fluent学习总结报告6

fluent学习总结报告6
fluent学习总结报告6

10、计算结果后处理

1)创建要进行后处理的表面

FLUENT中的可视化信息基本都是以表面({surface)为基础的。有些表面,如计算的进口表

面和壁面等,可能已经存在,在对计算结果进行后处理时直接使用即可。但多数情况下,为

了达到对空间任意位置上的某些变量的观察、统计及制作XY散点图,需要创建新的表面。FLUENT提供了多种方法,用以生成各种类型的表面。FLUENT在生成这些表确后,将表面

的信息存储在案例文件中。现简要介绍这些表面。

?区域表面(Zone Surfaces)。如果用户想创建一个与现有的单元区域(或单元面区域)包含相同单元(或单元面)的单元区域(或单元面区域).可使用这种方式创建区域表面。

当需要在边界上显示结果时,这类表面非常有用。用户可通过Surface / Zone命令打

开Zone Surface对话框,来生成这类表面。

?子域表面(Partition Surfaces)。当用户使用FLLENT的并行版本时,可通过两个网格子域的边界来生成表面。用户可通过Surface

/Partition命令打开Partition Surface对话框,来生成这类表面。

?点表面(Point Surfaces)。为了监视某一点处的变量或函数的值,需要创建这类表面。用户可通过Surface / Point命令打开Point

Surface对话框,来生成这类表面。

?线和耙表面(Line and Rake Surfaces)。为了生成流线.用户必须指定一个表面,粒子将从这个表面释放出来。线表面和耙表面就是专

为此设计的。一个耙表面由一组在两个指定点间均匀分布的若于

个点组成,一个线表面只是一个指定了端点且在计算域内延伸的

一条线。用户可通过Surface/Line/Rake。命令打开Line / Rake

Surface对话框,来生成这类表而。

?平面(Plane Surface):如果想显示计算域内指定平面上的流场数据,则可创建这类表面。该类表面通过指定3个点来定义。用户可通

过Surface /Plane命令打开Plane Surface对话框,来生成这类表面。

?二次曲面(Quadric Surfaces]:为了显示在一条直线、平面、圆、球或二次曲面上的数据,用户可输入用于定义这个几何对象的二次函

数的系数来创建它。该特性让用户直接地走义表面。用户可通过

Surface/Quadric命令打开Quadric Surface对话框,来生成这类

表面。

?轴侧面 (Iso-surfaces):用户可使用一个轴侧面来显示具有相等变量值的单元上的结果。根据x y或二坐标生成轴侧面将给出计算域

的x. y或Z的垂直断面。在为压力生成的轴侧面上,用户可以显

示在常压面上的其他变量数据。用户可通过surface/Iso-Surface命

令打开Iso-Surface Surface对话框,来生成这类表面。除了上述基

本的生成表面的方法外,FLUENT还提供了3种对表面进行编辑和

加工的功能,也叮以生成新表面。

?剪切表面(blipping Surfaces):如果己经创建了一个表面,但不想使用整个表面来显示数据,可通过剪切功能从中取出个局部。用户可

通过Surface/Iso-Clip命令打开Iso-Clip对话框,来生成这类表面。

?变换表面(Transforming Surface);用户可针对一个已有表面,进行平移或旋转变换后,得到新的表面。用户可通过Surface /Transform

命令打开Transform Surface对话框,来生成这类表面。组合、重

命名和删除表面(Grouping Renaming and Deleting Surfaces):一旦创建了多个表面后,用户可调用此功能对表面进行组合、重命名和

删除操作。组合表面让用户将多个表而组合成一个表而,这样便

于一次在较大区域七观察结果。用户可通过Surface/Manage命令

打开Surface对话框,来生成这类表面。

2)显示等值线图、速度矢量图和流线图

①等值线图

等值线是在所指定的表面上通过若干个点的连线,在这条线上变量(如压力)为定值。等值线图是在物理区域上由同一变量的多条等值线组成的图形。等值线图包含线条图形和云图两种。云图实际是用特定的颜色来填充表面、仁变量取相近值的区域。

选择Display/Contours命令,弹出Contours对话框,如图。在该对话框中,用户可通过Contours of下拉列表框确定显示哪个变量的等值线,通过Surface}确定显示哪个面上的值,

在Options选项组中可以选择是否以填充方式(云图方式)显示,是否同时显示降格。

在Min及Max栏中指定了要显示的等值线的取值范围。默认情况下,FLUENT根据整个计算域上的值来决定这两个值的大小。有时,这种情况可能造成颜色上的失调,即某种颜色占

