实验2 负反馈放大电路xg
负反馈放大电路实验报告

负反馈放大电路实验报告3)闭环电压放大倍数为10so sf-≈=U U Au 。
(2)参考电路1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。
图1 电压并联负反馈放大电路方框图2)两级放大电路的参考电路如图2所示。
图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。
考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。
图2 两级放大电路实验时也可以采用其它电路形式构成两级放大电路。
3.3k Ω(3)实验方法与步骤1)两级放大电路的调试a. 电路图:(具体参数已标明)¸b. 静态工作点的调试实验方法:用数字万用表进行测量相应的静态工作点,基本的直流电路原理。
第一级电路:调整电阻参数, 4.2sR k≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。
记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。
实验中,静态工作点调整,实际4sR k=Ω第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。
记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。
实验中,静态工作点调整,实际241b R k =Ωc. 动态参数的调试输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数so11U U A u =、so U U Au=、输入电阻R i 和输出电阻R o 。
电压放大倍数:(直接用示波器测量输入输出电压幅值)o1UsUoU1u A输入电阻: 测试电路:¸开关闭合、打开,分别测输出电压1oV和2oV,代入表达式:2112oio oVR RV V=-输出电阻:测试电路:¸记录此时的输出:0.79V olV=1.57(1)=32.960.79o o L o V R R k V '=-⨯Ω=Ω(-1)k2)两级放大电路闭环测试在上述两级放大电路中,引入电压并联负反馈。
EDA设计实验二 负反馈放大器设计与仿真

实验二负反馈放大器设计与仿真1.实验目的(1)熟悉两级放大电路设计方法。
(2)掌握在放大电路中引入负反馈的方法。
(3)掌握放大器性能指标的测量方法。
(4)加深理解负反馈对电路性能的影响(5)进一步熟悉利用Multisim仿真软件辅助电路设计的过程。
2.实验要求1)设计一个阻容耦合两极电压放大电路,要求信号源频率10kHz(峰值1mv),负载电阻1kΩ,电压增益大于100。
2)给电路引入电压串联负反馈:①测试负反馈接入前后电路的放大倍数,输入输出电阻和频率特性。
②改变输入信号幅度,观察负反馈对电路非线性失真的影响。
3.实验内容反馈接入前的实验原理图:1.放大倍数:Au=0.075V/0.707mV=106.0822.输入电阻:Ri=0.707mV/94.48nA=7.483kΩ3.输出电阻:Ro=0.707V/143.311nA=4.934kΩ4.频率特性:fL=357.094Hz,fH=529.108kHz输出开始出现失真时的输入信号幅度:19.807mV反馈接入后的实验电路:开关闭合之后:1.放大倍数:Af=7.005mV/0.707mV=9.9082.输入电阻:Ri=0.707mV/0.198uA=3.57kΩ3.输出电阻:Ro=0.707mV/0.096mA=7.364Ω4.频率特性:fL=67.134Hz,fH=6.212MHz输出开始出现失真时的输入信号幅度≈197mV4.