纤维素的 预处理和再生

纤维素的 预处理和再生
纤维素的 预处理和再生

DEAE--52纤维素的处理

关于DEAE52纤维素的处理只有简单的几步,如下:

1.先将干粉的纤维素浸泡在蒸馏水中,一段时间大约3小时左右,我偏爱这个时间,去除杂质,最好抽干一下;

2.再用0.5mol/l的HCl溶液浸泡2小时,用去离子水洗净至PH中性,并抽干;

3.将抽干的纤维素再浸泡在0.5mol/l的NaOH溶液中2小时,用去离子水洗至中性,抽干。即可用了

对于用过的纤维素,可以重复利用多次,但需要经过再生处理后才可以使用。再生处理可先用高浓度NaCl (1-2 mol/L)过柱冲洗柱床,以除去DEAE-52阴离子交换纤维所吸附的成份。然后,再用0.5 mol/L的HCl和NaOH处理,处理方法与预处理完全相同。

DEAE-纤维素的处理及装柱

(1)处理

本实验采用的是DEAE-纤维素DE 52 是弱酸型阴离子交换剂,具体处理方法为:先将DE52阴离子交换剂干粉浸泡于蒸馏水中,去除杂质;再在0.5N的HCL溶液中浸泡1-2h,再用无离子水或蒸馏水洗至pH值中性或PH4以上,并将其在抽滤漏斗中抽干;将抽干的离子交换剂浸泡在0.5N的NaOH溶液中1-2h,再用无离子水或蒸馏水将其洗至中性。

(2)装柱

将层析柱清洗干净垂直固定到层析架上,加1/3体积的无离子水,打开下出液口,水流畅通,即刻将小烧杯中装有适宜浓度的柱材,轻轻倒入层析柱中,凝胶自然慢慢沉降再层析柱底部,凝胶沉积直到离层析柱上端1.5-2cm处,停止装柱。层析柱上端进液口连接恒流泵,下出口连接蛋白质监测仪,待层析柱的平衡。

(3)平衡

在柱层析上样前必须对层析柱进行平衡,所谓平衡就是将层析柱中的溶液用层析过程的缓冲液(洗脱液)置换出来,使层析柱中的缓冲系统与柱层析过程中的系统一致。其方法是:利用层析柱上端的恒流泵将平衡缓冲液泵入到层析柱内,打开层析柱下端的出口,平衡液流速在0.5-1ml/min,当下出口流出液的PH值与平衡缓冲液的PH值一致时,层析柱达到了平衡。在本实验中,用0.002M Tris-HCL缓冲液PH7.4(内含0.0001M EDTA),预先将DE-52柱进行平衡。

DEAE—纤维素的活化

称取IgDEAE32或52,放入5ml量筒中,加蒸馏水浸泡过夜,观察溶胀后DEAE 的体积。根据所需层析柱的柱床体积计算所需DEAE的用量,称取所需DEAE用蒸馏水浸泡过夜,其间换几次水,每次除去细小颗粒。抽干,改用0.5ml/LNaOH溶液浸泡1h以上,抽干(可用布氏漏斗),用无离子水漂洗,使pH至8左右(用pH试纸检查)。再改用0.5ml/LHCl溶液浸泡1h以上,去酸溶液,用无离子水洗至pH6左右。本实验中在用前应以0.0175mol/L,pH6.7磷酸盐缓冲液,浸泡平衡后使用。

DEAE—纤维素的再生

用过的离子交换剂可以反复使用,使其恢复原状的方法俗称“再生”。再生并非每次用酸、碱反复处理,通常只要“转型”处理即可。所谓转型就是使交换剂带上所希望的某种离子,如希望阳离子交换剂带上NH+4则可用NH4OH浸泡,如希望阴离子交换剂带上Cl—则用NaCl溶液处理。本实验中DEAE—纤维素在酸碱处理后,用0.0175mol/L,pH6.7磷酸盐缓冲溶液浸泡即可转型,以HPO4取代DEAE中的OH—。一般由于DEAE—纤维素使用后因带有大量杂蛋白,所以再生时,先用0.5ml/L NaOH 浸洗,用去离子水洗至pH8左右,再转型,即可再使用。

柱子再生的方法有两类,1.是将整个柱子洗下来,然后再表面活性剂,NaCl,酸碱处理,这种处理方法比较费时,当然也比较彻底,现在这种方法用的比较少,除非柱子污染比较严重;现在通常的方法是2.在柱子用后直接处理,常用的洗涤液中可含有:NaCl、6M或8M 脲、有机溶剂(如醇类等)、表面活性剂等。

四种再生纤维的概述

四种再生纤维的概述及鉴定方式 再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开 发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达 到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手 感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持