据绝对支配地位。如blue对应于0,rad对应10,而所关心的表面上变量的取值范围是4~6,这样,整个表面上的颜色可能全是green。为此,用户可以关闭 Auto Range选项,然后在

Min及Max文本框输入特定的范围值,如分别输入4和6。当用户想显示默认范围时,单击Compute按钮后,Min及Max的值得到更新。选中Chip to Range,表示凡是超出显示范围的值,不予显示。

此外,用户还可通过取消选中Global Range,告诉FLUENT不要从整个计算域内确定显示范围,而是从当前表面的区域内确定取值范围。

②速度矢量图

速度矢量图是反映速度变化、旋涡、回流等有效的手段,是流场分析最常用的图谱之一。

③流线图

将计算域内无质量粒子的流动情况可视化。这些粒子从用户创建的一个或多个表面上释放(用户可通过Surface命令,护的相关工具创建表面)。

选择Display/Path Lines命令,弹出Path Lines对话框。用户可指定粒子从哪个表面上释放

出来,然后说明相关选项,如Step Sire和Steps,便可显示流线。这里,Step Size用于计算粒子在卜一个位置的长度间隔,Steps用于设置粒子在前行过程中的最大的间隔数。

3)绘制直方图与XY散点图

FLUENT允许用户从解的结果.data文件、残差数据中提取数据,来生成直方图与XY散点图。直方图是由数据条所组成的图形。XY散点图是由一系列离散数据构成的线或符号图表。FLUENT允许用户在这类图表中虚拟地定义任何变量或函数。为了将计算结果与实验结果对比,FLUENT允许用户从外部数据文件中读取数据。用户还可使用XY散点图绘制某个变量

的残差历程,或其随时间变化的情况。用户可以使用来自于若干个区域、表面或文件中的数

据生成非常复杂的XY散点图。常用的方法包括:

根据当前流场的解创建XY散点图。选择Plot /XY plot命令,在打开的Solution XY Plot对话框框中,可以选择与当前流场有关的参数,并进行相关设置,然后可得到指定场变量的XY散点图。在Solution XY Plot对话框中还有用于将生成的XY散点图存盘的选项。

从外部数据文件中取数据创建XY散点图。选择Plot/ File命令,在打开的File XY Plot对话框中,可指定外部数据文件,然后生成相应的XY散点图。

圆周平均值形式的XY散点图。这种XY散点图,便于用户发现某一变量在几个不同半径或轴向位置处的平均值。FLUENT在一个指定的圆周区域内计算某个量的平均值,然后以半径方向或轴向为坐标,绘制该平均值。用户可选择plot/circum-avg-radial或plot/circum-avg-axial命令。在打开的对话框中,进行相关设置,然后生成XY散点图。

绘制残差图。要绘制求解过

程中记录下来的某个变量的残差值,可在图中的Residual Monitors对话框中单击Plot按钮。

用户可使用Plot / Residuals打开Residual Monitors对话框。

绘制直方图。直方图的横坐标是所希望的解的量(如密度),纵坐标是单元总数的百分比。使用P1ot/Histogram命令,打开Solution Histogram对话枢,用户可设置要绘制的直方图的内容

及坐标轴,然后单击Plot即可绘制完成。

4)生成动画

FLUENT可生成由一个接一个的静止画面组成的连续动画进程。用户可在图形窗口中构造

场景,通过移动或缩放对象来修改场景,改

变某些对象的颜色和可见性等。FLUENT可平滑处理两帧画面之侧的过渡,创建具有指定帧数的多媒体画面。这些工作可借助Animate对话框完成。选择Display/Scene Animation命令,弹出Animate对

话框。用户不仅可以在该对话框中创建动画,还可播放或保存动画文件,此外,还可将动画

记录到影像磁带土,用于在DV等系统下播放。

5)报告统计信息

FLUENT提供了许多计算和报告表面和边界积分值的工其。这些工具可以计用户得到通过边界的物质质量流量和热量传递速率,在边界处的作用力以及动髦仇,还叮以得到在一个面上或者在一个体中的面积、积分、流量、平均值和质量平均值(其他量)。另外,用户还可以得到几何形状和求解数据的直方图,设置无因次系数的参考值以及计算投影表面积。用户也能打印或者存储一个包括当前案例中的模型设置、边界条件和求解设定等情况的摘要报告。可报告的信息主要包括:

通过边界的流量。使用Flux Reports对话框,用户可获得在选择的边界区域上的质紧流量、热传导率或者辐射热传导率。该对话框可通过Report / Fluxes命令打开。

边界上的作用力。使用Force Reports对话框,用户可获得指定壁而区域内沿着指定矢量方向的作用力或关于指定中心位置的力矩的报告。这个特性可以被用于报告像升力、阴力及机翼计算的动量系数等空气动力学系数。该对话框可通过Report/Forces命令打开。

投影面积。使用Projected Surface Areas对话框,对己选择的面沿着x y或z轴方向(例如在yz、xz或xy平面上)计算估计的投影面积。这一特性仅在3D情况下可以使用。该对话框可通过Report/Projected Areas命令打开。

表面积分。使用Surface Integral,对话框,用户可以针对一个

选定的场变量,在计算域内指定的表面上,获得面积信息、质量流量、积分、总和、面最大值、面最小值、顶点最大值、顶点最小值,

或质量平均量、面积平均量、表面平均量、顶点平均量等。该对话框

通过Report/Surface Integrals命令打开。

体积分。使用Volume Integrals对话框,用户可以针对一个选定的场变量,在计一算域内指定的单元区域内,获得体积、总和、体积积分、体积加权平均、质量积分和质量加权积分等。该对话框通过Report/Volume integrals命令打开。

直方图报告。在FLLIEUT中,用户可以在控制台窗口中以直方图格式打印出几何和结果

数据。该过程与绘制直方图的过程基木一样,只不过原来是在图形窗口给出信息,而这里是

在文本窗口显示信息。用户可通过在Solution Histogram对话框中单击Print按钮实现这一过程。

参考值设定。在FLUENT中,某些物理量或无量纲系数是使用参考值来计算的,例如,作用

力系数使用参考面积、密度和速度来计算,压力使用参考压力来计算,Reynolds数使用参考

长度、密度和粘度来计算,等势。能被设置参考值的量包括 Area Density Enthalpy、Length、pressure、Temperature、velocity、dynamic Viscosity

和 Ratio of Specific Heats 。用户可使用Reference calves对话框来设置这些参考值。该对话框

通过Report /Reference Values命令扫一开。

模型总体信息。FLUENT允许用户得到案例文件中的当前设定,即列出物理模型、边界条件、材料属性和求解控制等设置情况。这个报告可以让用户对当前的问题定义有一个总的看法,

而不用逐个打开对话框进行检查。该功能通过Summary对话框完成。用户可从Report / Summary命令,弹出该对话框。

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

fluent--模拟例子

第一章 一维稳态导热的数值模拟 一、模拟实验目的和内容 本模拟实验的目的主要有3个:(1)学生初步了解并掌握Fluent 求解问题的一般过程,主要包括前处理、计算、后处理三个部分。(2)理解计算机求解问题的原理,即通过对系统进行离散化,从而求解代数方程组,求得整个系统区域的场分布。(3)模拟系统总的传热量并与傅立叶导热定律的求解结果相比较,验证数值模拟的可靠性。实验内容主要包括:(1)模拟一维稳态导热平板内的温度分布。(2)模拟一维稳态导热总的传热量。 二、实例简介 如图1-1所示,平板的长宽度远远大于它的厚度,平板的上部保持高温h t ,平板的下部保持低温c t 。平板的长高比为30,可作为一维问题进行处理。需要求解平板内的温度分布以及整个稳态传热过程的传热量。 三、实例操作步骤 1. 利用Gambit 对计算区域离散化和指定边界条件类型 步骤1:启动Gambit 软件并建立新文件 在路径C:\Fluent.Inc\ntbin\ntx86下打开gambit 文件(双击后稍等片刻),其窗口布局如图1-2所示。 图1-2 Gambit 窗口的布局 然后是建立新文件,操作为选择打开入图1-3所示的对话框。 h t c 图1-1 导热计算区域示意图 x y