理论值分析由于三极管2N2222A的β=220,所以反馈接入前第一级rbe1=rb+βVT/Ic=6.7kΩ第二级rbe2=rb+βVT/Ic=6.5kΩ第二级输入电阻Ri’=R8||(R7+40%R13)||rbe2=3.65kΩ放大倍数Au=βR4||Ri’*R9||R12/([rbe1+(1+β)R1]rbe2)=107.034输入电阻Ri=R3||(R2+30%R5)||[rbe1+(1+β)R1]=7.484kΩ输出电阻Ro=R9=5.1kΩ反馈接入后:F=0.101放大倍数Af=Au/(1+AuF)=9.056输入电阻Rif=R3||(R2+30%R5)||(1+AuF)Ri=3.621kΩ输出电阻Rof=Ro/(1+AoF)=7.425Ω所以可以得出结论Af≈1/F5.实验结果分析由仿真结果以及理论计算值可以看出,接入负反馈后,放大倍数明显下降,输入电阻变化不明显,输出电阻明显下降,原因是接入电压并联负反馈之后,输出电压基本稳定而输出电流由于负反馈的增加而变大,导致输出电阻变小。
负反馈放大电路实验总结

负反馈放大电路实验总结
在本次实验中,我们研究了负反馈放大电路的原理和性能。
负反馈放大电路是一种常见的电路拓扑结构,可用于增强放大器的线性度、稳定性和频率响应。
我们配置了一个基本的负反馈放大电路,包括一个放大器和一个反馈网络。
实验中使用了运放作为放大器,并选择合适的电阻和电容构成反馈网络。
通过调整反馈电路中的元件值,我们能够调节放大器的增益和频率响应。
我们测量了该负反馈放大电路的增益特性。
通过输入不同幅值和频率的信号,并测量输出信号的幅度,我们可得到放大器的频率响应曲线。
实验结果显示:负反馈放大电路可以改善放大器的频率响应,使其在更广泛的频率范围内保持较为稳定的增益。
我们还研究了负反馈对放大器的失真和稳定性的影响。
实验中使用了不同的反馈方式,如电压串联反馈和电流并联反馈,并对比其对放大器性能的影响。
实验结果表明,负反馈可以有效地减小放大器的非线性失真,提高整体的线性度和稳定性。
本次实验通过搭建负反馈放大电路,并对其性能进行测量和分析,探讨了负反馈对放大器性能的影响。
我们深入了解了负反馈放大电路的工作原理和应用场景,以及如何通过调整反馈网络来改善放大器的性能。
这为我们进一步研究和设计放大器电路提供了基础和启示。
负反馈放大电路实验报告

模拟电路实验实验报告负反馈放大电路负反馈放大器一、实验目得K进一步了解负反愦放大器性能得影响。
2、进一步掌握放大器性能指标得测量方法。
实验设备1•示波器2・函数信号发生器3 •交流毫伏表4 •直流稳压电源一只5.万用表6.实验箱二、实验原理放大器中采用负反馈,在降低放大倍数得同时,可以使放大器得某些性能大大改善。
所谓负反馈,就就是以某种方式从输出端取出信号,再以一定方式加到输入回路中。
若所加入得信号极性与原输入倍号极性相反,则就是负反馈。
根据取岀信号极性与加入到输入回路得方式不同,反馈可分为四类:串联电压反馈、串联电流反馈、并联电圧反馈与并联电流反馈。
如图3 7所示。
从网络方框图来瞧,反馈得这四种分类使得基本放大网络与反馈网络得联接在输入、输从实际电路来瞧,反馈信号若直接加到输入端,就是并联反惯,否则就是串联反馈,反馈信号若直接取自输出电压,就是电压反馈,否则就是电流反馈。
1、负反馈时输入、输出阻抗得影响负反馈对输入、输出阻抗得影响比较复杂,不同得反馈形式,对阻抗得影响也不一样,一般而言■凡就是并联负反馈,其输入阻抗降低:凡就是串联负反馈,其输入阻抗升高;设主网络得输入电阻为Ri,则串联负反惯得输入电阻为R^={1+FA V)Ri设主网络得输入电阻为R。
,电压负反馈放大器得输出电阻为R O F可见,电压串联负反馈放大器得输入电阻增大(1+AvF)倍,而输出电阻则下降到V(l+AvF)2、负反馈放大倍数与稳定度负反馈使放大器得净输入信号有所减小,因而使放大器增益下降,但却改善了放大性能. 提髙了它得稳定性。
反惯放大倍数为A沪(Ay为开环放大倍数)反馈放大倍数稳崔度与无反馈放大器放大倍数稳定度有如下关系:式中Avf /Avf称负反馈放大器放大倍数得稳世度。
称无反馈时得放大器放大倍数得稳定度。
可见,负反惯放大器比无反馈放大器放大倍数提高了(1+ A V F)倍。