木质纤维素预处理技术研究进展

木质纤维素预处理技术研究进展 朱跃钊1,卢定强2,万红贵2,贾红华2 Ξ (1 南京工业大学 机械与动力工程学院,南京 210009;2 南京工业大学 制药与生命科学学院,南京 210009) 摘 要:详细评述了木质纤维素的预处理工艺研究进展,特别是浓酸低温水解-酸回收工艺、稀酸二阶段水解工艺、金属离子在稀酸水解过程中的助催化作用以及水蒸汽爆裂、氨纤维爆裂、C O 2爆裂、酶催化水解等方法的研究进展情况。木质纤维素原料预处理技术发展为发酵生产乙醇技术的研究开发奠定了坚实基础。关键词:木质纤维素;乙醇;水解;发酵 中图分类号: Q539+13 文献标识码:A 文章编号:167223678(2004)0420011206 Progresses on treatment of lignocellulosic material ZHU Y ue 2zhao 1,LU Ding 2qiang 2,WAN H ong 2gui 2,J I A H ong 2hua 2 (1 C ollege of Mechanical and P ower Engineering ,Nanjing University of T echnology ,Nanjing 210009,China ; 2 C ollege of Life Science and Pharmacy ,Nanjing University of T echnology ,Nanjing 210009,China )Abstract :Progress of study on technology of pre 2treatment of lignocellulose is reviewed in this paper.With the exhaustion of oil and rising price of oil ,studies on ethanol production from lignocellulosic material were attra 2tive 1Cellulose and hemicellulose in lignocellulosic material can be converted to sugar via s ome suitable treat 2ments ,and then can be used in the production of ethanol by fermentation further 1The progresses on technology of pre 2treatment of lignocellulosic material were reviewed and commented ,especially the hydrolysis processes via concentrated acid ,tw o 2stage diluted acid ,and catalysis of metal ion in diluted acid 1Several different pre 2treatment methods for cellulase hydrolysis ,such as steam explosion ,aminonia fiber explosion ,C O 2explosion ,acid treatment and enzymatic hydrolysis method ,were reviewed 1The advanced pre 2treatments of lignocellulosic material has laid a concrete basis for ethanol production at a large commercial scale 1K ey w ords :lignocellulose ;ethanol ;hydrolysis ;fermentation 随着现代工业的发展和世界人口的激增,能源危机日趋加剧。专家估计,可开采石油储量仅还可供人 类使用大约50年,天然气还可用75年,而煤炭则为200~300年[1]。目前,世界各国纷纷展开新能源,特别是可再生生物能源的研究与开发。生物能源主要有生物乙醇、生物柴油、沼气、氢气和燃料电池等,其 中以生物乙醇的研究与生产最引人注目。生物法生产的乙醇在一些国家和地区正广泛使用。巴西每年 以甘蔗作为原料,生产1100万t 燃料乙醇。美国则每年大约生产550万t 以上的燃料乙醇。目前我国乙醇年产量为300多万t ,仅次于巴西、美国,列世界第三[2]。其中发酵法乙醇占绝对优势,80%左右的乙醇 Ξ收稿日期:2004211201 基金项目:国家重大基础研究项目(2003C B71600)作者简介:朱跃钊,男,副研,研究方向:热能工程。联系人:卢定强,男,副研,研究方向:生物化工。   第2卷第4期2004年11月 生物加工过程 Chinese Journal of Bioprocess Engineering Nov.2004?11 ?

纤维素的测定方法

纤维素的测定方法-CAL-FENGHAI.-(YICAI)-Company One1

植物的主要化学成分是纤维素、半纤维素和木质素这三部分。它们是构成植物细胞壁的主要组分。其中,纤维素组成微细纤维,构成纤维细胞壁的网状骨架,而半纤维素和木质素是填充在纤维和微细纤维之间的“粘合剂”和“填充剂”。 1. 纤维素 生物制粉末在加热的情况下用醋酸和硝酸的混合液处理,在这种情况下,细胞间的物质被溶解,纤维素也分解成单个的纤维,木质素、半纤维素和其它的物质也被除去。淀粉、多缩戊糖和其它物质受到了水解。用水洗涤除去杂质以后,纤维素在硫酸存在下被重铬酸钾氧化成二氧化碳和水。 C6H10O5 + 4K2Cr2O7 + 16H2SO4 = 6CO2 + 4Cr2(SO4)3 + 4K2SO4 + 21H2O 过剩的重铬酸钾用硫酸亚铁铵溶液滴定,再用硫酸亚铁铵滴定同量的但是未与纤维素反应的重铬酸钾,根据差值可以求得纤维素的含量。 2. 半纤维素 用沸腾的80%硝酸钙溶液使淀粉溶解,同时将干扰测定半纤维素的溶于水的其它碳水化合物除掉。将沉淀用蒸馏水冲洗以后,用较高浓度的盐酸,大大缩短半纤维素的水解时间,水解得到的糖溶液,稀释到一定体积,用氢氧化钠溶液中和,其中的总糖量用铜碘法测定。 铜碘法原理:半纤维素水解后生成的糖在碱性环境和加热的情况下将二价铜还原成一价铜,一价铜以Cu2O的形式沉淀出来。用碘量法测定Cu2O的量,从而计算出半纤维素的含量。 测定还原性糖的铜碱试剂中含有KIO3和KI,它们在酸性条件下会发生反应,也不会干扰糖和铜离子的反应。加入酸以后,会发生反应释放出碘: KIO3 + 5KI +3H2SO4 = 3I2 + 3K2SO4 +3H2O 加入草酸以后,碘与氧化亚铜发生反应: Cu2O + I2 + H2C2O4 = CuC2O4 + CuI2 + H2O 过剩的碘用Na2S2O3溶液滴定:2Na2S2O3 + I2 = Na2S4O6 + 2NaI 3. 木质素 用1%的醋酸处理以分离出糖、有机酸和其它可溶性化合物。然后用丙酮处理,分离出叶绿素、拟脂、脂肪和其它脂溶性化合物。将沉淀用蒸馏水洗涤以后,在硫酸存在下,用重铬酸钾氧化水解产物中的木质素: C11H12O4 + 8K2Cr2O7 + 32H2SO4 = 11CO2 + 8K2SO4 + 8Cr2(SO4)3 + 32H2O 过量的重铬酸钾用硫酸亚铁铵溶液滴定。方法和测定纤维素相同。 实验所需试剂和仪器 1. 实验试剂 硫酸亚铁铵分析纯,重铬酸钾分析纯,硫代硫酸钠分析纯, 硝酸钙分析纯,硫酸铜分析纯,可溶性淀粉分析纯, 碘酸钾分析纯,草酸分析纯,酒石酸分析纯, 氯化钡分析纯,邻菲啰啉分析纯,浓硫酸分析纯, 盐酸分析纯,冰醋酸分析纯,硝酸分析纯。 2. 实验仪器 50mL酸式滴定管,50mL碱式滴定管,10mL离心试管若干,不同型号烧杯若干, 真空塞,250mL锥形瓶若干,电炉,离心沉淀器。 五实验步骤 (一)纤维素含量的测定