图1-3 建立新文件 在ID文本框中输入onedim作为文件名,然后单击Accept按纽,在随后显示的图1-4对话框中单击Yes按纽保存。 图1-4 确认保存对话框 步骤2:创建几何图形 选择Operation→Geometry→Face ,打开图1-5所示的对话框。 图1-5 创建面的对话框 在Width内输入30,在Height中输入1,在Direction下选择+X+Y坐标系,然后单击Apply,并在Global Control下点击,则出现图1-6所示的几何图形。 图1-6 几何图形的显示 步骤3:网格划分 (1)边的网格划分 当几何区域确定之后,接下来就需要对几何区域进行离散化,即进行网格划分。选择Operation→Mesh→Edge,打开图1-7所示的对话框。

fluent计算错误分析

1. FlUENT 1.1 求解方面 1.1.1 floating point error是什么意思?怎样避免它? Floating point error已经提过很多次了并且也已经对它讨论了许多。下面是在Fluent论坛上的一些答案: 从数值计算方面看,计算机所执行的运算在计算机内是以浮点数(floating point number)来表示的。那些由于用户的非法数值计算或者所用计算机的限制所引起的错误称为floating point error。 1)非法运算:最简单的例子是使用Newton Raphson方法来求解f(x)=0的根时,如果执行第N次迭代时有,x=x(N),f’(x(N))=0,那么根据公式x(N+1)=x(N)-f(x(N))/ f’(x(N))进行下一次迭代时就会出现被0除的错误。 2)上溢或下溢:这种错误是数据太大或太小造成的,数据太大称为上溢,太小称为下溢。这样的数据在计算机中不能被处理器的算术运算单元进行计算。 3)舍入错误:当对数据进行舍入时,一些重的数字会被丢失并且不可再恢复。例如,如果对0.1进行舍入取整,得到的值为0,如果再对它又进行计算就会导致错误。 避免方法 计算和迭代我认为设一个比较小的时间步长会比较好的。或者改成小的欠松驰因子也会比较好。从我的经验来看,我把欠松驰因子设为默认值的1/3;降低欠松驰因子或使用耦合隐式求解;改变欠松驰因子,如果是非稳态问题可能是时间步长太大;改善solver-control-limits 比例或许会有帮助;你需要降低Courant数;如果仍然有错误,不选择compute from初始化求解域,然后单击init。再选择你想从哪个面初始化并迭代,这样应该会起作用。另外一个原因可能是courant数太大,就样就是说两次迭代之间的时间步太大并且计算结果变化也较大(残差高)。 网格问题当我开始缩放网格时就会发生这个错误。在Gambit中,所有的尺寸都是以mm 为单位,在fluent按scale按钮把它转换成m,然后迭代几百次时就会发生这种错误。但是当我不把网格缩放到m时,让它和在Gambit中一样,迭代就会成功;我认为你应当检查网格,你的网格数太多了,使用较少的网格问题就会解决;网格太多,计算机资源不够用,使使比较粗的网格。 边界条件在我的分析中,我设了一个wall边界条件来代迭axis边界条件,结果fluent拒绝计算并告诉我floating point error。你的边界条件不能代表真实的物理现象;错误的边界条件定义可能会导致floating point error。例如把内边界设成interior;一次我使用对称边界条件模拟2D区间时也遇到这种问题,我把symmetry设为axe symmetric,就发生了floating point error;检查你设的湍流参数,减小湍流强度,先进行50次迭代。 多处理器问题我近来在进行多处理器模拟时也遇到相似的问题。问题的解决方法是在单个处理器上运行,这样就运算得很好。 错误迭代以错误的条件来初始化,在开始迭代时就会发生floating point error。 1.1.2 coupled和segregated求解有什么区别? Coupled会同时求解所有的方程(质量守恒方程、动量守恒方程和能量守恒方程)而不是单个方程求解(方程互相分离)。当速度和压力高度耦合(高压和高速)时应该使用耦合求解,但这样会需要较长的计算时间。 在耦合求解中,能量方程中总是包含组分扩散(Species Diffusion Term)项。

Fluent 学习心得

Fluent 学习心得 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单。 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格,fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域。所以,用fluent做的比较复杂一点的流场(除了经典的几个基本流场)其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的,这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级,我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去,但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算一般用fluent是不适合的。我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡,也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛速度快,但是低速流场计算,其大

Fluent性能分析

Fluent性能分析 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合 fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格, fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的 格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合 用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域 所以,用fluent做的比较复杂一点的流场(除了经典的几个基本流场) 其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的, 这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得 大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级, 我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算 一般用fluent是不适合的。 我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛 速度快,但是低速流场计算,其大多数的着眼点在于对流场结构的探索,所以计算得到的结果就要好好斟酌一下了,高速流场的模拟中,一般着眼点在于气动力的结果,压力分布