3、负反馈可扩展放大器得通频带。
4、负反馈可减小输出信号得非线性失真三.实验内容、步骤及结果:K调整静态工作点,按图3—2接线。
负反馈放大电路实验设计

题目:负反馈放大电路实验设计高宏涛兰州城市学院培黎工程技术学院物理072班,电子信息科学与技术专业,甘肃兰州730070 摘要:此课题的设计是根据技术要求来确定放大电路的结构,级数,电路元器件的参数机型号,然后通过I<<1MA的小电流和输入电阻Ro>>20K的大电阻,所以我实验调试调试来实现的,并且由技术输出电流om采用的是电压串联负反馈,我设计的放大电路主要是为了提高增益的稳定性,减小电路引起的非线性失真,放大倍数的稳定性提高,通频带展宽,内部噪声减小。
负反馈放大电路在实际应用中极为广泛,电路形式繁多,根据反馈电路与输出电路,输入电路的连接方式不同,稳定的对象和稳定的程度也有所不同,需要进行具体分析。
一般来说要稳定直流量,应引入直流负反馈;要改善交流特性,应引入交流负反馈;在负载变化时,若想使输出电压稳定,应引入电压负反馈;若想使输出电流稳定,应引入电流负反馈。
而放大器中的反馈就是将输出信号取出一部分或全部送回到放大电路的输入回路,与原输入信号相加或相减后再作用到放大电路的输入端。
反馈信号的传输是反向传输。
所以,放大电路无反馈也称开环,放大电路有反馈也称闭环。
特别是放大电路引入负反馈可大大改善放大倍数的稳定性。
关键词:基本放大电路;负反馈;输入阻抗;输出阻抗;1、引言反馈也称为“回授”,广泛应用于各个领域。
例如,在行政管理中,通过对执行部门工作效果(输出)的调研,以便修订政策(输入);在商业活动中,通过对商品销售(输出)的调研进货渠道及进货数量(输入);在控制系统中,通过对执行机构偏移量(输出量)的监测来修正系统的输入量;等等。
上述例子表明,反馈的目的是通过对输入的影响来改善系统的运行状况及控制效果。
负反馈在电子线路中有着非常广泛的应用,采用负反馈是以降低放大倍数为代价的,目的是为了改善放大电路的工作性能,如稳定放大倍数、改变输入和输出电阻、减少非线性失真、展宽通频带等,所以在实用放大器中几乎都引入负反馈。
负反馈放大电路实验

二、实验原理(用最简练的语言反映实验的内容)
图7-1为带有负反馈的两级阻容耦合放大电路。
1、闭环电压增益
——基本放大器(无反馈)的电压增益,即开环电压增益。
1+A V*F V——反馈深度,它的大小决定了负反馈对放大电路性能改善的程度。
2、反馈系数
3、输入电阻
R if=(1+A V*F V)R i
R i——基本放大器的输入电阻
4、输出电阻
R o——基本放大器的输出电阻
A vo——基本放大器R L=∞时的电压增益
号,输出端接示波器,逐渐增大输入信号的幅度,使输出波形开始出现失真,记下此时的波形和输出电压的幅度。
2)再将实验电路改接成负反馈放大电路形式,增大输入信号幅度,使输出电压幅度的大小与1)相同,比较有负反馈时,输出波形的变化。
输入端接入f=1KHz,V S=6mV的正弦信号
四、实验记录(记录实验过程中所见到的现象、实验结果和得到的有关数据,可以插入图、表、关键程序代码等)
五、实验结论(对实验结果和数据进行分析和解释,并通过信息综合得出有效的实验结论)
1、将基本放大电路和负反馈放大电路动态参数的实测值和理论估算值列表进行比较。
负反馈放大电路 实验报告
负反馈放大电路实验报告
本实验室使用的负反馈放大电路是LM741。
该IC可用于几乎所有的负反馈放大电路类型,从基本的非线性放大电路到模拟加法器,从积分电路到高电平门控放大器。
实验中使用一台型号为DS2202的示波器,并配备了实验适配器板及常见元器电路,
引入实验台。
同时,示波器上连接着实验板上的LM741电路。
实验运行电路图(忽略电源部分)可见下图:
实验的实质是测量LM741的功率放大特性,在实验之前我们应该熟悉LM741的模拟特性,也就是电路的元件如何产生多义性的电压变化特性。
实验中,数字三端口开关上调节振荡电压,改变输入信号,重复经过LM741的放大过程。
