北京市高一上学期数学期中考试试卷含答案

合集下载

北京市人大附中数学高一上期中测试题(含答案解析)

北京市人大附中数学高一上期中测试题(含答案解析)

一、选择题1.(0分)[ID :11825]设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,52.(0分)[ID :11815]若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭3.(0分)[ID :11810]函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .4.(0分)[ID :11809]不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦5.(0分)[ID :11808]已知函数()1ln 1xf x x-=+,则不等式()()130f x f x +-≥的解集为( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭6.(0分)[ID :11798]在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件7.(0分)[ID :11774]若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .8.(0分)[ID :11773]如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()UM P S ⋂⋂D .()()UM P S ⋂⋃9.(0分)[ID :11791]已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)10.(0分)[ID :11788]已知函数2221,2,()2,2,x x x x f x x -⎧-++<=⎨≥⎩且存在三个不同的实数123,,x x x ,使得123()()()f x f x f x ==,则123x x x ++的取值范围为( )A .(4,5)B .[4,5)C .(4,5]D .[4,5]11.(0分)[ID :11785]定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭12.(0分)[ID :11767]若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a <<13.(0分)[ID :11762]已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数14.(0分)[ID :11745]已知函数(),1log ,1x a a x f x x x ⎧≤=⎨>⎩(1a >且1a ≠),若()12f =,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1-B .12-C .12D15.(0分)[ID :11754]若函数()sin ln(f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2B .2±C .4D .4±二、填空题16.(0分)[ID :11922]设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a的取值范围是__________. 17.(0分)[ID :11901]函数()f x =的定义域是______. 18.(0分)[ID :11899]已知函数()32f x x x =+,若()()2330f a a f a -+-<,则实数a 的取值范围是__________.19.(0分)[ID :11883]已知函数()f x 是定义在 R 上的奇函数,且当0x >时,()21x f x =-,则()()1f f -的值为______.20.(0分)[ID :11874]已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________. 21.(0分)[ID :11862]若幂函数()a f x x 的图象经过点1(3)9,,则2a -=__________.22.(0分)[ID :11843]关于函数()2411x x f x x -=--的性质描述,正确的是__________.①()f x 的定义域为[)(]1,00,1-;②()f x 的值域为()1,1-;③()f x 的图象关于原点对称;④()f x 在定义域上是增函数.23.(0分)[ID :11839]用{}min ,,a b c 表示,,a b c 三个数中最小值,则函数{}()min 41,4,8f x x x x =++-+的最大值是 .24.(0分)[ID :11838]若集合(){}22210A x k x kx =+++=有且仅有2个子集,则满足条件的实数k 的最小值是____.25.(0分)[ID :11863]若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题26.(0分)[ID :12023]已知函数()()221+0g x ax ax b a =-+>在区间[2,3]上有最大值4和最小值1. (1)求a 、b 的值; (2)设()()2g x f x x =-,若不等式()0f x k ->在x ∈(]2,5上恒成立,求实数k 的取值范围.27.(0分)[ID :11978]一种放射性元素,最初的质量为500g ,按每年10﹪衰减. (Ⅰ)求t 年后,这种放射性元素质量ω的表达式;(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)28.(0分)[ID :11977]围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元).(Ⅰ)将y 表示为x 的函数;(Ⅱ)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 29.(0分)[ID :11952]设a 为实数,函数()()21f x x x a x R =+-+∈.(1)若函数()f x 是偶函数,求实数a 的值; (2)若2a =,求函数()f x 的最小值;(3)对于函数()y m x =,在定义域内给定区间,a b ,如果存在()00x a x b <<,满足()0()()m b m a m x b a-=-,则称函数()m x 是区间,a b 上的“平均值函数”,0x 是它的一个“均值点”.如函数2yx 是[]1,1-上的平均值函数,0就是它的均值点.现有函数()21g x x mx =-++是区间[]1,1-上的平均值函数,求实数m 的取值范围.30.(0分)[ID :11941]有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.D 3.C 4.C 5.D 6.B7.A8.C9.C10.A11.C12.B13.C14.C15.B二、填空题16.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为17.【解析】【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x的取值集合得答案【详解】由得且函数的定义域为:;故答案为【点睛】本题考查了函数的定义域及其求法是基础的会考题型18.(13)【解析】由题意得为单调递增函数且为奇函数所以点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式然后根据函数的单调性去掉转化为具体的不等式(组)此时要注意与的取值应在外层函数的定义域内19.【解析】由题意可得:20.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力21.【解析】由题意有:则:22.①②③【解析】【分析】由被开方式非负和分母不为0解不等式可得f(x)的定义域可判断①;化简f(x)讨论0<x≤1﹣1≤x<0分别求得f(x)的范围求并集可得f(x)的值域可判断②;由f(﹣1)=f(23.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题24.-2【解析】【分析】根据题意可知集合只有一个元素从而时满足条件而时可得到求出找到最小的即可【详解】只有2个子集;只有一个元素;时满足条件;②时;解得或2;综上满足条件的实数的最小值为﹣2故答案为﹣225.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.D解析:D 【解析】 【分析】函数()f x 为偶函数,则()()f x f x =-则()()22f f =-,再结合()f x 在(]1-∞-,上是增函数,即可进行判断. 【详解】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D. 【点睛】本题考查函数奇偶性和单调性的应用,考查化归与转化的思想,属于基础题.3.C解析:C 【解析】 【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论. 【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A . 故选C . 【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.4.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<.【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.5.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.6.B解析:B【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.7.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.8.C解析:C 【解析】 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.9.C解析:C 【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.10.A解析:A 【解析】不妨设123x x x <<,当2x <时,()()212f x x =--+,此时二次函数的对称轴为1x =,最大值为2,作出函数()f x 的图象如图,由222x -=得3x =,由()()()123f x f x f x ==,,且1212x x +=,即122x x +=,12332,x x x x ∴++=+ 由图可知3323,425x x <<∴<+<, 即123x x x ++的取值范围是()4,5,故选A.11.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.12.B解析:B 【解析】【分析】由对数函数的单调性以及指数函数的单调性,将数据与0或1作比较,即可容易判断. 【详解】由指数函数与对数函数的性质可知,a =()3log 20,1,b ∈=lg0.20,c <=0.221>,所以b a c <<,故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.13.C解析:C 【解析】 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .14.C解析:C 【解析】 【分析】由()12f =,求得2a =,得到函数的解析式,进而可求解1(())2f f 的值,得到答案. 【详解】由题意,函数(),1(1log ,1x a a x f x a x x ⎧≤=>⎨>⎩且1)a ≠,()12f =, 所以()12f a ==,所以()22,1(1log ,1x x f x a x x ⎧≤=>⎨>⎩且1)a ≠,所以121()22f ==所以211(())log 22f f f ===,故选C . 