FLUENT基础知识总结

FLUENT基础知识总结 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单。 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit 对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格,fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域。所以,用fluent 做的比较复杂一点的流场(除了经典的几个基本流场)其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的,这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级,我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去,但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算一般用fluent是不适合的。 我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡,也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛速度快,但是低速流场计算,其大多数的着眼点在于对流场结构的探索,所以计算得到的结果就要好好斟酌一下了,高速流场的模拟中,一般着眼点在于气动力的结果,

fluent学习笔记

fluent技术基础与应用实例 4.2.2 fluent数值模拟步骤简介 主要步骤: 1、根据实际问题选择2D或3Dfluent求解器从而进行数值模拟。 2、导入网格(File→Read→Case,然后选择有gambit导出的.msh文件) 3、检查网格(Grid→Check)。如果网格最小体积为负值,就要重新 进行网格划分。 4、选择计算模型。 5、确定流体物理性质(Define→Material)。 6、定义操作环境(Define→operating condition) 7、制定边界条件(Define→Boundary Conditions) 8、求解方法的设置及其控制。 9、流场初始化(Solve→Initialize) 10、迭代求解(Solve→Iterate) 11、检查结果。 12、保存结果,后处理等。 具体操作步骤: 1、fluent2d或3d求解器的选择。 2、网格的相关操作 (1)、读入网格文件 (2)、检查网格文件 文件读入后,一定要对网格进行检查。上述的操作可以得到网格信息,从中看出几何区域的大小。另外从minimum volume 可以知道最小网格的体积,若是它的值大于零,网格可以用于计算,否则就要重新划 分网格。 (3)、设置计算区域 在gambit中画出的图形是没有单位的,它是一个纯数量的模型。故 在进行实际计算的时候,要根据实际将模型放大或缩小。方法是改变fluent总求解器的单位。 (4)、显示网格。 Display→Grid 3、选择计算模型

(1)、基本求解器的定义 Define→Models→Solver Fluent中提供了三种求解方法: ·非耦合求解 segregated ·耦合隐式求解 coupled implicit ·耦合显示求解 coupled explicit 非耦合求解方法主要用于不可压缩流体或者压缩性不强的流体。 耦合求解方法用在高速可压缩流体 fluent默认设置是非耦合求解方法,但对于高速可压缩流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建 议采用耦合隐式求解方法。耦合能量和动量方程,可以较快的得到收敛值。耦合隐式求解的短板:运行所需要的存比较大。若果必须要耦合求解而机器存不够用,可以考虑采用耦合显示求解方法。盖求解方法也耦合了动量,能量和组分方程,但是存却比隐式求解方法要小。 需要指出的是,非耦合求解器的一些模型在耦合求解器里并不一定都有。耦合求解器里没有的模型包括:多相流模型、混合分数/PDF燃烧模型、预混燃烧模型。污染物生成模型、相变模型、Rosseland辐射模型、确定质量流率的周期性流动模型和周期性换热模型。 %%%有点重复,但是可以看看加深理解 Fluent提供三种不同的求解方法;分离解、隐式耦合解、显示耦合解。分理解和耦合解的主要区别在于:连续方程、动量方程、能量方程和 组分方程解的步骤不同。 分离解按照顺序解,耦合解是同时解。两种解法都是最后解附加的标量方程。隐式解和显示解的区别在于线性耦合方程的方式不同。 Fluent默认使用分离求解器,但是对于高速可压流动,强体积力导致 的强烈耦合流动(流体流动耦合流体换热耦合流体的混合,三者相互耦合的过程—文档整理者注)(浮力或者旋转力),或者在非常精细的网格上的流动,需要考虑隐式解。这一解法耦合了流动和能量方程, 收敛很快。%%% (2)、其他求解器的选择 在实际问题中,除了要计算流场,有时还要计算温度场或者浓度场等,因此还需要其他的模型。主要的模型有: Multiphase(多相流动)viscous(层流或湍流)energy(是否考虑传热)species(反应及其传热相关) (3)操作环境的设置 Define→operation→condition

