隔开来,利用不同数据库系统与技术操作,才能达系统最佳化。由于关系型数据库、平行处理及分布式数据库技术的进步,不论是主从式架构或主机型架构的数据库系统,资料仓储技术皆可以利用原有作业中或已有的(Legacy)系统,进而提供一个稳固的基础以支持全公司的决策支持系统(DSS)。

数据仓储本身是一个非常大的数据库,它储存着由组织作业数据库中整合而来的数据,特别是指从在线处理系统(OLTP)所得来的数据。将这些整合过的数

据置放于数据仓储中,而公司的决策者则利用这些数据作决策;但是,这个转换及整合数据的过程,是建立一个数据仓储最大的挑战。因为将作业中的数据转换成有用的的策略性信息是整个数据仓储的重点。也就是,数据仓储应该具有这样的数据:整合性数据(integrated data)、详细和汇总性的数据(detailed and summarized data)、历史数据、解释数据的数据(Metadata)。如果数据仓储集合具有成功有效率地探测数据的世界,则挖掘出决策有用的数据与知识,是建立数据仓储与使用Data Mining的最大目的。而从数据仓储挖掘有用的数据,则是Data Mining的研究重点,两者的本质与过程是两码事。换句话说,数据仓储应先行建立完成,Data mining才能有效率的进行,因为数据仓储本身所含数据是「干净」(不会有错误的数据参杂其中)、完整的,而且是整合在一起的。因此,或许可说Data Mining是从巨大数据仓储找出有用信息之一种过程与技术。

OLAP 能不能代替 Data Mining?

所谓OLAP(Online Analytical Process)意指由数据库所连结出来的在线查询分析程序。有些人会说:「我已经有OLAP的工具了,所以我不需要Data Mining。」事实上两者间是截然不同的,主要差异在于Data Mining用在产生假设,OLAP

则用于查证假设。简单来说,OLAP是由使用者所主导,使用者先有一些假设,然后利用OLAP来查证假设是否成立;而Data Mining则是用来帮助使用者产生

假设。所以在使用OLAP或其它Query的工具时,使用者是自己在做探索(Exploration),但Data Mining是用工具在帮助做探索。

举个例子来看,一市场分析师在为超市规划货品架柜摆设时,可能会先假设婴儿尿布和婴儿奶粉会是常被一起购买的产品,接着便可利用OLAP的工具去验证此假设是否为真,又成立的证据有多明显;但Data Mining则不然,执行Data Mining的人将庞大的结帐数据整理后,并不需要假设或期待可能的结果,透过Mining技术可找出存在于数据中的潜在规则,于是我们可能得到例如尿布和啤酒常被同时购买的意料外之发现,这是OLAP所做不到的。

Data Mining常能挖掘出超越归纳范围的关系,但OLAP仅能利用人工查询及可视化的报表来确认某些关系,是以Data Mining此种自动找出甚或不会被怀疑过的数据型样与关系的特性,事实上已超越了我们经验、教育、想象力的限制,OLAP可以和Data Mining互补,但这项特性是Data Mining无法被OLAP取代的。

KDD(Knowledge Discovery in Data base)和Data Mining的关系也是需要厘清的,根据Fayyad等人对KDD的定义:「The nontrivial Process of identifying valid、novel、potentially useful, and ultimately understandable pattern in data」,其流程步骤是:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择(Selection)之数据子集;再从目的数据中作前置处理(Pre-processing),去除错误或不一致的数据;然后作数据简化与转换工作(Transformation);在经由「Data Mining」的技术程序成为样型(Patterns)、做回归分析或找出分类型态;最后经过「Interpretation/Evaluation」成为有用的知识。这些程序是一个循环的关系,一直重复的步骤,最后才得到一些有用的知识。所以,KDD是一连串的程序,Data Mining是其中的一个步骤而已。

总而言之,Data Mining,Data warehouse,KDD三者的关系可以如此厘清,即Data warehouse是一个经过处理、整合之数据库,而KDD是一种知识发现的

一连串程序,Data Mining只是KDD的一个重要程序。它们最终目的,乃为组织取得决策支持所需的信息,这个信息是突破盲点、见人所未见的知识和讯息,能替组织取得竞争优势。

Data Mining的功能

一般而言,Data Mining功能可包含下列五项功能:

?分类(classification)

?推估(estimation)

?预测(prediction)

?关联分组(affinity grouping)

?同质分组(clustering)

兹将这些功能的意义及可能使用的技巧简述如下:

分类

按照分析对象的属性分门别类加以定义,建立类组(class)。例如,将信用申请者的风险属性,区分为高度风险申请者,中度风险申请者及低度风险申请者。使用的技巧有决策树(decision tree),记忆基础推理(memory-based reasoning)等。

推理

根据既有连续性数值之相关属性数据,以获致某一属性未知之值。例如按照信用申请者之教育程度、行为别来推估其信用卡消费量。使用的技巧包括统计方法上之相关分析、回归分析及类神经网络方法。

预测

根据对象属性之过去观察值来推估该属性未来之值。例如由顾客过去之刷卡消费量预测其未来之刷卡消费量。使用的技巧包括回归分析、时间数列分析及类神经网络方法。

关联分组

从所有对象决定那些相关对象应该放在一起。例如超市中相关之盥洗用品(牙刷、牙膏、牙线),放在同一间货架上。在客户行销系统上,此种功能系用来确认交叉销售(cross-selling)的机会以设计出吸引人的产品群组。

同质分组

将异质母体中区隔为较具同构型之群组(clusters)。同质分组相当于行销术语中的区隔化(segmentation),但是,假定事先未对于区隔加以定义,而数据中自然产生区隔。使用的技巧包括k-means法及agglomeration法。

Data Mining的应用

Data Mining导入企业,其重点在于企业领域方面的知识,而它的

Domain-specific Tools要结合企业中使用者的语言和分析过程,才能发挥工具的效能与增进企业的智慧。换句话说,就是要颠覆常规和超越平日的想象,展现企业目标与问题的知识,以支持解释别人看不到、看不出的信息来。企业必须能够从巨大数据库中挖掘到浓缩、先前不知、可理解的信息,并从使用中获利。例如,一个发行管理共同基金(mutual funds)的企业体要发掘潜在客户,它要能整合客户的账户、人口统计、生活型态等数据。也就是说要能把数据库中人口数据切分成为一些关键子集合:都市化情况、婚姻状态、家庭所得、年龄、风险偏好、高净值等。最后,依据资料挖宝分析结果,可区分集群和从事推广促销活动,成功的把共同基金推展至市场上。

目前企业界把Data Mining应用在许多领域。例如,行销、财务、银行、制造厂、通讯等。并且产学合作下,发展出许多实用的系统,例如MDT、Coverstory and Spotlight、NichWork visualization system、LBS、FALCON、FAIS、NYNEX、TASA等等。这些数据发掘的系统,应用非常广泛,例如有一个应用在行销领域

的例子:经由记录客户的消费记录与采购路线,超级市场可以设计出更吸引顾客购买的环境。根据数据挖掘出特别的信息来,因此现在超级市场的厨房用品,是按照女性的视线高度来摆放。根据研究指出:美国妇女的视线高度是150公分左右,男性是163公分左右,而最舒适的视线角度是视线高度以下15度左右,所以最好的货品陈列位置是在130至135公分之间。

企业界实际发展Data Mining时,效能并不能预期,因为有许多因素影响着。例如,不充足的教育训练、不适当的支持工具、数据的无效性、过于丰富的样型(patterns)、多变与具时间性的数据、空间导向数据(spatially oriented data)、复杂的数据型态、数据的衡量性(scalability)。这说明数据与知识的发掘是一项信息丰富性的工作,面对易变的环境,没有现成的Model马上可用,也不要期望按照程序即能成功。因此,我们要体会一些潜在的因素,如数据取舍、实体关系性、数量多寡、复杂性、数据质量、可取得性、变迁、专家意见等因素,才能做好资料挖掘工作。

Data Mining对每个公司来说都是一种重要的策略性的的计划,而将之列为高度机密,所以要调查各家公司到底用Data Mining来做什么样的事其实相当不容易。根据Two Crows Corp.最近的调查显示,Data Mining主要的三个应用方式-如我们所预期的-都在市场推广方面,分别是:Customer Profiling、Targeted Marketing、以及Market-Basket Analysis。