【点睛】本题主要考查了函数解析式的求解,以及函数值的运算问题,其中解答中根据题意准确求得函数的解析式,合理利用解析式求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.B解析:B 【解析】 【分析】根据图象对称关系可知函数为偶函数,得到()()f x f x =-,进而得到ax +=.【详解】()f x 图象关于y 轴对称,即()f x 为偶函数 ()()f x f x ∴=-即:()sin ln sin lnsin lnx ax x ax x ⋅+=-⋅=⋅ax ∴+=恒成立,即:222141x a x +-=24a ∴=,解得:2a =± 本题正确选项:B 【点睛】本题考查根据函数的奇偶性求解参数值的问题,关键是能够明确恒成立时,对应项的系数相同,属于常考题型.二、填空题16.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为解析:(1,0)(1,)【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.17.【解析】【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案【详解】由得且函数的定义域为:;故答案为【点睛】本题考查了函数的定义域及其求法是基础的会考题型 解析:[)()1,00,∞-⋃+【解析】 【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案. 【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞; 故答案为[)()1,00,-⋃+∞. 【点睛】本题考查了函数的定义域及其求法,是基础的会考题型.18.(13)【解析】由题意得为单调递增函数且为奇函数所以点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式然后根据函数的单调性去掉转化为具体的不等式(组)此时要注意与的取值应在外层函数的定义域内解析:(1,3) 【解析】由题意得()f x 为单调递增函数,且为奇函数,所以()()2330f a a f a -+-<22(3)(3)3313f a a f a a a a a ⇒-<-⇒-<-⇒<<点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内19.【解析】由题意可得: 解析:1-【解析】由题意可得:()()()()()111,111f f ff f -=-=--=-=-20.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6 【解析】 【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值. 【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+=()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.21.【解析】由题意有:则:解析:14【解析】 由题意有:13,29aa =∴=-, 则:()22124a--=-=. 22.①②③【解析】【分析】由被开方式非负和分母不为0解不等式可得f (x )的定义域可判断①;化简f (x )讨论0<x≤1﹣1≤x <0分别求得f (x )的范围求并集可得f (x )的值域可判断②;由f (﹣1)=f (解析:①②③ 【解析】 【分析】由被开方式非负和分母不为0,解不等式可得f (x )的定义域,可判断①;化简f (x ),讨论0<x ≤1,﹣1≤x <0,分别求得f (x )的范围,求并集可得f (x )的值域,可判断②;由f (﹣1)=f (1)=0,f(x)不是增函数,可判断④;由奇偶性的定义得f (x )为奇函数,可判断③. 【详解】①,由240110x x x ⎧-≥⎪⎨--≠⎪⎩,解得﹣1≤x ≤1且x ≠0,可得函数()11f x x =--的定义域为[﹣1,0)∪(0,1],故①正确;②,由①可得f (x,即f (x,当0<x ≤1可得f (x1,0];当﹣1≤x <0可得f (x[0,1).可得f (x )的值域为(﹣1,1),故②正确;③,由f (x)=﹣||x x 的定义域为[﹣1,0)∪(0,1],关于原点对称,f (﹣x)=|x x=﹣f (x ),则f (x )为奇函数,即有f (x )的图象关于原点对称,故③正确.④,由f (﹣1)=f (1)=0,则f (x )在定义域上不是增函数,故④错误; 故答案为:①②③ 【点睛】本题考查函数的性质和应用,主要是定义域和值域的求法、单调性的判断和图象的特征,考查定义法和分类讨论思想,以及化简运算能力和推理能力,属于中档题.23.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题解析:6 【解析】试题分析:由414,418,48x x x x x x +>++>-++>-+分别解得1, 1.4,2x x x >>>,则函数()8,2{4,1241,1x x f x x x x x -+≥=+<<+≤则可知当2x =时,函数{}()min 41,4,8f x x x x =++-+取得最大值为6 考点:分段函数的最值问题24.-2【解析】【分析】根据题意可知集合只有一个元素从而时满足条件而时可得到求出找到最小的即可【详解】只有2个子集;只有一个元素;时满足条件;②时;解得或2;综上满足条件的实数的最小值为﹣2故答案为﹣2解析:-2 【解析】 【分析】根据题意可知,集合A 只有一个元素,从而2k =-时,满足条件,而2k ≠-时,可得到()24420k k ∆=-+=,求出k ,找到最小的k 即可.【详解】A 只有2个子集; A ∴只有一个元素;2k ①∴=-时,14A ⎧⎫=⎨⎬⎩⎭,满足条件;②2k ≠-时,()24420k k ∆=-+=;解得1k =-或2;综上,满足条件的实数k 的最小值为﹣2. 故答案为﹣2. 【点睛】考查子集的概念,描述法和列举法表示集合的定义,以及一元二次方程实根个数和判别式∆的关系.25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么 解析:02b <<【解析】 【分析】 【详解】函数()22xf x b =--有两个零点,和的图象有两个交点,画出和的图象,如图,要有两个交点,那么三、解答题 26.(1)1,0a b ==;(2)4k <. 【解析】 【分析】(1)函数()g x 的对称轴方程为1x =,开口向上,则在[]2,3上单调递增,则可根据最值列出方程,可解得,a b 的值.(2)由题意只需()min k f x <,则只需要求出()f x 在(]2,5上的最小值,然后运用基本不等式求最值即可. 【详解】 解:(1)()g x 开口方向向上,且对称轴方程为 1x =,()g x ∴在[]2,3上单调递增()()()()min max2441139614g x g a a b g x g a a b ⎧==-++=⎪∴⎨==-++=⎪⎩.解得1a =且0b =. (2)()0f x k ->在(]2,5x ∈上恒成立所以只需()min k f x <.有(1)知()221112224222x x f x x x x x x -+==+=-++≥=--- 当且仅当122x x -=-,即3x =时等号成立. 4k ∴<. 【点睛】本题考查二次函数的最值的求法,注意讨论对称轴和区间的位置关系,考查不等式恒成立问题的解法,注意运用参数分离和基本不等式的应用,属于中档题.27.(Ⅰ)ω=500×0.9t . (Ⅱ)6.6年 【解析】 【分析】 【详解】试题分析:(Ⅰ)最初的质量为500g , 经过1年,ω=500(1-10﹪)=500×10.9, 经过2年,ω=500×20.9, ……,由此推出,t 年后,ω=500×0.9t . (Ⅱ)解方程500×0.9t =250.0.9t =0.5, lg 0.9lg 0.5t =,lg 0.56.6lg 0.9t =≈, 所以,这种放射性元素的半衰期约为6.6年.考点:指数函数应用题及只属于对数的互化点评:本题第一问由经过一年,二年……的剩余质量归纳出t 年后的剩余含量,第二问涉及到指数式与对数式的转化x a b =转化为log a x b =28.(Ⅰ)y =225x +2360360(0)x x-〉(Ⅱ)当x =24m 时,修建围墙的总费用最小,最小总费用是10440元. 【解析】试题分析:(1)设矩形的另一边长为am ,则根据围建的矩形场地的面积为360m 2,易得360a x=,此时再根据旧墙的维修费用为45元/m ,新墙的造价为180元/m ,我们即可得到修建围墙的总费用y 表示成x 的函数的解析式;(2)根据(1)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x 值 试题解析:(1)如图,设矩形的另一边长为a m 则45x+180(x-2)+180·2a=225x+360a-360由已知xa=360,得a=,所以y=225x+(2).当且仅当225x=时,等号成立.即当x=24m 时,修建围墙的总费用最小,最小总费用是10440元. 考点:函数模型的选择与应用29.(1);(2);(3)()0,2【解析】试题分析:(1)考察偶函数的定义,利用通过整理即可得到;(2)此函数是一个含有绝对值的函数,解决此类问题的基本方法是写成分段函数的形式,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+<,要求函数的最小值,要分别在每一段上求出最小值,取这两段中的最小值;(3)此问题是一个新概念问题,这种类型都可转化为我们学过的问题,此题定义了一个均值点的概念,我们通过概念可把题目转化为“存在()01,1x ∈-,使得()0g x m =”从而转化为一元二次方程有解问题.试题解析:解:(1)()f x 是偶函数,()()f x f x ∴-=在R 上恒成立,即()2211x x a x x a -+--+=+-+,所以x a x a +=-得0ax = x R ∈0a ∴=(2)当2a =时,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+< 所以()f x 在[)2,+∞上的最小值为()25f =, ()f x 在(),2-∞上的的最小值为f ()=, 因为<5,所以函数()f x 的最小值为. (3)因为函数()21g x x mx =-++是区间[]1,1-上的平均值函数,所以存在()01,1x ∈-,使()0(1)(1)1(1g g g x --=--) 而(1)(1)1(1g g m --=--),存在()01,1x ∈-,使得()0g x m = 即关于x 的方程21x mx m -++=在()1,1-内有解;由21x mx m -++=得210x mx m -+-=解得121,1x x m ==-所以111m -<-<即02m <<故m 的取值范围是()0,2考点:函数奇偶性定义;分段函数求最值;含参一元二次方程有解问题.30.(1)1.70/min km ;(2)466;(3)9【解析】试题分析:(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出1x 、2x ,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得129x x =. 试题解析:(1)将02x =,8100x =代入函数式可得:31log 81lg 22lg 220.30 1.702v =-=-=-= 故此时候鸟飞行速度为1.70/min km . (2)将05x =,0v =代入函数式可得:310log lg 52100x =-即3log 2lg52(1lg 2)20.70 1.40100x ==⋅-=⨯= 1.43 4.66100x ∴==于是466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位. (3)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,依题意可得:13023012.5log lg 2100{11.5log lg 2100x x x x =-=-两式相减可得:13211log 2x x =,于是129x x =. 故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍. 考点:1.函数代入求值;2.解方程;3.对数运算.。