木质纤维素糖化关键技术

木质纤维素糖化关键技术 木质纤维素是一种重要的可再生资源,目前主要应用于高蛋白饲料的原料、为生物燃料及化学原料三个领域。但是由于天然木质纤维素的化学成分及结构都十分复杂,使其转化为工业发酵可利用的小分子糖类,需通过有效的预处理工艺及利用大量的多种糖苷水解酶共同作用,才能对其进行有效地生物降解。。因此,一直以来木质纤维素生物转化利用中,所遇到的主要瓶颈是水解过程中糖苷水解酶的种类和用量的高需求及降解方式的低效率,这也是造成纤维素生物转化利用高成本的主要原因。 基于上述原因,本实验室主要开展一下关键技术研究并取得一定进展: 一、纤维素酶高产菌种开发: ①B -葡萄糖苷酶菌种:通过筛选及一次DNS诱变获得H16桧状青霉菌种邙- 葡萄糖苷酶酶活达100IU/ml (纤维二糖底物)以上,远远高于里氏木霉和黑曲霉的B-葡萄糖苷酶酶活力,且其Km是已经报道的真菌胞外B -葡萄糖苷酶最低的,表示具有高纤维二糖 结合能力。 ②全酶系高产纤维素酶菌种:基于组合诱变及基因工程技术具有独立知识产权、兼具木霉青霉特性全酶系纤维素酶高产菌株,目前完成了两种菌种的原生质体融合,最终创制纤维素水解平衡酶系高产菌种。 二、底物特异性高效水解酶系制备: ①酶系制备:基于里氏木霉诱变菌种DES-15 (自RUT-C30诱变获得,表 现菌丝分支多且短的优异发酵性状)及多尺度数学模型控制下的发酵工艺(建立养分消耗、菌丝生长及纤维素水解等模型进而优化发酵工艺),目前在200L 罐发酵原液滤纸酶活达到25FPU 以上;

②酶系复配:利用上述酶系,基于木质纤维素组成成分以及结构的差异,调整不同酶及非酶组分组成及用量,制备底物专一性高效复配酶系。目前通过酶系平衡配比以及部分添加剂的使用,滤纸酶活达到35FPU/ml 以上。 三、新型预处理技术: 基于桧状青霉小分子蛋白木质纤维素改性机理解析基础上,建立了藻类类生物预处理技术以及气爆玉米秸秆生物与物理化学预处理相结合的新型工艺。其中利用自由基对藻类细胞壁瞬间预处理后,其转化成还原糖的能力提高了70%,效果显著优于酸碱等预处理工艺,因此可以用于藻类生物炼制以及能源化利用。该预处理方式具有用时短,反应条件温和,成本低,不存在抑制物等优点。

纤维素的测定方法

实验原理 植物的主要化学成分是纤维素、半纤维素和木质素这三部分。它们是构成植物细胞壁的主要组分。其中,纤维素组成微细纤维,构成纤维细胞壁的网状骨架,而半纤维素和木质素是填充在纤维和微细纤维之间的“粘合剂”和“填充剂”。 1. 纤维素 生物制粉末在加热的情况下用醋酸和硝酸的混合液处理,在这种情况下,细胞间的物质被溶解,纤维素也分解成单个的纤维,木质素、半纤维素和其它的物质也被除去。淀粉、多缩戊糖和其它物质受到了水解。用水洗涤除去杂质以后,纤维素在硫酸存在下被重铬酸钾氧化成二氧化碳和水。 C6H10O5 + 4K2Cr2O7 + 16H2SO4 = 6CO2 + 4Cr2(SO4)3 + 4K2SO4 + 21H2O 过剩的重铬酸钾用硫酸亚铁铵溶液滴定,再用硫酸亚铁铵滴定同量的但是未与纤维 素反应的重铬酸钾,根据差值可以求得纤维素的含量。 2. 半纤维素 用沸腾的80%硝酸钙溶液使淀粉溶解,同时将干扰测定半纤维素的溶于水的其它碳水化合物除掉。将沉淀用蒸馏水冲洗以后,用较高浓度的盐酸,大大缩短半纤维素的水解时间,水解得到的糖溶液,稀释到一定体积,用氢氧化钠溶液中和,其中的总糖量用铜碘法测定。 铜碘法原理:半纤维素水解后生成的糖在碱性环境和加热的情况下将二价铜还原成一价铜,一价铜以Cu2O的形式沉淀出来。用碘量法测定Cu2O的量,从而计算出半纤维素的含量。 测定还原性糖的铜碱试剂中含有KIO3和KI,它们在酸性条件下会发生反应,也不会干扰糖和铜离子的反应。加入酸以后,会发生反应释放出碘: KIO3+ 5KI +3H2SO4= 3I2+ 3K2SO4+3H2O 加入草酸以后,碘与氧化亚铜发生反应: Cu2O + I2+ H2C2O4= CuC2O4+ CuI2+ H2O 过剩的碘用Na2S2O3溶液滴定:2Na2S2O3 + I2 = Na2S4O6 + 2NaI 3. 木质素 用1%的醋酸处理以分离出糖、有机酸和其它可溶性化合物。然后用丙酮处理,分离出叶绿素、拟脂、脂肪和其它脂溶性化合物。将沉淀用蒸馏水洗涤以后,在硫酸存在下,用重铬酸钾氧化水解产物中的木质素: C11H12O4 + 8K2Cr2O7 + 32H2SO4 = 11CO2 + 8K2SO4 + 8Cr2(SO4)3 + 32H2O

十三五规划(纤维素纤维)