在Customer Profiling方面,我们希望找出客户的一些共同的特征,希望能藉此预测哪些人可能成为我们的客户,以帮助行销人员找到正确的行销对象。Data Mining可以从现有客户数据中找出他们的特征,再利用这些特征到潜在客户数据库里去筛选出可能成为我们客户的名单,作为行销人员推销的对象。行销人员就可以只针对这些名单寄发广告数据,以降低成本,也提高行销的成功率。

Market-Basket Analysis主要是用来帮助零售业者了解客户的消费行为,譬如哪些产品客户会一起购买,或是客户在买了某一样产品之后,在多久之内会买另一样产品等等。利用Data Mining,零售业者可以更有效的决定进货量或库存量,或是在店里要如何摆设货品,同时也可以用来评估店里的促销活动的成效。

客户关系的管理是Data Mining的另一个常见的应用方式。我们可以由一些原本是我们的客户,后来却转而成为我们竞争对手的客户群中,分析他们的特征,再根据这些特征到现有客户数据中找出有可能转向的客户,然后公司必须设计一些方法将他们留住,因为毕竟找一个新客户的成本要比留住一个原有客户的成本要高出许多。

近来电话公司、信用卡公司、保险公司、股票交易商、以及政府单位对于诈欺行为的侦测(Fraud Detection)都很有兴趣,这些行业每年因为诈欺行为而造成的损失都非常可观。Data Mining可以找出可能的诈欺交易,减少损失。财务金融业可以利用Data Mining来分析市场动向,并预测个别公司的营运以及股价走向。Data Mining的另一个独特的用法是在医疗业,用来预测手术、用药、诊断、或是流程控制的效率。

下面是一些 Data Mining 的在科学、行销、工业、商业、体育…等各方面运用的类型:

●在财务金融方面,预测市场动向,防范犯罪诈欺。

●分析客户的行为,可以让您看出您的客户是不是准备要转向您的竞争对手。数据挖采中的前后行为分析(Sequential Pattern Detection)功能让您分析那些已经转向您的竞争对手的客户在转向期间的行为,如此您就可以在现有客户中找到可能转向的客户,想办法留住他们。

●数据挖采可以帮您找出从前的一些信用不良的客户的特征,而从这些特征您就可以从现有客户中找出可能有不良信用的客户,防止产生坏账,也可以过滤这些人成为您的客户。

●数据挖采中的客户分类(Segmentation)功能,可以让您更了解您所服务的客户,这样您就可以设计更好的产品来满足您的客户的需求。

●商业智慧所要解决的问题还包括如何减低诈欺或不实的申报(Fraud)。利用资料挖采的技术,您可以在特定的客户群中找出可能的诈欺行为,如此才能减少损失,增加利润。

●如果采用不同的价格策略,是否能增加市场占有率?

●什么时候才是推出新产品的好时机?

●我们与竞争对手的优劣势如何?

●让我们获利高的客户们有什么共同的特征?

●当我们的客户要转向我们的竞争对手之前,是否有何前兆?

●如何认定客户的信用风险状况?

●如何设计更好的保险产品来吸引客户,让客户满意?

●一个经纪人在一个星期中应该可以卖出多少共同基金?

●于销售资料中,发掘顾客的消费习性

●根据以往审核的资料,找寻核发信用卡的规则

●在NBA球赛数据中,找出球员的强弱点

●从消费及缴费数据中,预警信用卡呆帐可能

●从通话记录数据中,预警盗打电话可能

●从宇宙飞船拍摄的影像数据,找寻星球上的火山

●星际星体分类

Web Mining 和Data Mining有什么不同?

如果将Web视为CRM的一个新的Channel,则Web Mining便可单纯看做Data Mining应用在网络数据的泛称。

该如何测量一个网站是否成功?哪些内容、优惠、广告是人气最旺的?主要访客是哪些人?什么原因吸引他们前来?如何从堆积如山之大量由网络所得数据中找出让网站运作更有效率的操作因素?以上种种皆属Web Mining 分析之范畴。Web Mining 不仅只限于一般较为人所知的log file分析,除了计算网页浏览率以及访客人次外,举凡网络上的零售、财务服务、通讯服务、政府机关、医疗咨询、远距教学等等,只要由网络连结出的数据库够大够完整,所有Off-Line可

进行的分析,Web Mining都可以做,甚或更可整合Off-Line及On-Line的数据库,实施更大规模的模型预测与推估,毕竟凭借因特网的便利性与渗透力再配合网络行为的可追踪性与高互动特质,一对一行销的理念是最有机会在网络世界里完全落实的。

整体而言,Web Mining具有以下特性:1. 资料收集容易且不引人注意,所谓凡走过必留下痕迹,当访客进入网站后的一切浏览行为与历程都是可以立即被纪录的;2. 以交互式个人化服务为终极目标,除了因应不同访客呈现专属设计的网页之外,不同的访客也会有不同的服务;3. 可整合外部来源数据让分析功能发挥地更深更广,除了log file、cookies、会员填表数据、在线调查数据、在线交易数据等由网络直接取得的资源外,结合实体世界累积时间更久、范围更广的资源,将使分析的结果更准确也更深入。

利用Data Mining技术建立更深入的访客数据剖析,并赖以架构精准的预测模式,以期呈现真正智能型个人化的网络服务,是Web Mining努力的方向。Data Mining 在CRM 中扮演的角色为何?

CRM(Customer Relationship Management)是近来引起热烈讨论与高度关切的议题,尤其在直效行销的崛起与网络的快速发展带动下,跟不上CRM的脚步如同跟不上时代。事实上CRM并不算新发明,奥美直效行销推动十数年的CO (Customer Ownership)就是现在大家谈的CRM—客户关系管理。

Data Mining应用在CRM的主要方式可对应在Gap Analysis之三个部分:

针对Acquisition Gap,可利用Customer Profiling找出客户的一些共同的特征,希望能藉此深入了解客户,藉由Cluster Analysis对客户进行分群后再透过Pattern

Analysis预测哪些人可能成为我们的客户,以帮助行销人员找到正确的行销对象,进而降低成本,也提高行销的成功率。

针对Sales Gap,可利用Basket Analysis帮助了解客户的产品消费模式,找出哪些产品客户最容易一起购买,或是利用Sequence Discovery预测客户在买了某一样产品之后,在多久之内会买另一样产品等等。利用Data Mining可以更有效的决定产品组合、产品推荐、进货量或库存量,甚或是在店里要如何摆设货品等,同时也可以用来评估促销活动的成效。

针对Retention Gap,可以由原客户后来却转成竞争对手的客户群中,分析其特征,再根据分析结果到现有客户资料中找出可能转向的客户,然后设计一些方法预防客户流失;更有系统的做法是藉由Neural Network根据客户的消费行为与交易纪录对客户忠诚度进行Scoring的排序,如此则可区隔流失率的等级进而配合不同的策略。

CRM不是设一个(080)客服专线就算了,更不仅只是把一堆客户基本数据输入计算机就够,完整的CRM运作机制在相关的硬软件系统能健全的支持之前,有太多的数据准备工作与分析需要推动。企业透过Data Mining可以分别针对策略、目标定位、操作效能与测量评估等四个切面之相关问题,有效率地从市场与顾客所搜集累积之大量资料中挖掘出对消费者而言最关键、最重要的答案,并赖以建立真正由客户需求点出发的客户关系管理。

Data Mining的进行步骤

资料挖掘既然可以增加企业智慧,提升企业竞争优势,到底应该如何进行呢?根据Glymour等人的研究,提出一个参考的进行步骤如下:

1.理解数据与进行的工作

2.获取相关知识与技术(Acquisition)

3.融合与查核资料(Integration and checking)

4.去除错误或不一致的数据(Data cleaning)

5.发展模式与假设(Model and hypothesis development)

6.实际数据挖掘工作

7.测试与检核所挖掘的数据(Testing and verfication)

8.解释与使用数据(Interpretation and use)

从八个步骤来看,Data Mining牵涉大量的规划与准备,而从其它文献得知,专家声称高达80%的过程花在准备数据阶段,这包括表格的Join以及可能相当大量的数据转换。从这个角度看,Data Mining只是知识发掘过程中的一个步骤而已,而达到这个步骤前还有许许多多的工作要完成。

个案研究

现在已经有相当数量的公司安装了数据挖采软件,以找出那些会造成利润差异的信息。

1.完美的购物经验-英国Safeway

此个案研究探讨英国的Safeway如何运用Data Mining来从大量的数据中萃取商业信息。英国Safeway使用Intelligent Miner从数据中萃取商业知识,这是一个Data Mining可以成为企业的一部份的最佳范例。英国Safeway定义了明确并实际的目标,使用相当干净的数据源,进行Data Mining,并且投注许多人力用以解读Data Mining的结果,并且采取实际的行动以善用Data Mining所发掘出来的信息。