北京东直门中学数学高一上期中经典题(含答案)

北京东直门中学数学高一上期中经典题(含答案)

一、选择题1.(0分)[ID :11801]设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 2.(0分)[ID :11798]在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件3.(0分)[ID :11782]设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( )A .1-B .13-C .12-D .134.(0分)[ID :11757]设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,,B .{}123,,C .{}234,, D .{}134,, 5.(0分)[ID :11756]函数()111f x x =--的图象是( ) A . B .C .D .6.(0分)[ID :11785]定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos xf x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭7.(0分)[ID :11763]定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3x f x =,则()3log 54f =( )A .32B .23-C .23D .32- 8.(0分)[ID :11762]已知()lg(10)lg(10)f x x x =++-,则()f x 是( )A .偶函数,且在(0,10)是增函数B .奇函数,且在(0,10)是增函数C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数 9.(0分)[ID :11746]若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b10.(0分)[ID :11745]已知函数(),1log ,1x a a x f x x x ⎧≤=⎨>⎩(1a >且1a ≠),若()12f =,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1-B .12-C .12D .211.(0分)[ID :11735]设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .a>c>b B .a>b>c C .c>a>bD .b>c>a12.(0分)[ID :11732]方程 4log 7x x += 的解所在区间是( ) A .(1,2)B .(3,4)C .(5,6)D .(6,7)13.(0分)[ID :11817]函数2ln(1)y 34x x x +=--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 14.(0分)[ID :11781]函数2xy x =⋅的图象是( )A .B .C .D .15.(0分)[ID :11760]设函数3()f x x x =+ ,. 若当02πθ<<时,不等式(sin )(1)0f m f m θ+-> 恒成立,则实数m 的取值范围是( )A .1(,1]2B .1(,1)2C .[1,)+∞D .(,1]-∞二、填空题16.(0分)[ID :11911]已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.17.(0分)[ID :11908]设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是_____.18.(0分)[ID :11907]已知函数()()22log f x x a =+,若()31f =,则a =________.19.(0分)[ID :11906]1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.20.(0分)[ID :11901]函数()1x f x +=的定义域是______. 21.(0分)[ID :11888]若42x ππ<<,则函数3tan 2tan y x x =的最大值为 .22.(0分)[ID :11884]已知函数2,()24,x x m f x x mx m x m ⎧≤=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 23.(0分)[ID :11862]若幂函数()a f x x 的图象经过点1(3)9,,则2a -=__________.24.(0分)[ID :11838]若集合(){}22210A x k x kx =+++=有且仅有2个子集,则满足条件的实数k 的最小值是____.25.(0分)[ID :11836]已知函数(12)(1)()4(1)x a x f x ax x ⎧-<⎪=⎨+≥⎪⎩,且对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,则a 的取值范围是________三、解答题26.(0分)[ID :12026]某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益()f x 与投资额x 成正比,且投资1万元时的收益为18万元,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,且投资1万元时的收益为0.5万元,(1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?27.(0分)[ID :12025]已知函数()()log 1xa f x a =-(0a >,1a ≠)(1)当12a =时,求函数()f x 的定义域; (2)当1a >时,求关于x 的不等式()()1f x f <的解集;(3)当2a =时,若不等式()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,求实数m 的取值范围.28.(0分)[ID :11975]已知函数22()f x x x=+. (1)求(1)f ,(2)f 的值;(2)设1a b >>,试比较()f a 、()f b 的大小,并说明理由; (3)若不等式2(1)2(1)1f x x m x -≥-++-对一切[1,6]x ∈恒成立,求实数m 的最大值. 29.(0分)[ID :11973]在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营情况良好的某种消费品专卖店以5.8万元的优惠价转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?30.(0分)[ID :11935]已知集合{}24xA x R =∈<,(){}lg 4B x R y x =∈=-.(1)求集合,A B ;(2)已知集合{}11C x m x m =-≤≤-,若集合()C A B ⊆⋃,求实数m 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.B 3.B 4.A 5.B 6.C 7.D8.C9.B10.C11.A12.C13.C14.A15.D二、填空题16.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属17.【解析】试题分析:由题意得函数的定义域为因为所以函数为偶函数当时为单调递增函数所以根据偶函数的性质可知:使得成立则解得考点:函数的图象与性质【方法点晴】本题主要考查了函数的图象与性质解答中涉及到函数18.-7【解析】分析:首先利用题的条件将其代入解析式得到从而得到从而求得得到答案详解:根据题意有可得所以故答案是点睛:该题考查的是有关已知某个自变量对应函数值的大小来确定有关参数值的问题在求解的过程中需19.2【解析】【分析】先求f(2)再根据f(2)值所在区间求f(f(2))【详解】由题意f(2)=log3(22–1)=1故f(f(2))=f(1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数20.【解析】【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x的取值集合得答案【详解】由得且函数的定义域为:;故答案为【点睛】本题考查了函数的定义域及其求法是基础的会考题型21.-8【解析】试题分析:设当且仅当时成立考点:函数单调性与最值22.【解析】试题分析:由题意画出函数图象如下图所示要满足存在实数b使得关于x的方程f(x)=b有三个不同的根则解得故m的取值范围是【考点】分段函数函数图象【名师点睛】本题主要考查二次函数的图象与性质函数23.【解析】由题意有:则:24.-2【解析】【分析】根据题意可知集合只有一个元素从而时满足条件而时可得到求出找到最小的即可【详解】只有2个子集;只有一个元素;时满足条件;②时;解得或2;综上满足条件的实数的最小值为﹣2故答案为﹣225.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算2.B解析:B 【解析】【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.3.B解析:B 【解析】 【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解. 【详解】易知函数()f x 在[)0,+∞上单调递减, 又函数()f x 是定义在R 上的偶函数, 所以函数()f x 在(),0-∞上单调递增, 则由()()1f x f x m -≤+,得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立,则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩,解得113m -≤≤-, 即m 的最大值为13-. 【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m-≤+求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.4.A解析:A【解析】由题意{1,2,3,4}A B=,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.5.B解析:B【解析】【分析】把函数1yx=先向右平移一个单位,再关于x轴对称,再向上平移一个单位即可.【详解】把1yx=的图象向右平移一个单位得到11yx=-的图象,把11yx=-的图象关于x轴对称得到11yx=--的图象,把11yx=--的图象向上平移一个单位得到()111f xx=--的图象,故选:B.【点睛】本题主要考查函数图象的平移,对称,以及学生的作图能力,属于中档题.6.C解析:C【解析】【分析】根据f(x)是奇函数,以及f(x+2)=f(-x)即可得出f(x+4)=f(x),即得出f(x)的周期为4,从而可得出f(2018)=f(0),2019122f f⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭然后可根据f(x)在[0,1]上的解析式可判断f(x)在[0,1]上单调递增,从而可得出结果.【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.7.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.8.C解析:C 【解析】 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】 由100100x x +>⎧⎨->⎩,得(10,10)x ∈-,故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数,而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .9.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.10.C解析:C 【解析】 【分析】由()12f =,求得2a =,得到函数的解析式,进而可求解1(())2f f 的值,得到答案. 【详解】由题意,函数(),1(1log ,1x a a x f x a x x ⎧≤=>⎨>⎩且1)a ≠,()12f =, 所以()12f a ==,所以()22,1(1log ,1x x f x a x x ⎧≤=>⎨>⎩且1)a ≠,所以121()22f ==所以211(())log 22f f f ===,故选C . 【点睛】本题主要考查了函数解析式的求解,以及函数值的运算问题,其中解答中根据题意准确求得函数的解析式,合理利用解析式求解是解答的关键,着重考查了运算与求解能力,属于基础题.11.A解析:A 【解析】试题分析:∵函数2()5xy =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.12.C解析:C 【解析】 【分析】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数,根据(5)(6)0f f ⋅<,可得函数4()log 7xf x x =+-的零点所在的区间为()5,6,由此可得方程4log 7x x +=的解所在区间. 【详解】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数.∵(5)0f <,(6)0>f ∴(5)(6)0f f ⋅<∴故函数4()log 7xf x x =+-的零点所在的区间为()5,6∴方程4log 7x x +=的解所在区间是()5,6 故选C. 