在实验过程中,同时观察和测量示波器上的输出Voltage Voltage电压波形。
操作完成后,由实验台上的数字表可看出,在实验中,示波器上的输出Voltage电压
可以随振荡电压的大小而发生变化,并能够通过增加调节电压去改变电路的功率放大系数,由此可以确定LM741的功率放大特性。
总而言之,本实验证明了LM741的功率放大特性,可以通过增加调节电压,改变电路
的功率放大系数,从而达到调节电路功率放大器的效果。
两级负反馈放大电路
2012~ 2013 学年第二学期《模拟电子技术基础》课程设计报告题目:两级负反馈放大电路专业:电子信息工程班级: 11信息(1)班组成员:陶轮魏伟姚姚葛自立余俊明徐龙张超龙钱叶辉指导教师:吴慧电气工程学院2013年6月5 日任务书两极负反馈放大电路摘要负反馈是一种以电路来改善电路的重要方法之一,它能有效的改善放大器的性能,负反馈理论和负反馈技术在电子电路中得到了极其广泛的应用。
所以对负反馈放大电路研究方法的探究就显得特别重要且具有一定的实际意义。
本设计原理是利用具有放大特性的元件,如三极管,三极管加上电流后输入端的微小变化引起输出端的较大变化,再通过负反馈网络求得净输入量的值,通过仿真观察出波形图。
此次主要设计步骤有方案的设计与论证,反馈方式的选择,电路的设计与绘制,以及运用Multisim进行仿真测试设计电路的性能。
而电路设计中所采用的三极管、电阻等元器件都是比较容易见到和使用到的,故为电路的操作、测试、分析等工作都带来方便。
关键字:负反馈;放大器;电阻目录第一章方案设计与论证 (1)1.设计原理: (1)第二章负反馈对放大器各项性能指标的影响 (2)1.反馈方式的选择 (2)2.电路的确定 (2)3.放大管的选择 (2)4.电容的选择 (2)第三章单元电路设计与参数计算 (3)1.第一级放大电路参数设定 (3)2.第二级放大电路参数设定 (4)3、总原理图 (5)图3.3 (5)第四章性能测试与分析 (6)1.负反馈放大器放大倍数的测试: (6)2.测放大电路的频率特性: (7)第五章结论与心得 (9)1.实验结论 (9)2.心得体会 (9)参考文献 (10)附录 (11)答辩记录及评分表 (12)第一章 方案设计与论证1.设计原理:负反馈放大电路原理框图 1.1图中X 表示电压或电流信号;箭头表示信号传输的方向;符号¤表示输入求和,+、–表示输入信号 与反馈信号是相减关系(负反馈),即放大电路的净输入信号为:id i f X X X =-基本放大电路的增益(开环增益)为:/o id A X X =反馈系数为:/f o F X X =负反馈放大电路的增益(闭环增益)为:/f o i A X X =第二章 负反馈对放大器各项性能指标的影响负反馈的电路形式很多,但就基本形式来说,可以分为4种:即电流串联负反馈;电压串联负反馈 ;电流并联负反馈;电压并联负反馈。
负反馈放大器实验报告
负反馈放大器实验报告作者: ET6V一、实验原理图二、实验过程以及理论值推算(1)测量静态工作点调节Rp1,得到V CE1=5.5V则I E1≈I C1==(V cc-V CE1)/(R c1+R e1+R e2)=1.86mA V E1=I E1(R e1+R e2)=2.05VV B1=V E1+V BE1=2.05VV c1=V E1+V CE1=7.55V同理:调节Rp2,得到V CE2=5.5V则I E1≈I C1==(V cc-V CE2)/(R c2+R e3)=1.91mA V E1=I E1(R e1+R e2)=1.91VV B1=V E1+V BE1=2.61VV c1=V E1+V CE1=7.41V(2)测试基本放大器的各项性能指标I E1=1.86mA;)m ()be )(26)β(1300r A E I mV ++==1083ΩR P1+R b11=R b12 * (V cc-V B1)/ V B1≈67k Ω R i1= R b12// (R P1+R b11)//(r be1+(1+β)R e1)=4.6kΩ; 