英国Safeway的年销售量超过一百亿美金,旗下的员工接近七万名,是英国第三大的连锁超级市场,提供的服务种类则达三十四种。该公司的信息部有两台System/390服务器,以平行的方式执行DB2,其中最大者每周要管理八百万笔交易,以及约4TB的磁盘储存容量。

根据英国Safeway的信息总监迈克温曲指出,该公司在两年前就体会到必须要采用不同的方式来取得竞争上的优势。「在英国市场运用传统的技术,如更低的价位、更多的店面、以及更多种类的产品,竞争已经越来越困难了,」温曲先生说:「大部份的竞争对手在价格以及产品范围方面都能与我们匹敌。由于土地以及扩充的成本,没有一家公司有足够的资源可以在扩充方面超越对手。」温曲先生的说法是,这个问题的答案是:「必须以客户为导向,而非以产品与店家为导向。这意味着我们必须更了解客户个人。为了达成这个目标,我们必须了解六百万客户所做的每一笔交易,以及这些交易彼此之间的关连性。」换句话说,英国Safeway想要知道哪些种类的客户买了哪些种类的产品以及购买的频率,以建立「个人导向的市场」。

(1)一把网住

将资源集中在特定的问题上,并设定可达成的目标之后,英国Safeway在商业智慧过程(也就是Data Warehousing/Data Mining过程)中的下一步,就是选择

适当的数据来源,将客户的交易数据集中在Data Warehouse中。为了达到这个目的,该公司开始发信用卡给客户,客户用这种信用卡结帐可以享受各种优惠,这种信用卡就成为该公司在500家店面搜集六百万客户资料的「网」。这些客户的消费行为数据不断地被从主数据库中萃取出来,每周存在Data Warehouse中(大约有500GB),使用的平台则为执行Intelligent Miner的RS/6000SP2。

IBM声称该公司在1996推出的Intelligent Miner能提供Data Mining作业所需的完整环境,提供数据准备的设施,以及八种Data Mining技术,包括预测模型、数据分割、以及产品吸引力分析,当然还有图形化的结果显示。

通常数据在存入Data Warehouse之前,都必须经过各种仔细的转换(Data Cleansing),例如将标称值转换为数值、定义衍生的属性、以及去除空值(Null Values)等等,这都要视应用而定。在英国Safeway的个案里,资料源为单一的交易处理系统,该公司对这些数据质量有足够的信心,而且该公司的目标仅在于大略的估计其客户是哪些人,所以Data Cleansing并不是主要的问题。

在资料被存入Data Warehouse之后,Intelligent Miner会根据客户的相关资料,将客户分为150类。然后再用Association的技术来比较这些数据集合(这些数据包括交易数据以及产品数据),然后将列出产品吸引力的清单(例如「在购买烤肉炭的客户中,75%也会购买打火机燃料」)。温曲先生指出,这些功能是连续发生的:「并没有一位统计师在那里跑来跑去的说:「你知道这件事吗?」这个过程事实上是我们业务的一部份。」

(2)找出模式

温曲先生的说法是,由于Data Mining的贡献,「我们找出了超过人类概念范围的关连性。」例如Intelligent Miner发现某一种奶酪产品虽然销售额排名第209,可是消费额最高的客户中有25%都常常买这种奶酪,这些客户可是英国

Safeway最不想得罪的客户。如果使用传统的分析方法的话,这种产品很快就会不卖了,可是事实上这种产品是相当重要的。

英国Safeway也发现在28种品牌的橘子汁中,有8种特别受到欢迎。因此该公司得以重新安排货架的摆设,使得橘子汁的销量能够增加到最大。「我可以举出数百种与客户购买行为有关的例子,」温曲先生指出:「这些信息实在是无价之宝。」

还有,英国Safeway在了解客户每次采购时会购买哪些产品以后,就可以利用Data Mining中的Sequence Discovery的功能,以侦测出长期的经常购买行为。再将这些数据与主数据库的人口统计数据结合在一起,Safeway的行销部门就可以根据每个家庭的「弱点」,也就是在哪些季节会购买哪些产品的趋势,发出邮件。「根据这些信息,」温曲先生指出:「我们在去年发出了一千两百万封完全根据个别状况设计的邮件,这在我们销售量的成长方面扮演了很重要的角色。」有些Data Mining的结果会比较容易应用到实际上,有的则不然。针对这个事实,英国Safeway使用另外一种工具来筛选结果,也就是将Data Mining的结果再做Data Mining,以找出有显著兴趣的数据。这种工具虽然目前使用的人不多,可是等到Data Mining越来越普遍后,接受度应该会更高。

英国Safeway采取的Data Mining方式可能是很典型的。该公司把焦点集中在这种技术的商业利益上,保持数据的品质,设定实际的目标,而利用其结果时采取的步骤虽然小,但是实用。换句话说,实际的「Data Mining」只是较大规模的商业智慧过程中的一小部份而已。

2.MCI通讯公司

与其它电话公司一样,MCI想要保有最多的顾客。方法之一就是及时找出可能考虑换到竞争公司的顾客。如果做得到这一点,该公司就可以设法留下客户,例如提供特别的费率和服务。

如何从数百万的顾客之中,找到你要维持的对象昵?MCI的办法是彻底搜寻1亿4千万笔市场家庭数据,而评估每一笔数据的属性,则高达一万个。这些特性包括收入、生活力式、过去通话习惯的详绌资料等。但是哪些特性的组合才是最需要观察的?且数据的范围要订在多少昵?账单月费快速减少,可能代表顾客完全背公司而去了,但是我们可以从顾客的国际电话中找到更精微的模式吗?或从顾客打电话绐客户服务专线的次数找到模式?

为找出这个模式,MCI定期启动该公司的IBMSP/2超级计算机-该公司的数据仓储(data warehouse),以找出最显著的变项,并密切注意这个变项。到目前为止,在多次重复整理历史资料后,这台SP/2已经汇编出一套含22个详细而高度机密的统计性资料文件。MCI的信息主管LanceB.Boxer指出,没有数据挖采程序的话,不可能开发出任何统计数据文件。

https://www.360docs.net/doc/d96526817.html,West公司

和其它电话公司一样,它也希望能找出有家用第二和第三条电话线的强烈需求的家庭。这些需求是为了家中的青少年、传真设备和个人计算机。但是除非电话公司可以完全确定新增线路会产生实质的利益,否则他们是不会把钱投资在一些特别区域的网络总机和电话干线的。甚且,US West说,他们打算精确的找出特定顾客,这些顾客不仅接受公司提供的初级服务,而且会持续使用第二条电话线路,时间久到让公司获有利润。

为了找到这些人,US West使用一个叫做PALMS的程序。与该公司共同设计这套程序的有AT&T的NCR计算机部门,及拥有美国航空公司的AMR公司旗下的Sabre Decision Technologies部门。PALMS的执行平白是威力强大的NCR 平行处理计算机。首先,PALMS过滤美国凤凰城地区域数千笔顾客记录的样本

数据,这动作花了数小时。每笔家庭记录内含的项目高达250个:收入阶层、每月的电话费、去年维修记录,及该家庭尝试使用并保有如电话等候等服务的历史纪录。最后,得到一个理想的潜在客户统计模型。

然后,PALMS利用这个模型来搜寻数百万笔的顾客纪录-数据量几达一兆位。此程序在找出与其它数据的关系后,如每家的住址、US West的电话干线位置、各地总机的容量,即可辨识出一群潜在的顾客-这些家庭符合该幙式,且US West不必花费太多,就能够为这些家庭提供服务。

US West从1996年11月4日到1997年1月初,进行首波DM活动。这次活动的回复率很高,与花费数百万美元的广播活动不相上下。PALMS甚至能够计算出DM活动什么时候会达到高峰,让电话公司在回复率降低前,先行减少DM 邮件。

4.UltraGem公司

在旧金山创立的UltraGem公司,一直和一家不具名的银行,共同预估可调利率抵押贷款的获利率。UltraGem的软件先分析十万笔以上的贷款记录。数据的范围包括:顾客的年龄和邮政编码、贷款的来源、以及以及此次贷款是否从前一次的贷款转换而来。结果:产生了一组规则,这组规则可辨识出可能是最高获利率的贷款申请。这些结合各种变项而产生的规则,「是人类智能无法计算出来的,」UltraGem董事长StevenA.Vere如此说到。现在,该银行能够预测诸如谁能提早还款、谁可能拖延付款等因素,而藉此调整不同的利率与手续费。