再生纤维素纤维行业“十三五”发展规划 ——中国化学纤维工业协会纤维素纤维分会 前言 再生纤维素纤维是采用富含纤维素的植物原料,经一系列的化学处理和机械加工而制的的纤维,主要品种包括粘胶纤维、醋酸纤维和铜氨纤维等传统再生纤维素纤维,以及以天丝为代表的新型溶剂法纤维素纤维等。 再生纤维素纤维是重要的纺织材料之一,具有很好的吸湿性、染色性和舒适性。在人们对产品可回收、可降解、对织物舒适性要求越来越高的条件下,其在纺织原料中凸现出越来越重要的作用,另外,其原料为可再生资源,是循环经济可持续发展的重要化学纤维产品。因此,再生纤维素纤维有着更为重要的意义和广泛的发展空间。 我国再生纤维素纤维工业的整体水平和竞争能力的发展将对世界再生纤维素纤维工业 产生重要影响。“当前纺织行业发展的新常态特征日益凸显,对于企业提出更高的调整转型的要求,企业发展压力和挑战将持续增加,但同时也隐含着外部发展的机遇和行业自身提升的动力”。在当前新常态下如何生存与发展是再生纤维素纤维行业“十三五”面临的迫切任务。 《再生纤维素纤维行业“十三五”发展规划》总结分析了我国再生纤维素纤维制造行业的发展现状及特点,存在主要问题和产业发展趋势,明确了“十三五”期间行业发展由“数量型”向“技术效益型”战略转变的指导思想,明确了发展目标和发展重点,提出了发展高新技术、功能性、差别化纤维的技术方向和主要任务。对贯彻落实《国民经济和社会发展第十三个五年规划纲要》精神和《纺织工业“十三五”发展纲要》的具体要求,推动再生纤维素纤维行业的科技进步和自主创新,实现全面、协调和可持续发展,具有重要的指导作用。 一、“十二五”发展规划完成情况及特点 我国是世界最大的再生纤维素纤维生产国,主要生产粘胶纤维、醋酸纤维(用于烟草行业)、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等。其主要产品是粘胶纤维,约占世界粘胶纤维总量近三分之二。原料采用进口木浆,进口棉短绒生产棉浆,国产木浆、棉浆、竹浆、纸改浆等品种,原料进口依存度约在60%左右。 “十二五”期间,纤维素纤维行业在大宗原料、纤维生产方面基本完成规划目标。在原料利用上发展较慢,木浆发展较快,许多大型纸浆生产企业都在转产溶解浆,溶解木浆产能已达150余万吨。棉浆生产由于资源受限,总量萎缩。竹、麻浆产量较低,秸秆利用进展缓慢。粘胶纤维工业在生产设备、工艺技术、产品质量、节能减排等方面都有了大幅度提高。高湿模量纤维、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等也有了可喜的进步。 其特点是:企业规模不断增强、产量持续增长,产业集中度进一步加大、产业链配套有

木质纤维素预处理方法的研究进展

木质纤维素预处理方法的研究进展 摘要:概述了几种比较实用的木质纤维素预处理技术,总结了各种预处理技术的方法?原理以及优缺点,进而对木质纤维素预处理方法的发展前景进行了展望? 关键词:木质纤维素;预处理方法;研究进展 Research Advances of Pretreatment Technology of Lignocellulose Abstract: Some practical pretreatment technologies of lignocellulose were briefly introduced, including the main methods, principles, advantages and disadventages. And the development prospect of pretreatment technology of lignocellulose was put forward. Key words: lignocellulose; pretreatment method; research progress 随着世界经济的不断发展和石油资源的日益消耗,开发更加长久有效的能源是各国面临的一个巨大难题?作为一种可再生能源,生物质能源是中国能源可持续发展的必然战略选择之一?利用木质纤维素生产生物乙醇?丁醇等生物质燃料是生物质能源开发的重要内容?我国天然纤维素原料非常丰富(包括农作物秸秆?林业副产品?城市垃圾和工业废弃物等),利用生物技术分解和转化木质纤维素既是资源利用的有效途径,对于解决环境污染?食品短缺和能源危机又具有重大的现实意义? 1 木质纤维素的结构 木质纤维素是指以纤维素?半纤维素和木质素为主要成分的原料,3种成分在植物原料中的含量分别为35%~50%?15%~25%和15%~30%?纤维素是聚合度在 1 000~10 000的葡萄糖的线性直链聚合物,由结晶相和非结晶相交错形成,结晶相结构致密,阻碍纤维素的分解?半纤维素结构较纤维素简单,主要是由木糖?阿拉伯糖等戊糖及少量的葡萄糖?甘露糖和半乳糖等己糖形成的直链或支链聚合物,在适宜的温度下易于溶解在稀酸溶液中并降解成单糖?木质素是一种由苯丙烷结构单体组成的具有复杂三维结构的芳香族高聚物,在植物结构中发挥胶粘作用,将纤维素和半纤维素紧密结合在一起,增大茎秆的机械强度,起到木质化作用,阻碍微生物对植物细胞的攻击,同时减小了细胞壁的透水性?纤维素和半纤维素作为可酵解糖类,占原料总重的65%~75%[1]? 2 预处理的目的 木质纤维素的转化利用可分为原料预处理?酶水解和糖发酵3个阶段,主要的技

范氏洗涤剂法-木质纤维素测定标准方法

原理: 采用范氏(Van Soest)的洗涤纤维分析法测定中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)原理: 植物性饲料经中性洗涤剂煮沸处理,不溶解的残渣为中性洗涤纤维,主要为细胞壁成分,其中包括半纤维素、纤维素、木质素和硅酸盐。植物性饲料经酸性洗涤剂处理,剩余的残渣为酸性洗涤纤维,其中包括纤维素、木质素和硅酸盐。酸性洗涤纤维经72%硫酸处理后的残渣为木质素和硅酸盐,从酸性洗涤纤维值中减去72%硫酸处理后的残渣为饲料的纤维素含量。将72%硫酸处理后的残渣灰化,在灰化过程中逸出的部分为酸性洗涤木质素(ADL)的含量。 溶剂配制: 中性洗涤剂(3%十二烷基硫酸钠):准确称取18.6g乙二胺四乙酸二钠(EDTA,C10H14O8Na2?2H2O,分析纯)和6.8g硼酸钠(Na2B4O7?10H2O,分析纯)放入烧杯中,加入少量蒸馏水,加热溶解后,再加入30g十二烷基硫酸钠(C12H25NaO4S,分析纯)和10ml乙二醇乙醚(C4H10O2,分析纯);再称取4.56 g无水磷酸氢二钠(Na2HPO4,分析纯)置于另一烧杯中,加入少量蒸馏水微微加热溶解后,倒入前一个烧杯中,在容量瓶中稀释至1000ml,其中pH 值约为6.9~7.1(pH值一般勿需调整);1N硫酸:量取约27.87 ml浓硫酸(分析纯,比重1.84,98%),徐徐加入已装有500ml 蒸馏水的烧杯中,冷却后注入1000ml容量瓶定容,标定;酸性洗涤剂(2%十六烷三甲基溴化铵):称取20g十六烷三甲基溴化铵(CTAB,分析纯)溶于1000ml1N硫酸,必要时过滤; 操作步骤: 准确称取1.0000g样品(通过40目筛)置于直筒烧杯中,加入100 ml 酸性洗涤剂和数滴十氢化萘及0.5g无水亚硫酸钠。将烧杯套上冷凝装置于电炉上,在5~10min内煮沸,并持续保持微沸60min。趁热用已知重量的玻璃坩埚抽滤,并用沸水反复冲洗玻璃坩埚及残渣至滤液呈中性为止。用少量丙酮冲洗残渣至抽下的丙酮液呈无色为止,并抽净丙酮。将玻璃坩埚置于105℃烘箱中烘2h后,在干燥器中冷却30 min称重,直称至恒重。 酸性洗涤木质素和酸不溶灰分(AIA)测定将酸性洗涤纤维加入72%硫酸,在20℃消化3h后过滤,并冲洗至中性。消化过程中溶解部分为纤维素,不溶解的残渣为酸性洗涤木质素和酸不溶灰分,将残渣烘干并灼烧灰化后即可得出酸性洗涤木质素和酸不溶灰分的含量。 结果计算: 中性洗涤纤维含量的计算:NDF(%)=(W1-W2)/ W×100 式中: W1—玻璃坩埚和NDF重(g)W2—玻璃坩埚重(g)W—试样重(g)酸性洗涤纤维含量的计算:ADF(%)=(G1-G2)/G×100 式中: G1—玻璃坩埚和ADF重(g)G2—玻璃坩埚重(g)W—试样重(g)