同理:I E2=1.91mA;)m ()be )(26)β(1300r A E I mV ++==1062ΩR P2+R b21=R b22 * (V cc-V B2)/ V B2≈36k Ω R i2= R b22// (R P2+R b21)//r be2=887ΩR o=R c2=2.4k ΩA v1= -β(R C1//R i2)/{r be1+(1+β)R e1}= - 5.32 ;当R L= ∞时A V2= -β*R C2/r be2= - 124.29;当R L= 2K Ω时A V2L= -β(R C2//R L )/r be2= - 56.50;则A V= A v1A V2=661A VL= A v1A V2L=300(3)测试负反馈放大器的各项性能指标F v=R e1/(R e1+R f)=1/83;A VF=A V/(1+A V*F V)=73.74 A VFL=A VL/(1+A VL*F V)=65.01 R iF=(1+A V*F V)*R i=9.84kΩR oF=R o/(1+A V*F V)=0.3kΩ三.仿真(1)静态工作点的仿真值(2)测试基本放大器的各项性能指标(3)测试负反馈放大器的各项性能指标v O(V)A V基本放大 3.99 2.30 2.36 58411%负反馈放大10.6 0.43 0.28 69 4.1%(4)观察负反馈对非线性失真的改善基本放大时:其中ChannedA 是V o, ChannedB 是V i 负反馈放大时:其中ChannedA 是V o, ChannedB 是V i四.实验时的实验数据(1)测量静态工作点实际值V C(V) V B(V) V E(V) V CE(v)第一级7.51 2.74 2.06 5.46第二级7.55 2.56 1.89 5.68(2)测试基本放大器的各项性能指标(3)测试负反馈放大器的各项性能指标参数V s R S V i f R L= 2KΩR L=(4)观察负反馈对非线性失真的改善基本放大时:负反馈放大时:五.对比分析。
负反馈放大器实验报告
负反馈放大器【实验目的】1、 加深负反馈对放大器工作性能影响的认识。
2、 掌握负反馈放大器性能指标的测试方法。
【实验仪器】双踪示波器、低频信号发生器、万用表、直流稳压电源 【实验原理】 1、 基本概念及分类负反馈放大器就是采用了负反馈措施(即将输出信号的部分或全部通过反馈网络送回输入端,以消弱原输入信号)的放大器。
负反馈放大器有电压串联、电压并联、电流串联和电流并联四种基本组态。
如图1所示的方框图有:图 1 负反馈放大器方框图01f f x A A x AF==+ 1B AF =+B 称为反馈深度。
当1D时,1f A F≈2、 负反馈放大器对性能的影响 (1)放大倍数的稳定性提高11f fA AA AF A∆∆=•+ (2)通频带扩展为原有的(1+AF )倍。
(3)减少非线性失真及抑制噪声。
(4)对输入、输出电阻的影响。
串联负反馈输入电阻增加,并联负反馈输入电阻减小;电压负反馈输出电阻减小,电流负反馈输出电阻减少,电流负反馈输出电阻增大。
【实验内容及步骤】 实验电路如图2所示:图 2 负反馈放大器实验电路1、 调整各级静态工作点2、 测量负反馈对放大倍数稳定性的影响(1) 测量基本放大器放大倍数的变化量。
(2) 测量负反馈放大器放大倍数的变化量。
(3) 计算相对变化量。
3、 观测负反馈放大器扩展通频带的作用。
4、 测量负反馈对输入电阻的影响。
【数据记录】实验数据记录在表1中:表格 1【数据分析与处理】由记录的数据可以看出,有反馈时:6.25%21.587A A ∆== 无反馈时:203046.58%A A ∆== 可见增益稳定性提高了,但并不理想,考虑到实验条件,示波器显示不准,读数有误差应为主要原因。