【点睛】零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.13.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C14.A解析:A 【解析】 【分析】先根据奇偶性舍去C,D,再根据函数值确定选A. 【详解】因为2xy x =⋅为奇函数,所以舍去C,D; 因为0x >时0y >,所以舍去B ,选A. 【点睛】有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.15.D解析:D 【解析】 【分析】 【详解】易得()f x 是奇函数,2()310()f x x f x '=+>⇒在R 上是增函数,不等式(sin )(1)0f m f m θ+-> 恒成立. 可得11(sin )(1)sin 1,0sin 111sin 1sin f m f m m m m m θθθθθ>-⇒>-⇒<<<⇒⇒≤--, 故选D.二、填空题16.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属 解析:±1. 【解析】 【分析】设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩,由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.17.【解析】试题分析:由题意得函数的定义域为因为所以函数为偶函数当时为单调递增函数所以根据偶函数的性质可知:使得成立则解得考点:函数的图象与性质【方法点晴】本题主要考查了函数的图象与性质解答中涉及到函数解析:1(1)3, 【解析】试题分析:由题意得,函数21()ln(1)1f x x x =+-+的定义域为R ,因为()()f x f x -=,所以函数()f x 为偶函数,当0x >时,21()ln(1)1f x x x =+-+为单调递增函数,所以根据偶函数的性质可知:使得()(21)f x f x >-成立,则21x x >-,解得113x <<. 考点:函数的图象与性质.【方法点晴】本题主要考查了函数的图象与性质,解答中涉及到函数的单调性和函数的奇偶性及其简单的应用,解答中根据函数的单调性与奇偶性,结合函数的图象,把不等式()(21)f x f x >-成立,转化为21x x >-,即可求解,其中得出函数的单调性是解答问题的关键,着重考查了学生转化与化归思想和推理与运算能力,属于中档试题.18.-7【解析】分析:首先利用题的条件将其代入解析式得到从而得到从而求得得到答案详解:根据题意有可得所以故答案是点睛:该题考查的是有关已知某个自变量对应函数值的大小来确定有关参数值的问题在求解的过程中需解析:-7 【解析】分析:首先利用题的条件()31f =,将其代入解析式,得到()()2391f log a =+=,从而得到92a +=,从而求得7a =-,得到答案.详解:根据题意有()()2391f log a =+=,可得92a +=,所以7a =-,故答案是7-. 点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.19.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.20.【解析】【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案【详解】由得且函数的定义域为:;故答案为【点睛】本题考查了函数的定义域及其求法是基础的会考题型 解析:[)()1,00,∞-⋃+【解析】 【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案. 【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞. 【点睛】本题考查了函数的定义域及其求法,是基础的会考题型.21.-8【解析】试题分析:设当且仅当时成立考点:函数单调性与最值解析:-8 【解析】 试题分析:2tan 1tan 1,42xx x ππ∴∴设2tan t x =()()()2221412222142248111t t t y t t t t -+-+∴==-=----≤-⨯-=----当且仅当2t =时成立考点:函数单调性与最值22.【解析】试题分析:由题意画出函数图象如下图所示要满足存在实数b 使得关于x 的方程f (x )=b 有三个不同的根则解得故m 的取值范围是【考点】分段函数函数图象【名师点睛】本题主要考查二次函数的图象与性质函数解析:()3+∞,【解析】试题分析:由题意画出函数图象如下图所示,要满足存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则24m m m -<,解得3m >,故m 的取值范围是(3,)+∞.【考点】分段函数,函数图象【名师点睛】本题主要考查二次函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好地考查考生数形结合思想、转化与化归思想、基本运算求解能力等.23.【解析】由题意有:则: 解析:14【解析】 由题意有:13,29aa =∴=-, 则:()22124a--=-=.24.-2【解析】【分析】根据题意可知集合只有一个元素从而时满足条件而时可得到求出找到最小的即可【详解】只有2个子集;只有一个元素;时满足条件;②时;解得或2;综上满足条件的实数的最小值为﹣2故答案为﹣2解析:-2 【解析】 【分析】根据题意可知,集合A 只有一个元素,从而2k =-时,满足条件,而2k ≠-时,可得到()24420k k ∆=-+=,求出k ,找到最小的k 即可.【详解】A 只有2个子集; A ∴只有一个元素;2k ①∴=-时,14A ⎧⎫=⎨⎬⎩⎭,满足条件;②2k ≠-时,()24420k k ∆=-+=;解得1k =-或2;综上,满足条件的实数k 的最小值为﹣2. 故答案为﹣2. 【点睛】考查子集的概念,描述法和列举法表示集合的定义,以及一元二次方程实根个数和判别式∆的关系.25.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围 解析:[1,0)-【解析】 【分析】 根据()()12120f x f x x x ->-判断出函数在R 上为增函数,由此列不等式组,解不等式组求得a 的取值范围.【详解】由于对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,所以函数在R 上为增函数,所以1210124a a a a ->⎧⎪<⎨⎪-≤+⎩,解得10a -≤<.故答案为:[)1,0-.【点睛】本小题主要考查根据函数的单调性求参数的取值范围,考查指数函数的单调性,考查分式型函数的单调性,属于基础题.三、解答题 26.(1)()1,()0)8f x x g x x ==≥;(2)投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元. 【解析】 【分析】(1)投资债券等稳健型产品的收益()f x 与投资额x 成正比,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,用待定系数法求这两种产品的收益和投资的函数关系;(2)由(1)的结论,设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,这时可构造出一个关于收益y 的函数,然后利用求函数最大值的方法进行求解. 【详解】(1)依题意设()1,()f x k x g x k ==,1211(1),(1)82f k g k ====,()1,()0)8f x x g x x ==≥;(2)设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,1(20)()(20)8y f x g x x =-+=-212)3,0208x =-+≤≤,2,4x ==万元时,收益最大max 3y =万元, 20万元资金,投资债券等稳健型产品为16万元, 投资股票等风险型产品为4万元,投资收益最大为3万元. 【点睛】本题考查函数应用题,考查正比例函数、二次函数的最值、待定系数法等基础知识与基本方法,属于中档题.27.(1)(),0-∞;(2)()0,1;(3)21,log 3⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭.【解析】 【分析】(1)由a x -1>0,得a x >1 下面分类讨论:当a >1时,x >0;当0<a <1时,x <0即可求得f (x )的定义域(2)根据函数的单调性解答即可;(3)令()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈可知()g x 在[1,3]上是单调增函数,只需求出最小值即可. 【详解】本题考查恒成立问题. (1)当12a =时,()121log 12x f x ⎛⎫=- ⎪⎝⎭,故:1102x ->,解得:0x <,故函数()f x 的定义域为(),0-∞;(2)由题意知,()()log 1xa f x a =-(1a >),定义域为()0,x ∈+∞,用定义法易知()f x 为()0,x ∈+∞上的增函数,由()()1f x f <,知:01x x >⎧⎨<⎩,∴()0,1x ∈.(3)设()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈,设21212121x x xt -==-++,[]1,3x ∈, 故[]213,9x+∈,2171,2139x t ⎡⎤=-∈⎢⎥+⎣⎦,故:()min 211log 33g x g ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 又∵()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,故:()min 21log 3m g x ⎛⎫<= ⎪⎝⎭.【点睛】本题主要考查对数函数有关的定义域、单调性、值域的问题,属于中档题.28.(1)(1)3f =,(2)5f =;(2)()()f a f b >;详见解析(3)1-. 【解析】 【分析】(1)根据函数解析式,代入即可求值.(2)根据函数解析式,利用作差法即可比较()f a 、()f b 的大小.(3)将解析式代入,化简不等式,转化为关于二次函数的恒成立问题,即可求得实数m 的最大值. 【详解】(1)因为函数()22f x x x=+所以()221131f =+= ()222252f =+= (2)()()f a f b >,理由如下: 因为1a b >> 则()()f a f b -2222a b a b=+-- ()()()2b a a b a b ab-=-++()2a b a b ab ⎛⎫=-+- ⎪⎝⎭因为1a b >>,则2a b +>,1ab >,所以22ab<,即20a b ab +->,()0a b -> 所以()20a b a b ab ⎛⎫-+-> ⎪⎝⎭即()()f a f b >(3)因为函数()22f x x x=+则代入不等式可化为()()22212111x x m x x -+≥-++-- 化简可得243x x m -+≥,即()221x m --≥ 因为对于一切[]1,6x ∈恒成立所以()2min21x m ⎡⎤--≥⎣⎦ 当2x =时,二次函数取得最小值,即1m -≥ 所以实数m 的最大值为1- 【点睛】本题考查了函数的求值,单调性的证明及不等式恒成立问题的综合应用,属于基础题.29.(1)当P =19.5元,最大余额为450元;(2)20年后【解析】【分析】(1)根据条件关系建立函数关系,根据二次函数的图象和性质即可求出函数的最值; (2)根据函数的表达式,解不等式即可得到结论.【详解】设该店月利润余额为L ,则由题设得L =Q (P ﹣14)×100﹣3600﹣2000,① 由销量图,易得Q =250,14P 20340,20P 262p p -+⎧⎪⎨-+<⎪⎩ 代入①式得L =(250)(14)1005600,14P 20340(14)100560,20P 262P P P P -+-⨯-⎧⎪⎨⎛⎫-+-⨯-< ⎪⎪⎝⎭⎩ (1)当14≤P ≤20时,2(250)(14)1005600200780075600L P P p p =-+-⨯-=-+-,当P =19.5元,L max =450元,当20<P ≤26时,23340(14)100560615656022L P P P p ⎛⎫=-+-⨯-=-+- ⎪⎝⎭,当P =613元时,L max =12503元. 综上:月利润余额最大,为450元,(2)设可在n 年内脱贫,依题意有12n ×450﹣50000﹣58000≥0,解得n ≥20,即最早可望在20年后脱贫.【点睛】本题主要考查实际函数的应用问题,根据条件建立函数关系,利用二次函数的图象和性质是即可得到结论,属于中档题.30.(1) ()4,B =+∞(),2A =-∞;(2) m 的取值范围是()-3∞,. 【解析】试题分析:(1)由题意,根据指数幂的运算性质,可得(),2A =-∞,根据函数()lg 4y x =- 可解得4x >,得到集合B ;(2)由(1)可得()()(),24,A B =-∞+∞,根据()C A B ⊆⋃,再分C =∅和C ≠∅两种情况分类讨论,即可求得实数m 的取值范围.试题解析:(1)∵x 222<∴()A ,2∞=-又∵()y lg x 4=-可知x 4>∴()B 4,∞=+(2)∵()()()A B ,24,∞∞⋃=-⋃+,又∵()C A B ⊆⋃ (i )若C ∅=,即1m m 1->-, 解得m 1<,满足:()C A B ⊆⋃ ∴m 1<符合条件(ii )若C ∅≠,即m m 1-≤-, 解得m 1≥,要保证:()C A B ⊆⋃ 1m 4->或m 12-<,解得m 3<-(舍)或m 12-<解得[)m 1,3∈,综上:m 的取值范围是()-3∞, .。