木质纤维素预处理技术

木质纤维素预处理技术 单独某一种预处理方法并非对任何原料都有较好的效果。目前的木质纤维素预处理方法有很多种,可分为物理法、化学法、物理化学法、分步组合法和生物法几大类。 1物理方法 物理方法预处理主要是增大比表面积、孔径,降低纤维素的结晶度和聚合度。常用的物理方法包括机械粉碎、机械挤出、高能辐射等[1]。 1.1机械粉碎 机械粉碎即将物料切碎、碾磨处理成10~30mm或0.2~2mm的颗粒,比表面积增高,结晶度、聚合度降低,可及度增加,有利于提高基质浓度和酶解效率,但不能去除木质素及半纤维素。 粉碎分为干粉碎、湿粉碎,包括球磨、盘磨、辊磨、锤磨、胶体磨、机械挤出等,胶体磨适用湿物料,而球磨对干、湿物料都适合。 由于粒径与能耗相关,经济性不高,效果单一,故粉碎常与其他方法相互补充[2]。研究表明,甘蔗渣、麦秆经球磨与盘磨粉碎后酶解率及乙醇得率均显著提高;经宽角X射线衍射分析,球磨主要通过降低结晶度改善酶解,而盘磨则主要依靠去纤维化。机械挤出是一种应用前景良好的预处理新技术,处理效果受到设备尺寸及参数的影响。物料通过挤出器时在热、混合和剪切作用下引起物理、化学性质的改变,依靠螺旋挤出转速及温度打破木质纤维结构,引发去纤维化、纤维化效应,缩短纤维长度,改善了酶对底物的可及性[1]。 1.2高能辐射 高能辐射是用高能射线如电子射线、γ射线对原料进行预处理,可使纤维素聚合度下降,降解为小纤维片段、寡葡聚糖甚至纤维二糖,使结构松散,打破纤维素晶体结构,增加反应活性。 采用γ射线辐照处理秸秆,可使纤维素酶解转化率提高至88.7%。KIM等[3]证明电子束照射确实能增加纤维素的酶解率:稻秆用80kGy、0.12mA、1MeV的电子束照射后酶解葡萄糖得率达52.1%,比直接酶解的22.6%增加近30%。 2化学方法 2.1酸预处理 酸法是研究得最早、最深入的化学预处理方法,分为低温浓酸法和高温稀酸法。低温浓酸(如72%H2SO4、41%HCl、100%TFA)处理效果通常优于高温稀酸,能溶解大部分纤维素和半纤维素,但是其毒性、腐蚀性及危害大,需要特殊的防腐反应器,酸回收难度较大,后期中和需消耗大量的碱,因此应用受到限制[2]。稀酸法是目前较常用而成熟的方法之一,生物质在较高温度(如140~190℃)和低浓度酸(如0.1%~1%硫酸)作用下,可实现较高的反应速率,半纤维素组分几乎100%除去,纤维素的平均聚合度下降,反应能力增大,酶水解率显著提高,但去除木质素不很有效。稀酸法因其效果好、污染少成为研究的热点并获得了较大进展,如美国国家可再生能源实验室(NREL)开发了比较成熟的稀硫酸预处理—酶解发酵工艺并建成了中试装置。稀酸法最大的缺点是产生副产物如甲酸、乙酸、糠醛、羟甲基糠醛、糖醛酸、己糖酸等,即影响酶解又抑制微生物生长和发酵。稀酸法可在较高温度(180℃)处理较短时间(5min)也可在较低温度(120℃)处理较长时间(30~90min),温度和酸浓度越剧烈预处理效果越好,但抑制产物会增加。 CHEN等[4]提出“半纤维素/纤维素分离-分步发酵”(XCFSF)工艺路线,玉米芯经稀硫酸预处理后木糖得率为78.4%,纤维素回收率为96.81%,水解木糖和纤维素残渣酶解后的糖液发酵乙醇,酶解残渣同步糖化发酵(SSF),最终将70.4%的半纤维素和89.77%的纤维素转化为乙醇。酸可以用硫酸、硝酸、盐酸、磷酸、碳酸等无机酸,也可用乙酸、丙酸、草酸等有机酸。将蔗渣在高于160℃条件下经稀磷酸预处理,可有效水解半纤维素为单糖,且副反应少[5]。用80%乙酸、0.92%硝酸在120℃处理麦秆20min,81%的半纤维素和92%的木质素被水解或