FLUENT 15.0 VOF模型测试报告

ANSYS 15.0 系列测试报告 FLUENT 15.0 VOF模型 测试人:崔亮安世亚太公司 测试时间:2013.12.01

1、仿真平台 HP Z820工作站,Intel Xeon E5-2690 * 2,内存64GB,2TB SATA硬盘。安装ANSYS 15.0 Preview3版本。 2、仿真模型 对某车型上带有底部隔板的油箱,在车辆加速时油箱内燃油晃动的瞬态过程进行瞬态仿真分析,网格单元数约10万,使用FLUENT的VOF模型计算空气和燃油的两相交界面。重点考察FLUENT 15.0中VOF模型的计算效率和两相交界面捕捉精度的提升。 测试案例的几何形状 测试案例的网格模型 3、试用情况 1).稳定性 在整个试用过程中,软件保持稳定,未出现任何不流畅、死机、系统崩溃等情况。2).流畅度 模型拖动、旋转、缩放等操作十分流畅,模型设定及求解过程操作十分流畅。 3).效率 该模型使用0.0005秒的时间步长进行瞬态计算,共计算了2000步,共计1.0秒时长。使用15.0 Preview3版本所用的计算时间为3693秒。之前使用13.0版本计算该模型所用计算时间为4381秒。新版本提速15.7%。 4).硬件资源调用情况 由于该模型网格数量较少,仅使用单核进行求解计算。在整个计算过程中,单核占用率达到100%,内存占用峰值约为400 MB。之前使用13.0版本计算该模型的内存占用峰值约

为450兆。新版本对内存的峰值占用约为旧版本的90%左右。 5).计算精度 VOF模型的计算精度体现在两相交界面捕捉的清晰程度,15.0版本的交界面捕捉清晰程度比旧版本略有提升,对于一些较小的气泡有着更好的捕捉能力。 t=0.45s时,15.0版本和13.0版本计算的两相交界面对比 t=0.45s时,15.0版本和13.0版本计算的两相交界面对比 4、总结 在ANSYS 15.0 Preview3版本的试用过程中,对FLUENT 15.0中VOF模型的计算效率提升感到满意,相比较于旧版本,约有15%的计算速度提升,这对缩短仿真分析的周期有极大帮助;还有约10%的内存峰值占用量下降,这对于合理利用现有硬件资源进行更大规模的模型计算有着重要意义。此外,新版本VOF模型的计算精度也有所提升,两相交界面捕捉更加锐利,对于一些较小的气泡,相对于旧版本有着更好的捕捉能力

fluent经验总结

1什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什 么样的影响? 1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写 出时,为松驰因子(Relaxation Factors)。《数值传热学-214》 2、FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制的变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变化量。亚松驰最简 单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积, 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。这就意味着使用分离解算器解的方程,包 括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高Rayleigh数自然对流问题),在计算开始时要慎重减小亚松驰因子。使用默认的亚松驰因子开始计算是很好的习惯。如 果经过4到5步的迭代残差仍然增长,你就需要减小亚松驰因子。有时候,如果发现残差 开始增加,你可以改变亚松驰因子重新计算。在亚松驰因子过大时通常会出现这种情况。 最为安全的方法就是在对亚松驰因子做任何修改之前先保存数据文件,并对解的算法做几 步迭代以调节到新的参数。最典型的情况是,亚松驰因子的增加会使残差有少量的增加, 但是随着解的进行残差的增加又消失了。如果残差变化有几个量级你就需要考虑停止计算 并回到最后保存的较好的数据文件。注意:粘性和密度的亚松驰是在每一次迭代之间的。 而且,如果直接解焓方程而不是温度方程(即:对PDF计算),基于焓的温度的更新是要进行亚松驰的。要查看默认的亚松弛因子的值,你可以在解控制面板点击默认按钮。对于 大多数流动,不需要修改默认亚松弛因子。但是,如果出现不稳定或者发散你就需要减小 默认的亚松弛因子了,其中压力、动量、k和e的亚松弛因子默认值分别为0.2,0.5,0.5和0.5。对于SIMPLEC格式一般不需要减小压力的亚松弛因子。在密度和温度强烈耦合 的问题中,如相当高的Rayleigh数的自然或混合对流流动,应该对温度和/或密度(所用 的亚松弛因子小于1.0)进行亚松弛。相反,当温度和动量方程没有耦合或者耦合较弱时,流动密度是常数,温度的亚松弛因子可以设为1.0。对于其它的标量方程,如漩涡,组分,PDF变量,对于某些问题默认的亚松弛可能过大,尤其是对于初始计算。你可以将松弛因子设为0.8以使得收敛更容易。 SIMPLE与SIMPLEC比较 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC(SIMPLE-Consistent)算法,默认是SIMPLE算法,但是对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松驰迭代时,具体介绍如下: 对于相对简单的问题(如:没有附加模型激活的层流流动),其收敛性已经被压力速