2023-2024学年北京市昌平区第一中学高一上学期期中考试数学试卷含详解

2023-2024学年北京市昌平区第一中学高一上学期期中考试数学试卷含详解

2023-2024年昌平一中高一上期中试卷一、选择题(每题4分)1.已知集合{}1,0,2,3A =-,{21,}B xx k k ==-∈N ∣,那么A B = ()A.{}1,0- B.{}1,2- C.{}0,3 D.{}1,3-2.若0,10a b <-<<,则下列不等关系正确的是()A.2ab ab a>> B.2ab ab a>> C.2ab a ab >> D.2a ab ab >>3.下列在定义域内既是奇函数又是减函数的是()A.()1f x x=B.()2f x x=- C.()2f x x=- D.()f x =4.下列各不等式,其中正确的是()A .212()a a a +>∈R B.12(,0)x x x x+≥∈≠R C.2(0)ab≥≠ D.2211()1x x x +>∈+R 5.函数()()2222f x x a x =-+++在区间(),4∞-上单调递增,则a 的取值范围是()A.3a ≥B.3a ≤ C.1a ≥ D.1a ≤6.函数()2x f x x=表示的图象可能是下图中的()A. B. C. D.7.一元二次方程20ax bx c ++=有解是一元二次不等式20ax bx c ++>有解的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件8.已知()f x 为一次函数,且[()]43,f f x x =-则(1)f 的值为A .B.1C.2D.39.函数()538f x x ax bx =+++,且()210f -=,则()2f 的值是()A.2- B.6- C.6D.810.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为221y x =-,值域为{}1,7的“孪生函数”共有A.10个B.9个C.8个D.4个二、填空题(每题5分)11.函数()x f x x=的定义域为_________.12.命题p :()11,,1∀∈+∞+≥-x x a x 为真命题,则p ⌝可以表示为__________________,实数a 的取值范围是______.13.设函数()f x 是R 上的偶函数,且在()0-∞,上是减函数,若()20f =,则不等式()0f x x<的解集是________14.正实数a b 、满足3a b ab ++=,则ab 的最小值是______,a b +的最小值是_______15.已知函数222,()2,.x x x a f x x x x a ⎧-≥=⎨--<⎩,给出下列四个结论:①存在实数a ,使函数()f x 为奇函数;②对任意实数a ,函数()f x 既无最大值也无最小值;③对任意实数a 和k ,函数()y f x k =+总存在零点;④对于任意给定的正实数m ,总存在实数a ,使函数()f x 在区间(1,)m -上单调递减.其中所有正确结论的序号是______________.三、解答题(16-18每题14分,19-20每题15分,21题13分)16.集合{}|23A x x =-≤,{}|121B x a x a =+≤≤-(1)当4a =时,求A B ⋃;(2)若A B B = ,求实数a 的取值范围17.函数()24ax f x x+=,且()15f =(1)求a 的值;(2)证明:()f x 为奇函数;(3)判断函数()f x 在(]0,2上的单调性,并加以证明18.函数()()2214f x x a x =--+,定义域为[]0,3(1)当2a =时,求()f x 的值域;(2)若[]()0,3,0x f x ∀∈≥恒成立,求实数a 的取值范围19.关于x 的方程()2234220R x kx k k ++-=∈(1)当1k =时,求方程的根;(2)若方程有两个不相等的实数根12,x x ,①求实数k 的取值范围;②用关于k 的式子表示2212x x +20.某农场要安装一个可使用10年的太阳能供电设备。