再生纤维概述

再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持久,避免了棉制品用后整理方法开发的功能性产品,其药效难以持续的缺点。大豆蛋白纤维织物手感柔软、光滑,具有良好的吸湿透气性,有真丝般的光泽,抗皱性优于真丝,尺寸稳定性好。 4.竹纤维 竹纤维是继大豆蛋白纤维之后我国自行开发研制并产业化的新型再生纤维素纤维,竹纤维分竹素纤维和竹原纤维。竹素纤维是以毛竹为原料,在竹浆中加入功能性助剂,经湿法纺丝加工而成。竹原纤维是将毛竹经天然生物制剂处理后所制取的纤维。作为纺丝原料的竹浆粕,来源于速成的鲜竹,资源十分丰富。其废弃物土埋、焚烧不会造成环境污染,属于环保型纤维,满足绿色消费的需求。竹纤维是性能与粘胶纤维相类似,竹纤维织物具有良好的吸湿、透气性,其悬垂性和染色性能也比较好,有蚕丝般的光泽和手感,且具有抗菌、防臭、防紫外线功能

浅谈新型再生纤维素纤维的发展前景

浅谈新型再生纤维素纤维的发展前景 刘长河 胡正春 王建坤 (天津工业大学纺织与服装学院,天津 300160) [摘 要] 本文介绍了新型再生纤维素纤维的性能和特点,从资源、市场、环保三方面分析了新型再生纤维素纤维的发展前景。 [关键词] 新型;再生纤维素纤维;前景 1 前 言 在20世纪70年代以前,作为再生纤维素纤维之一的粘胶纤维,曾是化学纤维生产的第一大品种。然而,随着合成纤维新品种的出现和发展,加上粘胶纤维的生产工艺流程长而复杂,能耗大,耗水量大,特别是严重污染环境,废气和污水的治理难度高、费用大,一些发达国家相继关闭了部分生产粘胶纤维的工厂。致使其世界产量在20年间下降约41%。 在这一背景下,天然纤维素纤维再次得到重视。自然界纤维素年产量1000亿吨,大约只有2.5%是通过再生途径制作成纤维等加以利用的。纤维素资源十分丰富,纤维素是可再生的自然资源,具有可持续性;纤维素具有环保性,可参与自然界的生态循环。作为纺织纤维,纤维素纤维具有优良的吸湿性、穿着舒适性,一直是纺织品和卫生用品的重要原料。所以,纤维素纤维是新世纪最理想,最有前途的纺织原料之一。近年来,出现M odal、Tencel等新一代再生纤维素纤维。随着新型再生纤维素纤维在生产中的大量应用,前景将非常看好。2 各种新型再生纤维素纤维 2.1 T encel纤维 天丝是我国的通俗称呼,它的学名叫Lyocell,商品名叫Tencel。它与粘胶纤维同属再生纤维素纤维,虽然粘胶纤维在19世纪90年代已经问世,并在化学纤维中占据着重要地位,但由于粘胶纤维的制造工艺严重污染环境,在人们强烈呼吁清洁生产、保护地球生态环境、减少污染的今天,如何克服污染环境的缺点呢?荷兰阿克苏?诺贝尔(Akzo Nobel)公司属于美国恩卡公司和德国的恩卡研究所与1980年研究成功用有机溶剂直接溶解纤维浆粕生产纤维素纤维的工艺方法,并取得了专利。1989年,布鲁塞尔国际人造及合成纤维标准局(BISFA)把由这类方法制造的纤维素纤维正式命名为“Ly ocell”。与此同时,英国考陶尔兹公司于20世纪80年代初开始研制T encel短纤维,在得到荷兰阿克苏?诺贝尔公司Ly ocell的许可证后,马上开始试生产,在实验工厂经过反复试验,成功地开发出一种对人体无害的氧化胺溶剂,其后又解决了生产中的一系列问题,最后成功地生产了T encel短纤。 天丝纤维的化学结构,基本与棉纤维,粘 2

木质纤维素检测方法

木质纤维质量要求及检测方法 一、木质纤维素的质量要求(JTG F40-2004 ) 项目单位指标试验方法 纤维长度,不大于mm 6 水溶液用显微镜观测灰分含量% 18±5 高温590~600℃燃烧后测定残留物pH值—7.5±1.0 水溶液用pH试纸或pH计测定吸油率—纤维质量的5倍用煤油浸泡后放在筛上经振后称重 含水率(以质量 % 5 105℃烘箱烘2h后冷却称量计),不大于 二、具体检测方法 1.灰分含量 用高温燃烧后的残留灰分表示。取2~3g试样,在不少于2h的时间内加热到590~600℃,冷却后称取残留物的质量。 2.pH值 试验时取5g纤维加在100ml水中,保持30min后测定。 3.吸油试验 称量5g纤维浸入煤油中,不少于5min,取出后称量吸透油分的纤维质量,将其放入一个由筛网做成的小滤勺中,滤网的孔径为0.5mm,在摇筛机上摇振10min(每分钟摇动221次,幅度32mm,振147次/min,振幅13mm)。称量摇筛后吸油纤维的质量,计算纤维吸油量与纤维自重的比值,即为纤维的吸油率。 4.含水率 将纤维放入烘箱中干燥2h后测定水分的损失。

5.相对密度 木质纤维由于材质较轻,且纤维内部吸收一部分水,溶解某些物质,所以测定相对密度时需要通过另一种已知相对密度液体转换。具体方法是称取适量的纤维放入一个经过标定的测定相对密度的瓶中,向瓶中注入一种密度小于这种纤维且不使纤维发生溶解的液体,为防止瓶中出现气泡,可以事先用该液体浸泡纤维,必要时可采取捣实或离心的方式除去气泡,将液体注满。 相对密度=(m瓶+纤维-m瓶)/(m注满瓶的水-(m瓶+纤维+液体-m瓶+纤维)/液体相对密度)。

木质纤维素预处理方法研究进展综述

学校代码:__________ 学号:1302021001 Hefei University 生物工程下游技术综述 论文题目:木质纤维素预处理方法研究进展 学科专业:生物xx 作者姓名: xxx 导师姓名: xxx 完成时间: 201x.xx.xx