5.Wal-MartStor e s公司

由于该公司最先采用大量的交易数据厍,而改革了零售业。从1980年代起,Wal-Mart每晚从各分店收集了大量的收款机资料。但是,除了使用来自NCR公司强大的计算机,Wal-Mart一直无法使用所有的数据。面对7亿笔令人心生畏惧

数据挖掘与预测分析

数据挖掘是一个多学科交叉研究领域,它融合了数据库技术、人工智能、机器学习、统计学、知识工程、面向对象方法、信息检索、高性能计算以及数据可视化等最新技术的研究成果。数据挖掘是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。预测分析可帮助用户评审和权衡潜在决策的影响力。可用来分析历史模式和概率,预测未来业绩并采取预防措施。 数据挖掘的含义是广泛的,每个人有每个人不同的体会,每个人有每个人的见解。但这些体会、见解是有许多共通之处的,从而可以归纳出数据挖掘的技术定义以及商业定义:从技术角度,数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。它是涉及机器学习、模式识别、统计学、人工智能、数据库管理及数据可视化等学科的边缘学科。由于每个人的思维方式不同,这个定义可以被解读为以下几个层次:①数据源必须是真实的、大量的、含噪声的;②发现的是用户感兴趣的知识;③发现的知识要可接受、可理解、可运用;④这些知识是相对的,是有特定前提和约束条件的,在特定领域中具有实际应用价值。 预测是大数据的核心,数据挖掘之后的预测分析无疑成为开拓市场的重要环节。预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。预测分析和假设情况分析可帮助用户评审和权衡潜在决策的影响力。可用来分析历史模式和概率,以预测未来业绩并采取预防措施。这种级别的分析可以为规划流程提供各种信息,并对企业未来提供关键洞察。不仅可提供预测分析,使用户可以执行高级分析、发布并与更广泛的用户群交流。还可以提供

基于数据挖掘技术的学生成绩分析系统

本科毕业设计(论文) 题目: 基于数据挖掘技术的学生成绩分析系统的设计与实现 姓名张宇恒 学院软件学院 专业软件工程 班级2010211503 学号10212099 班内序号01 指导教师牛琨 2014年5月

基于数据挖掘技术的学生成绩分析系统的设计与实现 摘要 随着科技的不断发展和中国教育制度的日趋完善,各大高校对教务管理工作提出了越来越高的要求。各大高校不再满足于传统的成绩管理方式,开始运用数据挖掘领域的先进方法对学生成绩进行分析和研究。教务工作人员使用关联规则挖掘算法分析课程间的内在联系,可为学校的改进教学工作提供依据,并为学生的选课和学业规划提供指导;对学生进行分类,让学生能够对自己在校期间所学课程的成绩有一个全面而清晰的了解,方便学生扬长避短选择选修课程,及时对可能在学习上遇到困难的学生进行预警;运用聚类算法对学生进行聚类,找出具有共同特征的学生,并对不同学生群体分别采取不同的教学方法,初步体现因材施教的教育理念,最终探索出适合中国国情和教育制度的个性化培养模式。 本系统采用Eclipse作为开发平台,以Java作为开发语言。通过对高校学生成绩分析系统的需求分析,本系统设计实现了可以使用关联规则挖掘算法分析课程间的内在联系,使用分类算法对学生进行分类,使用聚类算法对学生进行聚类。希望本系统能对今后高校学生成绩分析系统的开发提供一定的参考价值。 关键词成绩分析关联规则分类聚类

Design and implementation of student achievement analysis system based on data mining technology ABSTRACT With the continuous development of technology and the Chinese education system maturing, Universities have put higher requirements to their academic administration. Universities are no longer satisfied with traditional performance management, began to apply advanced data mining methods to analyze and study students’ achievement. Staff of academic affairs use association rule mining algorithm to analysis intrinsic link between courses, which can provide the basis for improving the teaching of the school and guidance for the student's enrollment and academic planning. Using classification algorithm to classify the students, so that students can have a clear understanding in their academic performance, and facilitate students in selecting courses. Warning students who probably face difficulties in the academic. Using clustering algorithm to cluster the students to identify students with common characteristics, so that teachers can teach different students in different way, embodies the concept of individualized education, finally discover a personalized education model, which is suitable for China's national conditions and education system. The system was developed in Eclipse, with java as a development language. By analyzing the need of student achievement analysis system, this system uses association rule mining algorithm to analysis intrinsic link between courses, uses classification algorithm to classify the students, uses clustering algorithm to cluster the students to identify students.I hope this system can provide some reference value to the future development of college student s’ achievement analysis system. KEY WORDS achievement analysis association rules classification clustering

数据挖掘系统设计技术分析

数据挖掘系统设计技术分析 【摘要】数据挖掘技术则是商业智能(Business Intelligence)中最高端的,最具商业价值的技术。数据挖掘是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉,随着海量数据搜集、强大的多处理器计算机和数据挖掘算法等基础技术的成熟,数据挖掘技术高速发展,成为21世纪商业领域最核心竞争力之一。本文从设计思路、系统架构、模块规划等方面分析了数据挖掘系统设计技术。 【关键词】数据挖掘;商业智能;技术分析 引言 数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它可广泛应用于电信、金融、银行、零售与批发、制造、保险、公共设施、政府、教育、远程通讯、软件开发、运输等各个企事业单位及国防科研上。数据挖掘应用的领域非常广阔,广阔的应用领域使用数据挖掘的应用前景相当光明。我们相信,随着数据挖掘技术的不断改进和日益成熟,它必将被更多的用户采用,使企业管理者得到更多的商务智能。 1、参考标准 1.1挖掘过程标准:CRISP-DM CRISP-DM全称是跨行业数据挖掘过程标准。它由SPSS、NCR、以及DaimlerChrysler三个公司在1996开始提出,是数据挖掘公司和使用数据挖掘软件的企业一起制定的数据挖掘过程的标准。这套标准被各个数据挖掘软件商用来指导其开发数据挖掘软件,同时也是开发数据挖掘项目的过程的标准方法。挖掘系统应符合CRISP-DM的概念和过程。 1.2ole for dm ole for dm是微软于2000年提出的数据挖掘标准,主要是在微软的SQL SERVER软件中实现。这个标准主要是定义了一种SQL扩展语言:DMX。也就是挖掘系统使用的语言。标准定义了许多重要的数据挖掘模型定义和使用的操作原语。相当于为软件提供商和开发人员之间提供了一个接口,使得数据挖掘系统能与现有的技术和商业应用有效的集成。我们在实现过程中发现这个标准有很多很好的概念,但也有一些是勉为其难的,原因主要是挖掘系统的整体概念并不是非常单纯,而是像一个发掘信息的方法集,所以任何概念并不一定符合所有的情况,也有一些需要不断完善和发展中的东西。 1.3PMML

分析报告、统计分析和数据挖掘的区别

分析报告、统计分析和数据挖掘的区别 关于数据挖掘的作用,Berry and Linoff的定义尽管有些言过其实,但清晰的描述了数据挖掘的作用。“分析报告给你后见之明 (hindsight);统计分析给你先机 (foresight);数据挖掘给你洞察力(insight)”。 举个例子说。 你看到孙悟空跟二郎神打仗,然后写了个分析报告,说孙悟空在柔韧性上优势明显,二郎神在力气上出类拔萃,所以刚开始不相上下;结果两个人跑到竹林里,在竹子上面打,孙悟空的优势发挥出来,所以孙悟空赢了。这叫分析报告。 孙悟空要跟二郎神打架了,有个赌徒找你预测。你做了个统计,发现两人斗争4567次,其中孙悟空赢3456次。另外,孙悟空斗牛魔王,胜率是89%,二郎神斗牛魔王胜率是71%。你得出趋势是孙悟空赢。因为你假设了这次胜利跟历史的关系,根据经验作了一个假设。这叫统计分析。 你什么都没做,让计算机自己做关联分析,自动找到了出身、教育、经验、单身四个因素。得出结论是孙悟空赢。计算机通过分析发现贫苦出身的孩子一般比皇亲国戚功夫练得刻苦;打架经验丰富的人因为擅长利用环境而机会更多;在都遇得到明师的情况下,贫苦出身的孩子功夫可能会高些;单身的人功夫总比同样环境非单身的高。孙悟空遇到的名师不亚于二郎神,而打架经验绝对丰富,并且单身,所以这次打头,孙悟空赢。这叫数据挖掘。 数据挖掘跟LOAP的区别在于它没有假设,让计算机找出这种背后的关系,而这种关系可能是你所想得到的,也可能是所想不到的。比如数据挖掘找出的结果发现在2亿条打斗记录中,姓孙的跟姓杨的打,总是姓孙的胜利,孙悟空姓孙,所以,悟空胜利。 用在现实中,我们举个例子来说,做OLAP分析,我们找找哪些人总是不及时向电信运营商缴钱,一般会分析收入低的人往往会缴费不及时。通过分析,发现不及时缴钱的穷人占71%。而数据挖掘则不同,它自己去分析原因。原因可能是,家住在五环以外的人,不及时缴钱。这些结论对推进工作有很深的价值,比如在五环外作市场调研,发现需要建立更多的合作渠道以方便缴费。这是数据挖掘的价值。