北京高一高中数学期中考试带答案解析

北京高一高中数学期中考试带答案解析

北京高一高中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.若1和的等差中项是2,则的值为( )A.4B.3C.1D.2.计算的结果为( )A.B.C.D.3.在△ABC中,,,,则等于( )A.B.C.D.4.已知函数在处取得最大值,则可能是( )A.B.C.D.5.等比数列的首项为1,其前项和为,如果,则的值为 ( )A.2B.2或C.4D.4或6.数列的通项公式为,其前项和为,则的值为 ( )A.B.C.D.7.等差数列满足,且前10项和,则最大值是 ( )A.28B.49C.50D.528.若在△ABC中,有,则△ABC一定是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形二、填空题1.在△ABC中,,,,则△ABC的面积为 .2.若角的终边经过点,则, .3.已知等差数列的前项和为,若,且,则的公差是,的最小值为 .4.已知在△ABC中,有,则下列说法中:①△ABC为钝角三角形;②;③.正确说法的序号是 .(填上所有正确说法的序号)5.设数列满足,若,则= ,数列的前10项和= .6.已知,定义.(1)如果,则;(2)如果,则的取值范围是 .三、解答题1.已知函数.(1)求值;(2)求的最小值正周期;(3)求的单调递增区间.2.已知等差数列满足.(1)求的通项公式;(2)求的前项和;(3)若成等比数列,求的值.3.已知△ABC中,,,且.(1)求∠B的值;(2)若点E,P分别在边AB,BC上,且AE=4,AP⊥CE,求AP的长;4.已知数列中,,且有.(1)写出所有可能的值;(2)是否存在一个数列满足:对于任意正整数,都有成立?若有,请写出这个数列的前6项,若没有,说明理由;(3)求的最小值.北京高一高中数学期中考试答案及解析一、选择题1.若1和的等差中项是2,则的值为( )A.4B.3C.1D.【答案】【解析】根据等差中项可知,可得.【考点】等差中项.2.计算的结果为( )A.B.C.D.【答案】【解析】根据余弦二倍角公式可知.【考点】余弦二倍角公式.3.在△ABC中,,,,则等于( )A.B.C.D.【答案】【解析】根据已知三边求一角,所以利用余弦定理.【考点】余弦定理.4.已知函数在处取得最大值,则可能是( )A.B.C.D.【答案】【解析】根据函数解析式的特点,设,则根据正弦和角公式,可知函数,则其最值在处取得,所以.【考点】正余弦特殊值,正弦和角公式,正弦函数最值.5.等比数列的首项为1,其前项和为,如果,则的值为 ( )A.2B.2或C.4D.4或【答案】【解析】根据,展开可得,所以,根据等比数列通项性质,所以,可得.可知.【考点】等比数列通项性质.6.数列的通项公式为,其前项和为,则的值为 ( )A.B.C.D.【答案】【解析】根据数列通项公式的特点,可将其分裂为,所以根据裂项相消法有,可得.【考点】裂项相消法求数列的和.7.等差数列满足,且前10项和,则最大值是 ( )A.28B.49C.50D.52【答案】【解析】根据等差数列前项和公式,可知,所以可知,根据,可知最小值为1,所以最大值为55,则根据等差数列通项公式有,所以.所以的最大值为49.【考点】等差数列前项和公式,通项公式.8.若在△ABC中,有,则△ABC一定是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形【答案】【解析】根据内角和为,可知,所以,可得,所以三角形是等腰三角形.【考点】利用角度判断三角形形状,三角函数诱导公式.二、填空题1.在△ABC中,,,,则△ABC的面积为 .【答案】【解析】根据三角形面积公式.【考点】三角形面积.2.若角的终边经过点,则, .【答案】【解析】根据正切函数的定义有,根据正切和角公式有.【考点】正切定义,正切和角公式.3.已知等差数列的前项和为,若,且,则的公差是,的最小值为 .【答案】【解析】根据等差数列的前项和公式,可将化简为,所以,显然根据二次函数的性质可知,当时,取最小值.但是,所以当,取最小值.【考点】等差数列的前项和公式,二次函数的性质,数列中范围的考查.4.已知在△ABC中,有,则下列说法中:①△ABC为钝角三角形;②;③.正确说法的序号是 .(填上所有正确说法的序号)【答案】①②③【解析】根据向量的数量积运算可知:,因为向量的模长为正,所以,又因为在三角形中,所以为钝角,故①正确;根据余弦定理,有,故②正确;因为,故③正确.【考点】向量的数量积公式,余弦定理,余弦和角公式.5.设数列满足,若,则= ,数列的前10项和= .【答案】【解析】根据,可得,,,则有数列中构成以为首项,为公比的等比数列,所以;构成以为首项,为公比的等比数列,所以.【考点】数列的分析,等比数列的求和公式,通项公式.6.已知,定义.(1)如果,则;(2)如果,则的取值范围是 .【答案】(1)0或1 (2)【解析】(1)因为是相邻两项,根据题意有两种情况,①②,所以;(2)有以下几种情况:①当时,,舍;②当时:当时,有,所以,此时,成立;当时,有,所以,此时,所以;③当时, ,舍;④当时,当时, 即,因为,此时,所以; 当时, ,即,因为,可得,不成立;⑤当时,,舍;综上可知.【考点】递推公式中的分类讨论.三、解答题1.已知函数.(1)求值;(2)求的最小值正周期;(3)求的单调递增区间.【答案】(1) (2)(3)【解析】(1)中直接带入角求值即可.(2)要求最值及周期,得将函数解析式转化为或.所以化简三角函数.需要用到辅助角公式化简,而后直接判断最小值,利用周期公式求周期.(3)根据(2)中的化简后的函数式,利用三角函数单调性解决.(1) .(2)因为所以所以所以的最小正周期为(3)令所以所以的单调递增区间为【考点】三角函数求特殊值,三角函数化简求最值和周期,三角函数求单调区间.2.已知等差数列满足.(1)求的通项公式;(2)求的前项和;(3)若成等比数列,求的值.【答案】(1)(2) (3)【解析】(1)法一:根据数列是等差数列,采用特殊值带入,求出首项和公差,得通项公式;法二:根据等差数列的通项公式展开的左侧,则其左侧含有,根据等式相等关系,可得,从而得到通项公式.(2)利用等差数列前项和公式以及(1)中的结论直接求即可.(3)根据(1)中结论,以及等比中项可解该问.(1)解法一:设的公差为, 因为,所以有,两式相减得到,,即代入得到所以解法二:设的公差为,则所以所以有对成立,所以有,解得所以(2) 因为所以(3)因为成等比数列,所以即解得(舍掉) ,所以…【考点】等差数列通项公式,前项和公式,等比中项.3.已知△ABC中,,,且.(1)求∠B的值;(2)若点E,P分别在边AB,BC上,且AE=4,AP⊥CE,求AP的长;【答案】(1)(2)【解析】(1)利用正弦定理,可得,根据题意即可得到角.(2)将放入中,由于已知,所以需求出,根据,可知,将放入,利用正弦定理,知其中须知道,利用余弦定理可知.从而解决问题.(1)由正弦定理得到根据题意,有所以,即因为, 所以(2)由(1)知三角形是等腰直角三角形,且斜边为6,所以.在中,根据余弦定理得到 ,所以在中,根据正弦定理有化简得到因为,所以,所以根据三角函数诱导公式有.所以在中, [代入得到【考点】正弦定理,余弦定理.4.已知数列中,,且有.(1)写出所有可能的值;(2)是否存在一个数列满足:对于任意正整数,都有成立?若有,请写出这个数列的前6项,若没有,说明理由;(3)求的最小值.【答案】(1)(2) 存在, (或者取)(3)1【解析】(1)根据,计算的值有两个,根据的两个值,再计算即可.(2)罗列出所有的可能数列,从中观察是否有满足(即)的即可.(3)根据特点可知,且所有的奇数项都为奇数,偶数项为偶数, 因此中一定有5个奇数,5个偶数,所以一定是奇数,所以.(1) 根据题意,且有 ,所以可得,带入,可得所以可能取的值(2) 存在这个数列的前6项可以为(或者取)(3)的最小值为1因为,所以,且所有的奇数项都为奇数,偶数项为偶数因此中一定有5个奇数,5个偶数,所以一定是奇数,所以令这10项分别为(或者为,或者为)则有.【考点】数列的综合应用.。