【总结】由这次试验可明显得到以下结论: 1、 引入负反馈会牺牲增益;2、引入负反馈后增益的稳定性提高了;3、引入负反馈能大大扩宽通频带;4、引入负反馈能增大输入电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24 实验2 负反馈放大器 1. 实验目的 1) 分析负反馈对放大器性能的影响。 2) 掌握测量负反馈放大器性能的测量方法。 2.实验仪器 双踪示波器、信号发生器、交流毫伏表、数字万用表。 3. 预习内容 1) 开环放大器和闭环放大器的放大倍数的计算方法。 2) 开环放大器和闭环放大器的输入、输出电阻的计算方法。 3) 负反馈闭环对放大器性能的影响。 4. 实验内容 凡是通过一定方式把放大电路的输出回路中某一个电量(电压或电流)的一部分或全部送回到输入回路中,这种电压或电流的反送过程叫做反馈。如果反馈到输入回路中的电量,具有加强输入信号的作用,是正反馈,反之是负反馈。判别正、负反馈的一个重要方法是“瞬时极性法”。 负反馈在电子线路中有着非常广泛的应用。虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大器的放大倍数、改变放大器的输入输出电阻、减小非线性失真、扩展频带等等。因此,几乎所有的实用放大器都引入负反馈。 负反共有四种类型,即电压串联负反馈、电压并联负反馈、电流串联负反馈、电流并联负反馈。本实验电路是电压放大器。通常,电压放大器希望电压放大器倍数尽可能稳定,输入电阻大,输出电阻小,所以,本实验电路引入的是电压串联负反馈为。实验电路如图2.1。
1) 测量开环放大器的静态参数 将图2.1中的CF和RF支路开路。用数字万用表测量电路的静态参数,填写表2.1。
IR4
IB1
图2.1 ri 25
表2.1 第一级 第二级
)V(V1B )V(V1C )V(V1E )V(V2B )V(V2C )V(V2E
开环 闭环
对于本实验电路,由于值较小, 1BI较大,1BI在R3上的电压降不能忽略,所以,在估算电路静态参数时必须计及1BI,否则将出错。现在用计及1BI的方法估算第一级放大器的静态参数。 分别对R3、R4支路和R12、R7支路列电压方程,
)RR(I)1(VIRVIR)II(R7121BBE4R4CC4R44R1B3 (2-1)
解方程组可得 )1)(RR)(RR(RRV)RR(VRI7124343BE43CC41B (2-2)
)1)(RR)(RR(RRV)1)(RR(VRI7124343CC712BE34R (2-3)
若设V7.0V1BE,30,则将它们代入(2-2)式得A74.41I1B,由此可得mA252.1II1B1C,V61.5RIVV51CCC1C,V46.2I)1(V1B1E,
V15.3VVV1E1C1CE。可见,第一级放大器的Q1处于放大状态,电路静态点为
)mA25.1,V15.3(Q1,处于良好的放大状态。
若忽略1BI在R3上的压降,通常按如下方法做静态估算。 V84.3VRRRVCC4331B, V14.37.084.3VVVBE1B1E,
mA65.1RRVII7121E1E1C, V57.3IRVV1C5CC1C,
V43.0VVV1E1C1CE Q1处于饱和状态,第一级放大电路不能正常工作。 对于本实验电路,计及基极电流的静态估算法是正确的。通过实验可以验证。 26
2) 开环放大器动态性能测量 以下测量,若不作特别要求,则输出端不接负载。 (1)开环交流电压放大倍数测量
调整信号源,使mV1Vi、KHz10f,。用交流毫伏表测量计算电路的交流电压放大倍数,填写表2.2。 表2.2
输入/输出电压)mV( 电压放大倍数 第一级 第二级 全电路
)mV(Vi )mV(V
1c )mV(V
o 1VA 2VA V
A
开环 闭环
(2)取mV1Vi,改变频率,测量绘制整个开环放大器的幅频特性。方法和要求同实验1。找出整个放大器的下限频率和上限频率,填写表2.3。 表2.3
下限频率)Hz(fL 上限频率)Hz(fH 开环 闭环
(3) 按实验1中给出的定义和表2.4的要求,测量整个放大电路的非线性谐波失真,填写表2.4。 表2.4
)mV(Vi 2od 2id 2d 3od
3id
3d
开环 1 10