FLUENT学习经验总结(狠珍贵,学长传授)

1对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢? 答:学习任何一个软件,对于每一个人来说,都存在入门的时期。认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。 由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件,第一,具有流体力学的基础,第二,有FLUENT 安装软件可以应用。然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。如果身边有懂得FLUENT的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。A.理想流体(Ideal Fluid)和粘性流体(Viscous Fluid): 流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。粘性的大小依赖于流体的性质,并显著地随温度变化。实验表明,粘性应力的大小与粘性及相对速度成正比。当流体的粘性较小(实际上最重要的流体如空气、水等的粘性都是很小的),运动的相对速度也不大时,所产生的粘性应力比起其他类型的力如惯性力可忽略不计。此时我们可以近似地把流体看成无粘性的,这样的流体称为理想流体。十分明显,理想流体对于切向变形没有任何抗拒能力。这样对于粘性而言,我们可以将流体分为理想流体和粘性流体两大类。应该强调指出,真正的理想流体在客观实际中是不存在的,它只是实际流体在某些条件下的一种近似模型。 B.牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid): 日常生活和工程实践中最常遇到的流体其切应力与剪切变形速率符合下式的线性关系,称为牛顿流体。而切应力与变形速率不成线性关系者称为非牛顿流体。图2-1(a)中绘出了切应力与变形速率的关系曲线。其中符合上式的线性关系者为牛顿流体。其他为非牛顿流体,非牛顿流体中又因其切应力与变形速率关系特点分为膨胀性流体(Dilalant),拟塑性流体(Pseudoplastic),具有屈服应力的理想宾厄流体(Ideal Bingham Fluid)和塑性流体(Plastic Fluid)等。通常油脂、油漆、牛奶、牙膏、血液、泥浆等均为非牛顿流体。非牛顿流体的研究在化纤、塑料、石油、化工、食品及很多轻工业中有着广泛的应用。图2-1(b)还显示出对于有些非牛顿流体,其粘滞特性具有时间效应,即剪切应力不仅与变形速率有关而且与作用时间有关。当变形速率保持常量,切应力随时间增大,这种非牛顿流体称为震凝性流体(Rheopectic Fluid)。当变形速率保持常量而切应力随时间减小的非牛顿流体则称为触变性流体(Thixotropic Fluid)。 C.可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid): 在流体的运动过程中,由于压力、温度等因素的改变,流体质点的体积(或密度,因质点的质量一定),或多或少有所改变。流体质点的体积或密度在受到一定压力差或温度差的条件下可以改变的这个性质称为压缩性。真实流体都是可以压缩的。它的压缩程度依赖于流体的性质及外界的条件。例如水在100个大气压下,容积缩小0.5%,温度从20°变化到100°,容积降低4%。因此在一般情况下液体可以近似地看成不可压的。但是在某些特殊问题中,例如水中爆炸或水击等问题,则必须把液体看作是可压缩的。气体的压缩性比液体大得多,所以在一般情形下应该当作可压缩流体处理。但是如果压力差较小,运动速度较小,并且没有很大的温度差,则实际上气体所产生的体积变化也不大。此时,也可以近似地将气体视为不可压缩的。 在可压缩流体的连续方程中含密度,因而可把密度视为连续方程中的独立变量进行求解,再根据气体的状态方程求出压力。不可压流体的压力场是通过连续方程间接规定的。由于没有直接求解压力的方程,不可压流体的流动方程的求解具有其特殊的困难。 D. 层流(Laminar Flow)和湍流(Turbulent Flow):

FLUENT中常用的湍流模型

The Spalart-Allmaras模型 对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。 在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。这将是最好的选择,当精确的计算在湍流中并不是十分需要时。再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。这也许可以使模型对于数值的误差变得不敏感。想知道数值误差的具体情况请看5.1.2。 需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。例如,不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。 标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e 模型。k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: ?RNG模型在e方程中加了一个条件,有效的改善了精度。 ?考虑到了湍流漩涡,提高了在这方面的精度。 ?RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 ?然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。 带旋流修正的k-e模型 带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。 ?带旋流修正的k-e模型为湍流粘性增加了一个公式。 ?为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-e模型。由于这些修改,把它应用于多重参考系统中需要注意。 标准k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 剪切压力传输(SST)k-ω模型