数理统计学的起源和发展doc

统计学起源于收集数据的活动,小至个人的事情,大至治理一个国家,都有必要收集种种有关的数据,如在我国古代典籍中,就有不少关于户口、钱粮、兵役、地震、水灾和旱灾等等的记载。现今各国都设有统计局或相当的机构。当然,单是收集、记录数据这种活动本身并不能等同于统计学这门科学的建立,需要对收集来的数据进行排比、整理,用精炼和醒目的形式表达,在这个基础上对所研究的事物进行定量或定性估计、描述和解释,并预测其在未来可能的发展状况。例如根据人口普查或抽样调查的资料对我国人口状况进行描述,根据适当的抽样调查结果,对受教育年限与收入的关系,对某种生活习惯与嗜好(如吸烟)与健康的关系作定量的评估。根据以往一般时间某项或某些经济指标的变化情况,预测其在未来一般时间的走向等,做这些事情的理论与方法,才能构成一门学问——数理统计学的内容。 这样的统计学始于何时?恐怕难于找到一个明显的、大家公认的起点。一种受到某些著名学者支持的观点认为,英国学者葛朗特在1662年发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。中世纪欧洲流行黑死病,死亡的人不少。自1604年起,伦敦教会每周发表一次“死亡公报”,记录该周内死亡的人的姓名、年龄、性别、死因。以后还包括该周的出生情况——依据受洗的人的名单,这基本上可以反映出生的情况。几十年来,积累了很多资料,葛朗特是第一个对这一庞大的资料加以整理和利用的人,他原是一个小店主的儿子,后来子承父业,靠自学成才。他因这一部著作被选入当年成立的英国皇家学会,反映学术界对他这一著作的承认和重视。 这是一本篇幅很小的著作,主要内容为8个表,从今天的观点看,这只是一种例行的数据整理工作,但在当时则是有原创性的科研成果,其中所提出的一些概念,在某种程度上可以说沿用至今,如数据简约(大量的、杂乱无章的数据,须注过整理、约化,才能突出其中所包含的信息)、频率稳定性(一定的事件,如“生男”、“生女”,在较长时期中有一个基本稳定的比率,这是进行统计性推断的基础)、数据纠错、生命表(反映人群中寿命分布的情况,至今仍是保险与精算的基础概念)等。 葛朗特的方法被他同时代的政治经济学家佩蒂引进到社会经济问题的研究中,他提倡在这类问题的研究中不能尚空谈,要让实际数据说话,他的工作总结在他去世后于1690年出版的《政治算术》一书中。 当然,也应当指出,他们的工作还停留在描述性的阶段,不是现代意义下的数理统计学,那时,概率论尚处在萌芽的阶段,不足以给数理统计学的发展提供充分的理论支持,但不能由此否定他们工作的重大意义,作为现代数理统计学发展的几个源头之一,他们以及后续学者在人口、社会、经济等领域的工作,特别是比利时天文学家兼统计学家凯特勒19世纪的工作,对促成现代数理统计学的诞生起了很大的作用。 数理统计学的另一个重要源头来自天文和测地学中的误差分析问题。早期,测量工具的精度不高,人们希望通过多次量测获取更多的数据,以便得到对量测对象的精度更高的估计值。量测误差有随机性,适合于用概率论即统计的方法处理,远至伽利略就做过这方面的工作,他对测量误差的性态作了一般性的描述,法国大数学家拉普拉斯曾对这个问题进行了长时间的研究,现今概率论中著名的“拉普拉斯分布”,即是他在这研究中的一个产物,这方面最著名且影响深远的研究成果有二:一是法国数学家兼天文家勒让德19世纪初(1805)

数据统计在统计学中的地位

数据统计在统计学中的地位 XXX XX级X班XXXXXXXXX 一、数理统计与统计学的主要特点 (一)数理统计的主要特点 数理统计就是通过对随机现象有限次的观测或试验所得数据进行归纳,找出这有限数据的内在数量规律性,并据此对整体相应现象的数量规律性做出推断或判断的一门学科。概括起来有如下几方面的特点:一是随机性,就是说数理统计的研究对象应当具有随机性,确定性现象不是数理统计所要研究的内容。二是有限性,就是说数理统计据以研究的随机现象数量表现的次数是有限的。三是数量性,即数理统计以研究随机现象的数量规律性为主,而对随机现象质的研究为次。四是采用的研究方法主要为归纳法。最后,数理统计通过对小样本的研究以达到对整体的推断都具有一定的概率可靠性。用样本推断总体误差的存在是客观的,但是数理统计不仅重在研究误差的大小,还指出误差发生的可能性的大小。 从数理统计的学科特征来看,数理统计是应用数学中最重要、最活跃的学科之一。由此可见!数理统计从学科划分来说,应属于数学学科,但是其重在应用!而不是纯数学理论或方法的研究,故其采用的方法也就重在归纳法,而不是数学的演绎法。 综上所述,数理统计的主要特点可以用一句话概括为、数理统计是一门对随机现象进行有限次的观测或试验的结果进行数量研究,并依之对总体的数量规律性做出具有一定可靠性推断的应用数学学科。 (二)统计学的主要特点 统计学是一门收集、整理和分析统计数据的方法论科学,其目的在于探索数据的内在数量规律性,以达到对客观事物的科学认识。 统计学从其研究的范围来说有三大领域:数据的收集$数据的整理和数据的分析。首先,这三大领域随着统计学的不断发展,已很难分辨出哪个领域更重要些。也许有很多人认为数据的分析要相对重要些。在对1900 年和1910年美国两次农业普查资料进行分析时,列宁曾指出:“全部问题,任务的全部困难在于,如何综合这些资料,才能确切地从政治上经济上说明不同种类或类型的农户的整个情况。”这足见数据整理的重要性。近年来困扰我国统计研究的并不是数据的分析方法,而是缺少充分真实有效的统计数据,造成无法用数据去检验或证实相应的经济理论、经济模型和经济政策。数据收集的重要性可见一斑。其次,统计学是一门方法论科学。长期以来,人们一直认为在这众多的方法中,统计研究的基本方法是大量观察法、统计指标法、统计分组法和模型推断法。特别是大量观察法更成为统计学最重要的基本特征方法之一,也可以说这是统计学与数理统计的根本区别之一,否则,统计学也就真的成了现代西方数理统计学了。随着统计学由早期的纯粹描述统计不断拓展为描述统计与推断统计并重,直至有的学者认为现代统计学应该以推断统计为主,描述统计为辅,暂且不论这种观点是否有不妥之处,但可足见推断统计学已在现代社会生活中起到举足轻重的作用。事实上,推断统计已成为现代统计学的基本特征之一。再次,统计学从其成为一门科学的那一天起,就把对现象数量方面的研究作为自己的基本特征,但是,同时强调要以