闭环 1 10
(4)按实验1中给出的定义和表2.5的要求,测量开环放大电路的输入、输出电阻,填写表2.4。 表2.5
测输入电阻ir 1k5RS 测输出电阻or 测量值(mV) 测量计算值 估算值 Vo(V) 测量值 测量 计算值 理论 估算值 Vs Vi ir ir 无负载 负载
1k5 or or
开环 闭环 27
开环输入电阻可用下列方法估算。开环时,输入电阻就是第一级放大器的输入电阻。设30,由计及1BI静态分析法得到的1BI开始
mA294.1A74.4131I)1(I1B1E (2-4)
82304174.026200I26rI26)1(rr1Bbb1Ebbbe (2-5)
392310031823R)1(rr12beiAC (2-6)
k32.16R//RR43b (2-7)
k16.3923.332.16923.332.16r//RriACbio (2-8)
其中,iACr为第一级放大器交流小信号等效输入电阻;ior为开环输入电阻。
3)闭环放大器动态性能测量 以下测量,若不作特别要求,输出端不接负载。 (1) 将CF和RF支路如图2.1联接。用数字万用表测量电路的静态参数,填写表2.1。 由于本实验电路为交流负反馈,所以开环静态参数与闭环静态参数应该是一样的。
(2) 调整信号源,使mV10Vi、KHz10f。用交流毫伏表测量计算电路的交流电压放大倍数,填写表2.2。验证闭环放大倍数为
VVVVFFA1AA
(2-9)
其中,VA为开环放大倍数;VFA为闭环放大倍数;12F12VRRRF为电压反馈系数。只有当开环放大倍数与反馈系数的积大于大于1时,闭环放大倍数才能近似等于反馈系数的倒数。 电压串联负反馈减小了电压放大倍数,但提高了电压放大倍数的稳定性。在不考虑相位关系时,有
VVVVVFVFAdAFA11AdA
(2-10)
表明引入电压串联负反馈后,电压放大倍数的相对变化是未加负反馈前的电压放大倍数的相对变化的VVFA11倍,即闭环增益的稳定性提高了(1+AVFV)倍。
(3) mV10Vi,改变频率,测量绘制闭环放大器的幅频特性。方法和要求同实验1。找出整个放大器的下限频率和上限频率,填写表2.3。 28
负反馈扩展了放大器的通频带。引入负反馈后,放大器的上限频率fHF和下限频率fLF
分别为:HVVHFf)FA1(f,)FA1/(ffVVLLF,HFf向高端扩展了(1+AVFV)倍,LFf
向低端扩展了VVFA11倍,使通频带加宽。 (4) 按实验1中给出的定义和表2.4的要求,测量闭环放大电路的非线性谐波失真,填写表2.4。 (5) 按实验1中给出的定义和表2.5的要求,测量闭环放大电路的输入、输出电阻,填写表2.4。 并联负反馈能降低输入电阻,串联负反馈则提高输入电阻。电压负反馈降低了输出电阻,使放大器趋向恒压源;电流负反馈提高了输出电阻,使放大器的输出端趋向恒流源。图2.1引入的是电压串联负反馈,对整个放大器而言,使输入电阻提高,输出电阻降低,变化程度与反馈深度1+AVFV有关。 闭环输入阻抗可用下列方法估算。电压反馈网络的输出电阻为
7.96100//3000R//Rr12Fofe (2-10)
设开环放大倍数为360,在通带内,假设AV的相移为零。引入电压串联负反馈后,闭环交流小信号等效输入电阻为
k096.517.96)3013601(3923rFA1rrofeVViACifAC (2-12)
其中,iACr为(2-6)式所示的第一级放大器交流小信号等效输入电阻,即开环交流小信号等效输入电阻。闭环输入电阻为 k4.12096.51//32.16r//RrifACbif (13)
详细的推导可参考教材,康华光主编 “电子技术基础 模拟部分(第四版)”第7.4.2节。 闭环后,放大器的输出阻抗的估算公式为
FA1rr0Voof (14)
若接载,则L100R//Rr,若不接载,则10oRr。 4)思考题 1) 根据实验1和实验2的内容,小结负反馈闭环对放大电路性能的影响。 2) 除实验内容以外,您还能举出别的负反馈闭环对放大电路性能的影响。