fluent 计算错误汇总

Fluent 计算错误汇总 1..fluent不能显示图像 在运行fluent时,导入case后,检查完grid,在显示grid时,总是出现这样的错误 Error message from graphics function Update_Display: Unable to Set OpenGL Rendering Context Error: FLUENT received a fatal signal (SEGMENTATION VIOLATION). Error Object: () 解决办法: 右键单击快捷方式,把目标由x: 改成:x: 2d -driver msw 如果还有三维的,可以再建立一个快捷方式改成: x: 3d -driver msw 这就可以直接调用了。如果不是以上原因引起的话,也有可能是和别的软件冲突,如MATLAB等,这也会使fluent无法显示图像。 Q1:GAMBIT安装后无法运行,出错信息是“unable find Exceed X Server” A. GAMBIT需要装EXCEED才能用。 gambit的运行:先运行命令提示符,输入gambit,回车 fluent的运行:直接在开始-程序-Fluent Inc里面 Q2:Fluent安装后无法运行,出错信息是甥?挱湵扡敬映湩層漯数? A. FLUENT和GAMBIT需要把相应文件拷贝到license目录下 文件?gambit时提示找不到gambit出错信息:运行Q3: A. FLUENT和GAMBIT推荐使用默认安装设置, 安装完GAMBIT请设置环境变量, 设置办法“开始-程序-FLUENT INC-Set Environment 另外设置完环境变量需要重启一下,否则仍会提示找不到环境变量。Q4:使用Fluent和Gambit需要注意什么问题? A. 安装好FLUENT和GAMBIT最好设置一下用户默认路径 推荐设置办法,在非系统分区建一个目录,如d:%users a)win2k用户在控制面板-用户和密码-高级-高级,在使用fluent用户的配置文件 修改本地路径为d:%users,重起到该用户运行命令提示符,检查用户路径是否修改 b)xp用户,把命令提示符发送到桌面快捷方式,右键单击命令提示符快捷方式 在快捷方式-起始位置加入D:%users,重起检查 Q5:Gambit运行失败,出错信息“IDENTIFIER default_ Server ” 等文件default_id.*的缺省文件已经打开,到用户默认目录删除gambitA.

Fluent 湍流模型小结

Fluent 湍流模型小结湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种: 直接模拟(direct numerical&Oσλαση; simulation, DNS) 直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。 大涡模拟(large&Oσλαση; eddy simulation, LES) 大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。这些对涡旋的认识基础就导致了大涡模拟方法的产生。Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。 应用Reynolds时均方程(Reynolds-averaging&Oσλαση; equations)的模拟方法 许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。统观模拟方法的基本思想是用低阶关联量和平均流性质来模拟未知的高阶关联项,从而封闭平均方程组或关联项方程组。虽然这种方法在湍流理论中是最简单的,但是对工程应用而言仍然是相当复杂的。即便如此,在处理工程上的问题时,统观模拟方法仍然是最有效、最经济而且合理的方法。在统观模型中,使用时间最长,积累经验最丰富的是混合长度模型和K-E模型。其中混合长度模型是最早期和最简单的湍流模型。该模型是建立在层流粘性和湍流粘性的类比、平均运动与湍流的脉动的概念上的。该模型的优点是简单直观、无须增加微分方程。缺点是在模型中忽略了湍流的对流与扩散,对于复杂湍流流动混合长度难以确定。 到目前为止,工程中应用最广泛的是k-ε模型。另外针对k-ε模型的不足之处,许多学者通过对K-E模型的修正和发展,开始采用雷诺应力模型(DSM)和代数应力模型(ASM)。近年来,DSM模型已用来预报燃烧室及炉内的强旋及浮力流动。很多情况下能够给出优于k-ε模型的结果。但是该模型也有不足之处,首先它对工程预报来说太复杂,其次经验系数太多难以确定,此外,对压力应变项的模拟还有争议。更主要的是,尽管这一模型考虑了各种应变效应,但是其总精度并不总是高于其它模型,这些缺点导致了DSM模型没有得到广泛的应用。总之,虽然从本质上讲DSM模型和ASM模型比k-ε模型对湍流流场的模拟更加合理,但DSM和ASM中仍然采用精度不高的E方程,模型中常数的通用性还没有得到广泛的验证,边界条件不好给定,计算也比较复杂。正因为如此,目前用计算解决湍流问题时仍然采用比较成熟的K-E模型。 需要注意的是: 1、大涡模拟有自己的亚格子封闭模型,这和k-ε模型完全是两回事。LES的亚格子模型表

相关文档
最新文档