基于HADOOP的数据挖掘平台分析与设计

基于HADOOP的数据挖掘平台分析与设计 【摘要】云计算技术的出现为数据挖掘技术的发展带来了新的机遇。云计算技术通过使存储和计算能力均匀的分布到集群中的多个存储和计算节点上,从而实现了对超大数据集的巨大的存储和计算能力。HADOOP是一个用于构建云平台的Apache开源项目。使用HADOOP框架有利于我们方便、快速的实现计算机集群。在HADOOP平台上,采用了HDFS(分布式文件系统)来实现超大文件的存储和容错,而使用了MapReduce的编程模式来进行计算。 【关键词】HADOOP;数据挖掘;平台;分析;设计 一、数据挖掘技术概述 作为一门快速发展的技术,数据挖掘引起了信息产业界和社会的广泛关注。数据挖掘技术跨越多个学科,无论是数据库技术、机器学习、统计学、模式识别,还是神经网络,还是人工智能,数据挖掘都能从中吸取营养,不断发展。如今,随着云计算的出现和发展,数据挖掘技术迎来了新的机遇和挑战。 1.数据挖掘发展历程与分类 数据挖掘由单个算法,单个系统到并行数据挖掘与服务的模式,经历了数据挖掘软件开始和数据库结合、多种数据类型融合、分布式挖掘等多个过程。到今天,数据挖掘软件发展的历程,可以说是进入基于云计算的数据挖掘。 由于数据挖掘是一个交叉学科领域,是在包括机器学习,模式识别等多个学科的基础上发展而来。依赖于我们所用的数据挖掘方法,我们又可以使用其他学科的多种技术,如神经网络、模糊或粗糙集合论、知识表示等。所以,对数据挖掘的研究,我们会期望出现大量的各种类型的数据挖掘系统。这样,我们就需要对数据挖掘系统给出一个很清楚的分类。有了这种认识,我们才可以帮助用户根据其需求,确定最适合其需要的数据挖掘系统。 因此,数据挖掘的分类标准也必定会出现多样化。我们可以根据挖掘的数据库类型分类,或是技术类型分类,也可以根据运用的场景分类。但是大部分情况下,我们会根据挖掘产生的知识类型进行分类,也即是根据数据挖掘的功能进行分类。 2.数据挖掘流程 数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程,表现形式为规则、概念、规律及模式等。数据挖掘主要由以下步骤组成: ①数据预处理数据

统计学和数据挖掘区别

统计学和数据挖掘区别 数据分析微信公众号datadw——关注你想了解的,分享你需要的。 1.简介 统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家)认为数据挖掘是统计学的分支。这是一个不切合实际的看法。因为数据挖掘还应用了其它领域的思想、工具和方法,尤其是计算机学科,例如数据库技术和机器学习,而且它所关注的某些领域和统计学家所关注的有很大不同。 统计学和数据挖掘研究目标的重迭自然导致了迷惑。事实上,有时候还导致了反感。统计学有着正统的理论基础(尤其是经过本世纪的发展),而现在又出现了一个新的学科,有新的主人,而且声称要解决统计学家们以前认为是他们领域的问题。这必然会引起关注。更多的是因为这门新学科有着一个吸引人的名字,势必会引发大家的兴趣和好奇。把“数据挖掘”这个术语所潜在的承诺和“统计学”作比较的话,统计的最初含义是“陈述事实”,以及找出枯燥的大量数据背后的有意义的信息。当然,统计学的现代的含义已经有很大不同的事实。而且,这门新学科同商业有特殊的关联(尽管它还有科学及其它方面的应用)。 本文的目的是逐个考察这两门学科的性质,区分它们的异同,并关注与数据挖掘相关联的一些难题。首先,我们注意到“数据挖掘”对统计学家来说并不陌生。例如,Everitt定义它为:“仅仅是考察大量的数据驱动的模型,从中发现最适合的”。统计学家因而会忽略对数据进行特别的分析,因为他们知道太细致的

研究却难以发现明显的结构。尽管如此,事实上大量的数据可能包含不可预测的但很有价值的结构。而这恰恰引起了注意,也是当前数据挖掘的任务。 2.统计学的性质 试图为统计学下一个太宽泛的定义是没有意义的。尽管可能做到,但会引来很多异议。相反,我要关注统计学不同于数据挖掘的特性。 差异之一同上节中最后一段提到的相关,即统计学是一门比较保守的学科,目前有一种趋势是越来越精确。当然,这本身并不是坏事,只有越精确才能避免错误,发现真理。但是如果过度的话则是有害的。这个保守的观点源于统计学是数学的分支这样一个看法,我是不同意这个观点的。尽管统计学确实以数学为基础(正如物理和工程也以数学为基础,但没有被认为是数学的分支),但它同其它学科还有紧密的联系。 数学背景和追求精确加强了这样一个趋势:在采用一个方法之前先要证明,而不是象计算机科学和机器学习那样注重经验。这就意味着有时候和统计学家关注同一问题的其它领域的研究者提出一个很明显有用的方法,但它却不能被证明(或还不能被证明)。统计杂志倾向于发表经过数学证明的方法而不是一些特殊方法。数据挖掘作为几门学科的综合,已经从机器学习那里继承了实验的态度。这并不意味着数据挖掘工作者不注重精确,而只是说明如果方法不能产生结果的话就会被放弃。

数理统计论文——统计源于生活

统计源于生活,生活演绎统计 ——《女士品茶》读书随笔在老师推荐的几本统计学著作中,我毫不犹豫地选择了这本《女士品茶——20世纪统计怎样改变了科学》,我不知道女士品茶与统计学有何关联,其中的微妙之处让我产生了好奇。同时它的名字会让我们立刻脱离冷冰冰、一大串复杂的统计学公式,而转到一个更加贴近生活和应用的角度去欣赏统计学的魅力。书中作者试图用20世纪统计学革命中的权威大师们的生平故事来向大众阐述什么是统计模型?它们是怎么来的?在现实生活中它们意味着什么?初略本书的目录,着实给人一种和某些平乏生硬的教科书不一样的感觉,一个个故事生动地演绎着统计学一个又一个突破与飞跃! 本书一开头便解开读者心头的疑惑——女士品茶与统计学有何关联? 故事是在20世纪20年代后期发生的,在英国剑桥一个夏日的午后,一群大学的绅士和他们的夫人们,还有来访者,正围坐在户外的桌旁,享用着下午茶。在品茶过程中,一位女士坚称:把茶加进奶里,或把奶加进茶里,不同的做法,会使茶的味道品起来不同。在场的一帮科学精英们,对这位女士的“胡言乱语”嗤之以鼻。这怎么可能呢?他们不能想象,仅仅因为加茶加奶的先后顺序不同,茶就会发生不同的化学反应。 这时唯独一个身材矮小、戴着厚眼镜、下巴上蓄着的短尖髯开始变灰的先生,却不这么看,他对这个问题很感兴趣,认为这种现象可以作为一个假设并做实验验证,于是设计一个实验来测试这位女士是否能喝出两种冲泡法的区别,让她在不知情的情况下尝奶茶,猜这杯是先加奶还是先加茶。为了避免蒙中,茶的杯数要足够多,但也不能无限制的喝下去,那么为了确定那个女士能猜到多准,最少该喝多少杯呢? 这个实验很著名,是个似然估计问题。故事中那位蓄短胡须的先生便是在统计发展史上地位显赫、大名鼎鼎的罗纳德·艾尔默·费歇尔(Ronald Aylmer Fisher)。他是英国统计学家,近代数理统计的开创者。后来费歇尔在自己的著作中讨论了这个实验的各种可能结果,其中有关实验设计的著述是科学革命的要素之一。费歇尔在自己孜孜不倦地求索过程中得出一个结论:科学家需要从潜在实验结果的数据模型开始工作,这是一系列数据公式,其中一些符号代表实验中