北京市海淀区2019-2020学年高一上学期期中考试数学试题Word版含答案

北京市海淀区2019-2020学年高一上学期期中考试数学试题Word版含答案

北京市海淀区2019-2020学年上学期期中考试高一数学试题一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知3a =,{}2A x x =≥,则( ) A .A a ∉B .A a ∈C .{}A a =D .{}a a ∉2. 已知定义在R 上的函数()f x 的图象是连续不断的,且有如下对应值表: 那么函数()f x 一定存在零点的区间是( )A. (-∞,1)B. (1,2)C. (2,3)D. (3,+∞)3. 在给定映射()()y x xy y x f +→,,:下,()2,4-的象是( ) A .()1,2-B .()1,2--C .()2,8--D .()2,8-4. 函数322-+=x x y 在区间[-3,0]上的值域为……………( ) A.[ -4,-3] B.[ -4,0] C.[-3,0] D.[0,4]5.设4log , 2 ,3.03.03.02===c b a ,则 ( ) A .c a b <<B .a b c <<C .a c b <<D .b a c <<6.函数()1xf x =-e 的图象大致是A .B .C .D .7.如果函数2(1)2y x a x =+-+在区间(-∞,4]上是减函数,那么实数a 的取值范围是( ) A . a ≥5 B .a ≤-3 C .a ≥9 D .a ≤-78. 已知753()2f x ax bx cx =-++,且(5),f m -= 则(5)(5)f f +-的值为 ( )A .4B .0C .2mD .4m -+9. )(x f 的定义域是(,0)(0,)-∞+∞,且为奇函数, ),0(+∞为其减区间,若(2)0f -=,则当()0x f x ⋅->时, x 取值范围是 ( )A . (,2)-∞-B .(,2)(0,2)-∞- C .(2,0)(2,)-+∞ D .(,2)(2,)-∞-+∞10.设集合M 是R 的子集,如果点0x ∈R 满足:00,,0a x M x x a >∈<-<任意都存在,称0x 为集合M 的聚点.则下列集合中以1为聚点的有:①{|}1n n n ∈+N ; ②*2{|}n n∈N ; ③Z ; ④{|2}x y y = ( )A .①④B .②③C .①②D .①②④二、填空题:本大题共6小题,每小题4分,共24分.11.若点在幂函数)(x f y =的图象上,则()f x = .12.计算:641log ln 3842log 323+⨯e =13.函数()()3log 1f x x =+的定义域为 . 14. 已知)(x f 是奇函数,且当0>x 时,12)(2-=x x f ,那么0()=x f x <时,_________.15.已知函数22, 0,()3, 0x a x f x x ax a x ⎧-≤⎪=⎨-+>⎪⎩有三个不同的零点,则实数a 的取值范围是_____.16. 若函数()x f 同时满足:①对于定义域上的任意x ,恒有()()0=-+x f x f ②对于定义域上的任意21,x x ,当21x x ≠时,恒有()()02121<--x x x f x f ,则称函数()x f 为“理想函数”。