生物工程下游技术 木质纤维素预处理方法研究进展 摘要 木质素是自然界中仅次于纤维素的可再生复杂天然高分子化合物原料,因其产量巨大,长期以来被视为有发展前途的生物质材料,但由于木质素本身结构的复杂性,导致其在预处理过程和工业应用中存在诸多问题与困难。本文介绍了传统木质素预处理方法,如:酸法和碱法等;并归纳了近年来在木质素提取方法上的新进展与新思路:在预处理过程中,研究人员使用物理、化学和生物技术,尝试了多种绿色环保的预处理手段。最后对预处理技术的发展方向予以展望。 关键词:木质纤维素材料;燃料乙醇;预处理;新进展 1.前言 木质素是自然界中含量第二的天然高分子化合物,其含量仅次于纤维素。它是制浆造纸工业的主要副产物,也是木材水解工业中不可缺少的副产物,是重要的可再生资源之一。到20世纪末,可再生能源产生的能量已占到世界总能量消耗的13%,其中有很大一部分是利用生物质材料所提供的能量。世界各国对生物质尤其是木质素等原料在生物能源应用方面已经有一定的规模,如加拿大等木材资源丰富的国家,生物质材料所产生的能量已占居民生活总能量的5%,占整个工业消耗能量的17%[1]。 面对日益严峻的资源、环境等问题,寻求环境友好且可再生的新能源成为亟需解决的问题。生物质能直接或间接地来源于植物的光合作用,是太阳能以化学能形式存在于生物中的一种能量形态,是唯一可再生的碳源,能够转化成常规的气态、固态或液态的燃料。目前使用木质纤维素材料生产燃料乙醇已经达成共识,并成为生产燃料乙醇的最佳途径。据文献报道,全球每年可产生约1×1010Mt纤维质原料,但是每年用于工业过程或燃烧以提供热量的纤维质原料仅占总产量的2%左右,若能通过生物转化成燃料乙醇,必将对能源紧张的局势有所缓解[2]。 天然木质纤维素材料的结构与性质非常复杂,半纤维素通过氢键与纤维素相连,其侧链通过阿魏酸或醛酸与木素相连,半纤维素与木素将纤维素包裹起来,形成了难以被微生物所降解的聚合体。并且,纤维素本身高度结晶,难以被纤维素酶水解。因此,对木质纤维素材料进行预处理是增加纤维素转化率的必要条件[3]。预处理是用木质纤维素材料生产燃料乙醇的关键技术之一,同时被认为是酶法生产燃料乙醇过程中影响生产成本的关键性因素之一。预处理方式的选择将直接影响到纤维素的水解效率,从而影响到乙醇的产率[4]。下面将对影响预处理效果的因素及传统和新型木质素的预处理方式进行综述。 2.生物质的抗降解屏障及影响纤维素水解效率的因素 绿色植物在长期进化过程中,为了适应环境,进化出了一套结构严密而有效的以抵抗环境因素及微生物降解的防御体系。Michael等[5]指出植物的天然结构是生物质抗化学与酶解的天然屏障,并将其细分为以下8个方面:①植物的表皮组织; ②维管束的密度和分布;③厚壁组织的相对含量;④细胞壁成分的复杂性及其结构的异质性;⑤木质化的程度;⑥次生壁外的瘤状层;⑦降解酶组分与不溶性底物的相互作用过程;⑧细胞壁中存在的及转化过程中所产生的抑制物质。 木质纤维素材料经过预处理后,纤维素水解效率的差异取决于预处理方式的选择、所处理物料的特性、纤维素酶用量及酶系的组成。 预处理强度对纤维素的水解效率有着显著的影响,为了获得较好的纤维素水解效率,需要适当提高处理强度,但是强度的提高会增加能量的消耗,同时也会降低糖的回收率,因此需要在纤维素的水解效率与能量消耗及糖回收率之间找到平衡点[6]。

木质纤维素预处理技术_易锦琼

农产品加工·学刊 2010年第6期 随着能源、环境、粮食三大危机的出现,发达国家和发展中国家越来越认识到寻求清洁、可再生能源的迫切性[1]。从20世纪70年代石油危机爆发以来,一些国家开始尝试利用生物质原料生产燃料乙醇。越来越多的国家将生物质能源产业作为国家的重大战略推进,纷纷投入巨资进行生物质能源的研发。以玉米、麦、甘蔗等农作物为原料生产燃料乙醇,在许多国家(如巴西、美国、中国)已实现产业化和商业化。但在世界范围内,粮食供应仍是一个大问题,以粮食为原料生产燃料乙醇必将受到限制。而以木质纤维素生产燃料乙醇具有可再生性、无污染性等特点,得到了广泛的研究与应用[2-6]。 木质纤维素是地球上最丰富、最廉价,且符合可持续发展要求的可再生资源[7-8]。每年仅陆生植物就产生纤维素约500×108t ;纤维素资源还是最主要的生物质资源,它占地球生物总量的60%~80%。我国是一个农业大国,玉米秸秆、小麦秸秆和稻草是我国农业生产中农作物的3大秸秆,每年仅农作物秸秆就有7×108多t ,林业副产品、城市垃圾和工业废物数量也很可观。以纤维素为原料生产乙醇有巨大发展潜力和工业应用前景。 木质纤维原料主要由纤维素、半纤维素和木质素 组成,其结构稳定复杂[9-10]。纤维素不仅被半纤维素和木质素所包裹,且其本身也存在着高度结晶性使酶制剂很难与纤维素接触[11]。天然纤维素材料直接进行 酶促水解,酶解率一般都非常低( <20%)[12],进而影响总糖产率,增加了经济成本。因此必须借助化学和物理的方法进行预处理,破坏纤维素—木质素—半纤维素之间的连接,降低纤维素的结晶度,脱去木质素,增加原料的疏松性,以增加纤维素酶系与纤维素的接触面积,从而提高酶效率。1 预处理方法 预处理必须满足以下要求[13]:促进糖的形成,或提高后续酶水解形成糖的能力;避免糖降解或损失;避免形成副产物阻碍后续水解和发酵过程;节约成本。目前,木质纤维素原料预处理的方法主要有:物理法、化学法、物理化学法和生物法等。1.1物理方法 常用的物理方法有:机械粉碎、微波处理、高温分解和高能辐射等。1.1.1机械粉碎 机械粉碎包括:干法粉碎、湿法粉碎、球磨和锤磨等。木质纤维素原料在机械外力作用下颗粒变小, 收稿日期:2010-03-01基金项目:973计划项目(2009CB226108)。作者简介:易锦琼(1986-),女,湖南人,在读硕士,研究方向:生物质能源。E-mail :yijinqiong@https://www.360docs.net/doc/da13752585.html, 。 木质纤维素预处理技术 易锦琼1,2,熊兴耀1,2 (1.湖南省作物种质创新与资源利用重点实验室,湖南长沙410128;2.湖南农业大学园艺园林学院,湖南长沙410128) 摘要:纤维质物料的预处理是木质纤维素原料生产燃料乙醇的关键步骤。介绍了木质纤维素的组成结构及其对纤维 素水解的影响,概述了酸碱处理、湿氧处理、爆破处理、氨爆破处理等方法,对预处理技术的发展前景进行了展望。关键词:纤维素;半纤维素;木质素;预处理中图分类号:TQ223.12+2文献标志码:A doi :10.3969/jissn.1671-9646(X).2010.06.001 Research on the Pretreatment of Lignocellulose Yi Jinqiong 1,2,Xiong Xingyao 1,2(1.Hu'nan Provincial Key Laboratory for Gerplasm Innovation and Utilization of Crop ,Changsha ,Hu'nan 410128,China ;2.College of Horticulture and Landscape Architecture ,Hu'nan Agricultural University ,Changsha ,Hu'nan 410128,China )Abstract :The pretreatment of fibre material was a critical step in the production of fuel ethanol by lignocellulosic materials.The structure and composition of lignocellulose ,and its effects on cellulose hydrolysis were introduced.Various pretreatment techniques of lignocellulose were summed up in this paper.The foreground of the development of pretreatment techniques was also predicted. Key words :cellulose ;hemicellulose ;lignin ;pretreatment 第6期(总第211期)农产品加工·学刊 No.62010年6月 Academic Periodical of Farm Products Processing Jun. 文章编号:1671-9646(2010)06-0004-04