数据挖掘与人工智能技术探讨

技术与市场 技术应用 2019年第26卷第5期 数据挖掘与人工智能技术探讨 聂 华 (陕西职业技术学院,陕西西安710038) 摘 要:人工智能技术在现代生活中发挥着越来越重要的作用,互联网时代带来了海量的数据信息,如何加速对数据的挖掘也是未来研究的重要方向。主要介绍了大数据挖掘技术是如何推动人工智能的发展,并对数据挖掘的含义进行了阐述,结合工作经验对大数据挖掘技术与人工智能的关系进行了分析。关键词:大数据;人工智能;技术 doi:10.3969/j.issn.1006-8554.2019.05.053  引言 今天的社会已进入人工智能时代,计算机技术已经开始应用于社会生产和日常生活的各个方面,并且开始融入人工智能,人工智能的应用极大地改善了我们的生活,提高了工作效率,并开始取代人类完成危险和复杂的工作,大数据时代的到来,有效提高了数据的使用效率。互联网时代产生了大量的数据信息,人工智能的发展离不开对数据信息的处理,所以对于人工智能的未来发展而言,在信息数据的挖掘方面也十分重要。  大数据挖掘技术推动了人工智能的发展1.1 人工智能的发展 人工智能的想法来源于实际的劳动,是在生产技术中不断地被发现和发展的。早期人们都是直接控制生产劳动工具,到了工业革命后,人们开始用蒸汽来驱动机车及其运转,到进一步发明发电机,开始形成初步的控制技术,到现在成熟地利用电力来进行拓展勘查,如地质勘探和深海探测,这其中已经开始形成一套成熟的控制理论,控制策略也在不断完善,人类在生产中不断地改进技术,为了提高控制精度,加快控制的响应速度,人工智能控制技术应运而生。1.2 大数据技术与人工智能发展的关系 大数据是指大量信息项之间的数据处理,对特定范围或扇区内的特征物理量,比如数量、属性、趋势等。最终对这些数据 进行处理,从多个方面系统地理解某一具体事物。而人工智能是指研究和开发用于模拟、扩展人类智能的形式,并且在不断地革新控制方法,进行应用系统的新技术科学。 根据人工智能的定义我们不难看出,人工智能本身就是一门技术科学。在技术的发展上又与以往的直接生产经验分离,只有借助大数据才能更好的发展。通过收集和分析技术参数,大数据使用计算机系统智能地重新设计算法,从技术操作中完成人类难以完成的工作,而人工智能又能迅速的对数据进行处理,挖掘所需信息。  数据挖掘的定义和研究现状 2.1 数据挖掘的定义 数据挖掘是现在关注的一个研究方面,是揭示数据中存在的模式和数据关系的一门学科,它的研究重点偏向对大型可观察数据库的处理。数据挖掘技术的出现,进一步拓展了人工智能应用领域。数据挖掘包括对数据的提取,以及进行分析的过程,前者主要是需要从信息众多而且复杂的数据库中提取有用的信息,后者则是进行比较,对需要的功能进行数据的分析,形成智能系统。 2.2 数据挖掘的研究现状 数据挖掘反复的过程,需要不断循环挖掘的过程,也正是通过这种不断挖掘,从而来实现到用户的要求。数据挖掘的发展阶段如图1 所示。 图1 数据挖掘过程 今天的数据挖掘应用主要集中在电信、农业、银行、电力、化学品和药品等领域,应用广泛,但是实际上深入的应用还远未普及。根据Gartner的报告,数据挖掘在未来的10年仍将会是重点的研究对象,并且数据挖掘也开始成为一个独立的专业学科。  人工智能和数据挖掘技术的发展前景3.1 在日常生产中的应用 现在的生活生产离不开互联网,将人工智能技术应用于互联网也是一个必然趋势,人工智能的应用能为人们的生活提供 (下转第131页) 9 21

数理统计

数理统计 数理统计(Mathematics Statistics) 什么是数理统计 数理统计是以概率论为基础,研究社会和自然界中大量随机现象数量变化基本规律的一种方法。其主要内容有参数估计、假设检验、相关分析、试验设计、非参数统计、过程统计等。 数理统计的特点 它以随机现象的观察试验取得资料作为出发点,以概率论为理论基础来研究随机现象.根据资料为随机现象选择数学模型,且利用数学资料来验证数学模型是否合适,在合适的基础上再研究它的特点,性质和规律性. 例如灯泡厂生产灯泡,将某天的产品中抽出几个进行试验.试验前不知道该天灯泡的寿命有多长,概率和其分布情况.试验后得到这几个灯泡的寿命作为资料,从中推测整批生产灯泡的使用寿命.合格率等.为了研究它的分布,利用概率论提供的数学模型进行指数分布,求出值,再利用几天的抽样试验来确定指数分布的合适性. 数理统计的起源与发展 数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的由集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议. 数理统计起源于人口统计、社会调查等各种描述性统计活动.公元前2250年,大禹治水,根据山川土质,人力和物力的多寡,分全国为九州;殷周时代实行井田制,按人口分地,进行了土地与户口的统计;春秋时代常以兵车多寡论诸侯实力,可见已进行了军事调查和比较;汉代全国户口与年龄的统计数字有据可查;明初编制了黄册与鱼鳞册,黄册乃全国户口名册,鱼鳞册系全国土地图籍,绘有地形,完全具有现代统计图表的性质.可见,我国历代对统计工作非常重视,只是缺少系统研究,未形成专门的著作. 在西方各国,统计工作开始于公元前3050年,埃及建造金字塔,为征收建筑费用,对全国人口进行普查和统计.到了亚里土多德时代,统计工作开始往理性演变.这时,统计在卫生、保险、国内外贸易、军事和行政管理方面的应用,都有详细的记载.统计一词,就是从意大利一词逐步演变而成的. 数理统计的发展大致可分为古典时期、近代时期和现代时期三个阶段.

大数据、数据分析和数据挖掘的区别

大数据、数据分析和数据挖掘的区别 大数据、数据分析、数据挖掘的区别是,大数据是互联网的海量数据挖掘,而数据挖掘更多是针对内部企业行业小众化的数据挖掘,数据分析就是进行做出针对性的分析和诊断,大数据需要分析的是趋势和发展,数据挖掘主要发现的是问题和诊断。具体分析如下: 1、大数据(big data): 指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产; 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)Veracity(真实性) 。 2、数据分析:

是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。 数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。 3、数据挖掘(英语:Data mining): 又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 简而言之: 大数据是范围比较广的数据分析和数据挖掘。 按照数据分析的流程来说,数据挖掘工作较数据分析工作靠前些,二者又有重合的地方,数据挖掘侧重数据的清洗和梳理。 数据分析处于数据处理的末端,是最后阶段。 数据分析和数据挖掘的分界、概念比较模糊,模糊的意思是二者很难区分。 大数据概念更为广泛,是把创新的思维、信息技术、统计学等等技术的综合体,每个人限于学术背景、技术背景,概述的都不一样。

数据挖掘与商务智能复习资料

1、联机分析处理(on line analytical processing ,OLAP)从数据仓库中的综合数据出发,提供面向分析的多维模型,并使用多维分析的方法从多个角度、多个层次对多维数据进行分析,使决策者能够以更加自然的方式来分析数据。 2、数据仓库是一种为信息分析提供了良好的基础并支持管理决策活动的分析环境,是面向主题的、集成的、稳定的、不可更新的、随时间变化的、分层次的多维的集成数据集合。 3、数据仓库的特点:(1)数据仓库是面向主题的(2)数据仓库的整合性(3)数据仓库数据的集成性(4)数据仓库的稳定性(5)数据仓库的长期性(6)数据仓库是随时间变化的(7)数据仓库的数据量很大(8)数据仓库软、硬件要求较高 4、数据库与数据仓库的关系: 5、数据集市(data marts)通常是指较为小型化、针对特定目标且建设成本较低的一种数据仓库。为了特定的应用目的或应用范围,而从数据仓库中独立出来的一部分数据,也可称为部门数据或主题数据(subject data)。 数据集市的两种架构: (1)、从属数据集市:它的数据直接来自于中央数据仓库。一般为那些访问数据仓库十分频繁的关键业务部门建立从属的数据集市,这样可以很好地提高查询的反应速度。

(2)独立数据集市:它的数据直接来源于各生产系统。许多企业在计划实施数据仓库时,往往出于投资方面的考虑,最后建成独立数据集市,用来解决个别部门比较迫切的决策问题。

6、数据挖掘是在不同的数据源中包括结构化的数据、半结构化的数据和非结构化的数据,即既可以是数据库,也可以是文件系统,或其他任何组织在一起的数据集合,通过一定的工具与方法寻找出有价值的知识的一类深层次的数据分析方法。 7、数据挖掘与OLAP的差异: (1)、OLAP是决策支持领域的一部分。OLAP分析师是建立一系列的假设,然后通过OLAP来证实或推翻这些假设来最终得到自己的结论。(2)、数据挖掘不是用于验证某个假定的模式(模型)的正确性,而是在数据库中自己寻找模型。他在本质上是一个归纳的过程。 (3)、数据挖掘和OLAP具有一定的互补性。 8、实施数据挖掘建模的六个阶段及四个层次 阶段:(1)、定义商业问题:针对企业问题和企业需求进行了解和确认,针对不同的需求做深入的了解,将其转化为数据挖掘的问题,并拟定逐步构想。 (2)、数据理解:建立数据库和分析数据库 (3)、数据预处理:同第二步为数据处理的核心