纤维素改性材料的发展与应用

纤维素改性材料的发展与应用 前言:本文主要介绍纤维素改性材料的应用。天然纤维素来源丰富、价格低廉、是可再生且环境友好的高分子材料,其改性纤维素技术及其应用越来越受到重视。纤维素改性技术的应用前景广阔,其在环境保护、资源充分利用、生物化工等众多领域都发挥着重要的价值,适应人类充分利用自然资源,与自然环境和谐相处的发展趋势。因此,对纤维素改性材料的研究与应用也是现代科学家研究的重点。 关键字:纤维素;改性材料;应用;发展 主要内容:纤维素是地球上最丰富、可以恢复的天然资源具有价廉、可降解、对环境不产生污染等特点。因此世界各国都十分重视对纤维素的研究与开发。纤维素分子的结构式为(C6H10O5)n 是由很多D-吡喃葡萄糖彼此以B—1—4苷键连接而成的线型分子,每个葡萄糖单元中有3个极性羟基。纤维素这种有大量羟基存在,并于分子链间和分子内部广泛形成氢键的结构,极大地影响了其反应活性。为了使之达到人们所预期的吸附功能,必须对纤维素结构进行改性。通过改性后的纤维素适用范围更大,功能更强。而在对纤维素进行改性之前,由于纤维素本身的特点,通常需要对纤维素进行活化或溶胀处理。 纤维素的改性方法: 纤维素是由许多β-D-葡萄糖分子脱水缩合而成不分枝,β-葡萄糖分子借β-1,4 -糖苷连接纤维素的这一结构特点使得纤维素在经过适当的预处理后,可以通过一系列的化学改性反应制取不同用途的功能高分子材料。按其反应方法不同大致可分为氧化反应,酯化、醚化反应,亲核取代反应,接枝共聚改性和交联5种。 1、氧化反应。纤维素完全氧化的最终产物是二氧化碳和水,但是部分氧化作用可以把新的官能团——醛基、酮基、羧基或烯醇基等引入纤维素大分子,生成不同性质的水溶性或不溶性的氧化物称之为氧化纤维素。其中,以纤维素的选择性氧化反应,如高碘酸盐攻击C2或C3生成高还原性的二醛基的选择性氧化反应受到人们的高度重视。因为二醛纤维素DAC是制备不含葡萄糖环骨架的纤维素衍生物的好原料,利用高分子化学反应,二醛纤维素分子中的醛基可以方便地转变为其他官能团,这样便可得到具有新功能和新用途的纤维素衍生物。将二醛纤维素进一步氧化,可得到羧酸纤维素。羧酸纤维素在氢氧化钠中处理、可转变为-COONa型,呈弱碱性,可用于酸性气体的吸附。此外,作为生物医用高分子材料具有优良的水溶性和抗凝血性,可用于血液透析、血浆分离及人工肾等方面,羧酸纤维素还是一种优良的贵重金属提取分离螯合剂。 2、酯化、醚化反应。纤维素的酯、醚化反应是最为重要的纤维素衍生化反应,纤维素分子链上的羟基可与酸、酸酐、酰卤等发生反应生成酯,与烷基化试剂反应生成纤维素醚,于本世纪五、六十年代相继实现工业化。纤维素酯中,以纤维素硝酸酯、纤维素醋酸酯和纤维素黄原酸酯最为普遍和重要。目前已广泛应用于涂料、日用化工、制药、纺织、塑料、烟草、粘合剂、膜科学等工业部门和研究领域中。在纤维素醚产品中,以羧甲基纤维素(CMC)、羟乙基纤维素(HEC)、羟丙基纤维素(HPC)、羟丙基甲基纤维素(HPMC)等为代表,其产品也已商品化。在纤维素酯、醚的应用研究中,纤维素酯的银盐可作抗菌剂,纤维素酯与聚苯胺复合,可制备透明、高导电性材料。何永炳等人利用棉纤维碱化后与环氧氯丙烷反应进行醚化 再与乙二胺反应制得了含氮纤维素衍生物。 通常根据各取代基的种类、电离性以及溶解度的差异,将纤维素醚分类:取代基种类,分单一醚类,有烷基醚(如甲基纤维素、乙基纤维素)、羟烷基醚(如羟乙基纤维

相关文档
最新文档