旅游大数据挖掘与分析平台方案

旅游研究院大数据挖掘与分析科研平台建设方案

目录 一. 背景 (3) 1.1 数据挖掘和大数据分析行业背景和发展趋势 (3) 1.2 旅游行业开展大数据分析及应用的意义 (4) 1.3 数据挖掘与大数据分析科研平台建设的必要性 (4) 二. 数据挖掘与大数据分析科研平台总体规划 (5) 2.1 科研平台规划 (5) 2.2 科研平台功能规划 (6) 三. 数据挖掘与大数据分析科研平台建设方案 (7) 3.1 大数据科研平台设备架构 (7) 3.1.1 主节点和备份主节点 (7) 3.1.2 管理节点 (7) 3.1.3 接口节点 (8) 3.1.4 计算节点 (8) 3.2 大数据科研平台底层架构 (8) 3.2.1 分布式持久化数据存储——HDFS (9) 3.2.2 分布式实时数据库——HBase (9) 3.2.3 分布式资源调度管理——YARN (9) 3.2.4 交互式SQL引擎——Hive (9) 3.2.5 内存计算——Spark (10) 3.3 科研平台的功能 (10) 3.3.1 科研项目管理 (10) 3.3.2 平台内置数据集 (10) 3.3.3 科研数据上传 (11) 3.3.4 集成算法组件 (11) 3.3.5 科研平台可视化功能 (12) 四. 平台数据集清单 (13) 五. 定制数据服务 (13) 六. 科研平台算法清单 (13) 七. 科研平台设备清单 (19)

一. 背景 1.1 数据挖掘和大数据分析行业背景和发展趋势 移动互联网、电子商务以及社交媒体的快速发展使得企业需要面临的数据量成指数增长。根据 IDC 《数字宇宙》(Digital Universe)研究报告显示,2020 年全球新建和复制的信息量已经超过 40ZB,是2015年的12倍;而中国的数据量则会在2020年超过8ZB,比2015年增长22倍。数据量的飞速增长带来了大数据技术和服务市场的繁荣发展。IDC亚太区(不含日本)最新关于大数据和分析(BDA)领域的市场研究表明,大数据技术和服务市场规模将会从2012年的5.48亿美元增加到2017年的23.8亿美元,未来5年的复合增长率达到34.1%。该市场涵盖了存储、服务器、网络、软件以及服务市场。数据量的增长是一种非线性的增长速度。 据IDC分析报道,最近一年来,亚太区出现了越来越广泛的大数据和分析领域的应用案例。在中国,从互联网企业,到电信、金融、政府这样的传统行业,都开始采用各种大数据和分析技术,开始了自己的大数据实践之旅;应用场景也在逐渐拓展,从结构化数据的分析,发展到半结构化、非结构化数据的分析,尤其是社交媒体信息分析受到用户的更多关注。用户们开始评估以Hadoop、数据库一体机以及内存计算技术为代表的大数据相关新型技术。 最新调研结果显示,提高竞争优势,降低成本以及吸引新的客户是中国用户对大数据项目最期望的三大回报。目前现有的大数据项目主要集中在业务流程优化以及提高客户满意度方面的应用。IDC发现很多用户希望大数据能够为企业带来业务创新,并且开始使用高级分析的解决方案以管理复杂的数据环境。过去一年中用户对社交数据的收集和分析应用的关注度增加明显。未来,地理位置信息分析将会增长迅速,这也会推动用户对大数据安全和隐私管理的关注。在亚太区,澳大利亚和新加坡的用户对大数据的相关投资主要在咨询服务方面,更关注如何根据新的最佳实践需求设计和实施方案。中国和印度在大数据领域的硬件投资则非常明显,更倾向于数据中心相关的基础架构的投资。

数理统计的基础知识

第4章数理统计的基础知识 数理统计与概率论是两个有密切联系的学科, 它们都以随机现象的统计规律为研究对象.但在研究问题的方法上有很大区别:概率论——已知随机变量服从某分布,寻求分布的性质、数字特征、及其应用; 数理统计——通过对实验数据的统计分析, 寻找所服从的分布和数字特征, 从而推断整体的规律性. 数理统计的核心问题——由样本推断总体 从本章开始,我们将讨论另一主题:数理统计。 数理统计是研究统计工作的一般原理和方法的科学,它主要阐述搜集、整理、分析统计数据,并据以对研究对象进行统计推断的理论和方法,是统计学的核心和基础。 本章将介绍数理统计的基本概念:总体、样本、统计量与抽样分布。 由于大量随机现象必然呈现出它的规律性,因而从理论上讲,只要对随机现象进行足够多次观察,被研究的随机现象的规律性一定能清楚地呈现出来。但客观上只允许我们对随机现象进行次数不多的观察试验,也就是说, 我们获得的只是局部观察资料。 数理统计就是在概率论的基础上研究怎样以有效的方式收集、整理和分析可获的有限的, 带有随机性的数据资料,对所考察问题的统计性规律尽可能地作出精确而可靠的推断或预测,为采取一定的决策和行动提供依据和建议.

§4.1 总体与样本 一、 总体与总体分布 1.总体:具有一定的共同属性的研究对象全体。总体中每个对象或成员称为个体。 研究某批灯泡的质量,该批灯泡寿命的全体就是总体;考察国产 轿车的质量,所有国产轿车每公里耗油量的全体就是总体;某高校学习“高等数学”的全体一年级学生。 个体与总体的关系,即集合中元素与集合之间的关系。统计学中关心的不是每个个体的所有具体特性,而是它的某一项或某几项数量指标。某高校一年级学生“高等数学”的期末考试成绩。 对于选定的数量指标 X (可以是向量)而言,每个个体所取的值是不同的,这一数量指标X 就是一个随机变量(或向量);X 的概率分布就完全描述了总体中我们所关心的这一数量指标的分布情况。数量指标X 的分布就称为总体的分布。 说明 例如 服装厂生产的各式服装,玩具厂生产的儿童玩具,检验部门通常将产品分成若干等级。 3X 总体分布就是设定的表示总体的随机变量.的分布. 4.1 X X 定义统计学中称随机变量(或向量)为,并把随机 变量(或向量)的分布称为总体总体分布.1X 表示总体的既可以是随机变量,也可以.是随机向量.2 有时个体的特性本身不是直接由数量指.标来描述的.

史上最系统的大数据挖掘技术及其应用介绍

史上最系统的大数据挖掘技术及其应用介绍

从人类文明诞生的那一刻起,数据就伴随我们而生——人类交流信息所用的文字和语言,计量距离或数量使用的记号和图案,观察自然所积累和传承的经验等,都是数据构成的。这些数据在百万年历史长河里,为人类文明的发展进化带来了难以估量的巨大价值。 自从人类发明了纸和笔,创造了数字、文字、几何技术后,数据有了更精确的描述和记录的方法,在此基础上催生出了数字、物理、化学,以及文学、艺术、管理等学科,我们今天所享受的现代文明,都深深的植根于数据技术。 随着互联网时代的大发展,数据记录逐步脱离了纸笔的限制,人类发明了廉价的硅晶半导体所蕴

藏的秘密,大量的数据可以按0或1的二进制方式存储半导体材料内,它们的存储能力如此巨大,成本如此低廉,以至于以往被轻易忽略的数据都能被忠实的保存下来:我们每一下轻微的呼吸、每一次心脏的跳动、每一下鼠标的点击,企业里员工的每一次出勤、财务的每一笔账单、客户的每一个评论,包罗万象都能一一记录。 与此同时,数据的概念也在进一步拓宽。传统的数据是指用数字或文字描述的内容,通称为结构化数据,而大数据时代涌现出了大量新型数据的、非结构化的数据。例如人群之间看不见的社交关系(Social Relationships),移动设备发射的GPS位置,网络传播的图像、视频信号,可穿戴设备采集的健康数据等。对这些各种各样

的数据的采集、挖掘、运用,也是现代大数据挖掘的重要研究课题。 正在发生的大数据变革,恐怕是人类技术发展中最重要的话题之一,它冲击着许多主要的行业,包括零售业、服务业、电子商务和金融领域等,同时大数据技术也正在彻底的改变我们的日常生活。如果把数据比作是矿石的话,大数据挖掘技术就是要从矿石中提炼出黄金,并形成各种精致的制成品发挥作用的过程。它既能够通过移动应用和云服务追踪和提升个人的生活品质,也能为现代企业带来更高效和稳健的管理方式。小到个人,大到企业和国家,大数据均是极度重要的一个议题,需要我们真正的深入理解它,因此本文将对大数据挖掘技术给出全景式的介绍,首先

相关文档
最新文档