北京市通州区2019-2020学年高一上学期期中考试数学试题Word版含答案

北京市通州区2019-2020学年高一上学期期中考试数学试题Word版含答案

北京市通州区2019-2020学年上学期期中考试高一数学试题考生须知:本试卷分Ⅰ、Ⅱ两卷,共8页满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:(本大题共8小题,每小题5分,共40分)在每个小题给出的四个备选答案中,只有一个是符合要求的,请把所选出的答案之前的标号填在括号内.1.已知集合{}1Ax x =≤,那么下列表示正确的是 ( ) (A )A φ∉(B )0A ∈(C ){}0A ∈(D )0A ⊆ 2.已知幂函数()y f x =的图象经过点12,2⎛⎫--⎪⎝⎭,那么该幂函数的解析式是 ( ) (A )12y x =(B )14y x =(C )12y x-=(D )1y x -=3.计算23338log 2log 6+-的结果是 ( ) (A )1(B )4(C )3(D )14.下列函数中,对于任意的()x x R ∈,都有()()f x f x -=,且在区间()0,1上单调递增的是( )(A )()22f x x =-+(B )()12f x x=(C )()21f x x =-(D )()3f x x =5.已知0.32a -=,0.22b -=,121log 3c =,那么a ,b ,c 的大小关系是 ( ) (A )c b a >>(B )c a b >>(C )a b c >>(D )b a c >>6.已知函数()2f x x b =-的零点为0x ,且()01,1x ∈-,那么b 的取值范围是 ( ) (A )()2,2-(B )()1,1-(C )11,22⎛⎫-⎪⎝⎭(D )()1,0- 7.一种放射性元素,每年的衰减率是8﹪,那么a 千克的这种物质的半衰期(剩余量为原来的一半所需的时间)t 等于 ( )(A )0.5lg0.92(B )0.92lg 0.5(C )lg 0.5lg 0.92(D )lg 0.92lg 0.58.已知函数()f x 是定义在(),0(0,)-∞+∞上的奇函数,且当0x >时,2()log f x x =, 2()3g x x =-,那么函数()()y f x g x =⋅的大致图象为 ( )第Ⅱ卷(非选择题 共110分)二、填空题:(本大题共6小题,每小题5分,共30分)把正确答案填在题中横线上.9.已知函数()f x =21,0,,0,x x x x +≥⎧⎨<⎩ 那么()2f f -=⎡⎤⎣⎦_______________. 10.已知全集{}0,1,2,3,4U =,集合{}220A x x x =-=,{}3,B x x x N=<∈,那么()U AB =ð__________________.11.函数()f x =的定义域是________________. 12.已知函数()2x f x x+=,若()2f a a -=,则a =_________________. 13.已知关于x 方程()2log 110x k -+-=在区间[]2,5上有实数根,那么k 的取值范围是________________.14.已知函数()22,f x x mx n x R =-+∈,下列结论:①函数()f x 是偶函数;②若()()02f f =时,则函数()f x 的图象必关于直线1x =对称; ③若20m n -≤,则函数()f x 在区间(],m -∞上是减函数;④函数()f x 有最小值2n m -. 其中正确的序号是__________ .三、解答题:(本大题共6小题,共80分)解答应写出文字说明,证明过程或演算步骤. 15.(本题13分)已知全集U R =,集合{}22A x x =-<≤,{}1B x x =>,{}C x x c =≤.(Ⅰ)求A B ;(Ⅱ)求()UA B ð;(Ⅲ)若A C φ≠,求c 的取值范围.16.(本题13分)已知函数()22 2.f x x x =--(Ⅰ)用定义法证明:函数()f x 在区间(],1-∞上是减函数; (Ⅱ)若函数()()g x f x mx =-是偶函数,求m 的值.17.(本题13分)已知函数()1.4x xf x -=+(Ⅰ)用分段函数的形式表示函数()f x ; (Ⅱ)在坐标系中画出函数()f x 的图象; (Ⅲ)在同一坐标系中,再画出函数()()10g x x x=>的图象(不用列表),观察图象直接写出当0x >时,不等式()1f x x>的解集.18.(本题13分)某公司生产一种电子仪器的固定成本为2万元,每生产一台仪器需增加投入100元,已知总收益满足函数:()P x =21400,0400,280000,400,x x x x ⎧-+≤≤⎪⎨⎪>⎩ 其中x 是仪器的月产量(单位:台).(总收益=总成本+利润)(Ⅰ)将利润表示为月产量的函数()f x ;(Ⅱ)当月产量为何值时,公司所获利润最大?最大利润为多少元?19.(本题14分)已知函数()241f x ax x =--.(Ⅰ)若2a =时,求当[]0,3x ∈时,函数()f x 的值域;(Ⅱ)若2a =,当()0,1x ∈时,()()1210f m f m ---<恒成立,求m 的取值范围; (Ⅲ)若a 为非负数,且函数()f x 是区间[]0,3上的单调函数,求a 的取值范围.20.(本题14分)若函数()x f 满足下列条件:在定义域内存在0x ,使得()()()1100f x f x f +=+成立,则称函数()x f 具有性质M ;反之,若0x 不存在,则称函数()x f 不具有性质M .(Ⅰ)证明:函数()xx f 2=具有性质M ,并求出对应的0x 的值;(Ⅱ)已知函数()1lg 2+=x ax h 具有性质M ,求a 的取值范围; (Ⅲ)试探究形如①(0)ky k x=≠;②()1x y a a =>的函数,指出哪个函数一定具有性质M ?并加以证明.北京市通州区2019-2020学年上学期期中考试高一数学试题参考答案二.填空题:9. 5 10. {}1,3,4 11. {}02x x <≤(必须写成集合或区间形式) 12. 0或3(只写一个正确答案给3分) 13. []1,1- 14.③(其它答案都不给分)三.解答题:15.(本小题满分13分)解:(Ⅰ)因为集合{}22A x x =-<< ,{}1B x x =>, 所以{}2.AB x x =>- (直接写结果扣1分) …………………… 4分(Ⅱ)因为集合{}1B x x =>,所以{}1U B x x =≤ð. 所以(){}21.UAB x x =-<≤ð …………………… 9分(Ⅲ)因为集合A C φ≠,所以2c ≥-.所以c 的取值范围是2c ≥-. (只写2c >-,扣2分) …………………… 13分16.(本小题满分13分)解:(Ⅰ)设(]12,,1x x ∈-∞,且121x x <<, …………………… 2分 所以()()()()221211222222f x f x x x x x -=-----()()12122.x x x x =-+- …………………… 4分 因为121x x <<, 所以120x x -<,1220.x x +-<所以()()120.f x f x -> …………………… 6分 所以()()12.f x f x >所以函数()f x 在区间(],1-∞上是减函数. …………………… 7分 (Ⅱ)因为函数()()g x f x mx =-,所以()()22222 2.g x x x mx x m x =---=-+-又因为()g x 是偶函数,所以()().g x g x -= …………………… 8分 所以()()()()22222 2.x m x x m x --+--=-+- …………………… 10分所以()220.m x += …………………… 11分 因为x 是任意实数, 所以20.m += …………………… 12分 所以 2.m =- …………………… 13分(直接写 2.m =-,只给1分. 其它解法酌情给分. )17.(本小题满分13分)解:(Ⅰ)因为当0x ≥时,()1f x =; …………………… 2分 当0x <时,()11.2f x x =+ …………………… 4分 所以()f x =1,0,11,0.2x x x ≥⎧⎪⎨+<⎪⎩ …………………… 6分(Ⅱ)略. (每段2分) …………………… 10分(Ⅲ){}1.x x > …………………… 13分18.(本小题满分13分)解:(Ⅰ)因为固定成本为2万元,每生产一台仪器需增加投入100元,所以总成本为()10020000x +元. …………………… 2分 当0400x ≤≤时,利润为21300200002x x -+-⎛⎫⎪⎝⎭元; 当400x >时,利润为()10060000x -+元.所以2130020000,0400,()210060000,400.x x x f x x x -+-≤≤=-+>⎧⎪⎨⎪⎩ …………………… 7分(Ⅱ)由(Ⅰ)得,当0400x ≤≤时,21()(300)250002f x x =--+.所以当300x =时,()f x 有最大值是25000. …………………… 9分当400x >时,()10060000f x x =-+是减函数, 又()6000010040025000.f x <-⨯<所以当300x =时,()f x 有最大值是25000. …………………… 12分 所以每月生产300台仪器时,利润最大,最大利润为25000元.…………………… 13分19.(本小题满分14分)解:(Ⅰ)当2a =时,()()2224121 3.f x x x x =--=--所以()f x 在[]0,1上单调递减;在(]1,3上单调递增. …………………… 2分 所以()f x 的最小值是()1 3.f =- …………………… 3分 又因为()01f =-,()35f =,所以()f x 的值域是[]3,5.- …………………… 4分 (Ⅱ)因为2a =,所以由(Ⅰ)可知:()f x 在[]0,1上单调递减. 因为当()0,1x ∈时,()()1210f m f m ---<恒成立,可得121,011,0211,m m m m ->-⎧⎪<-<⎨⎪<-<⎩…………………… 7分 解得12.23m << 所以m 的取值范围是12.23m << …………………… 8分(Ⅲ)因为()241f x ax x =--,①当0a =时,()4 1.f x x =--所以()f x 在[]0,3上单调递减. …………………… 10分②当0a >时,()224 1.f x a x a a ⎛⎫=--- ⎪⎝⎭因为()f x 在[]0,3上的单调函数,可得220,3,0,aa a ⎧≤≥⎪⎨⎪>⎩或 解得20.3a <≤ …………………… 13分 由①、②可知,a 的取值范围是20,.3⎡⎤⎢⎥⎣⎦…………………… 14分20.(本小题满分14分)解:(Ⅰ) 证明:由()()()1100f x f x f +=+,得001122 2.x x +=+ 所以022x =, 解得0 1.x = …………………… 2分所以在定义域内存在01x =,使得()()()1100f x f x f +=+成立,…………………… 3分 所以函数xx f 2)(=具有性质M ,且0x 的值是1. …………………… 4分(Ⅱ)因为函数()1lg2+=x ax h ,可得定义域为R ,且0a >,[ ……………… 5分 因为()h x 具有性质M ,所以存在0x ,使得)1()()1(00h x h x h +=+, 所以()11lg 1lg 11lg2020+++=++ax a x a . 所以=+)1(220x a x a ++20)1(. …………………… 6分 所以0222)2(020=-++-a ax x a 有实根.①若2=a ,得210-=x ,满足题意; …………………… 7分 ②若2≠a ,则要使0222)2(020=-++-a ax x a 有实根,只需满足0≥∆,即2640a a -+≤,解得[3a ∈.所以[32)(2,35]a ∈-+.由①、②可得]53,53[+-∈a . …………………… 9分 (Ⅲ)因为函数()y f x =具有性质M ,即关于x 的方程(1)()(1)f x f x f +=+恒有解. ①若()(0)kf x k x=≠,由()()()0011f x f x f +=+可化为20010x x ++=,因为20010x x ++=无解,所以()(0)kf x k x=≠不具备性质M . …………………… 11分 ②若()xf x a =()1a >,由()()()0011f x f x f +=+得 01.x xa a a +=+所以()01.x a aa -= 所以0log .1aa x a =- 因为1a >,所以log 1a aa -有意义. 所以0log .1a a x a =- 所以()(0)kf x k x=≠具备性质M . …………………… 14分。

北京高一第一学期期中考试数学试卷含答案

2019—2020年度第一学期期中考试高一数学试题第Ⅰ卷一.选择题1.设集合{}0,1,2,3M =,{}02N x N x =∈≤≤,则M N ⋂中元素的个数为( )A. 0B. 2C. 3D. 4 2.命题“2,220x x x ∃∈++≤R ”的否定是( )A. 2,220x x x ∀∈++>RB. 2,220x R x x ∀∈++≤C. 2,220x x x ∃∈++>RD. 2,220x x x ∃∈++≥R 3.下列四组函数,表示同一函数的是( )A. ()f x =()g x x =B. ()f x x =,()21x x g x x -=-C. ()f x x =,(),0,0x x g x x x ≥⎧=⎨-<⎩D. ()f x =()g x =4.条件p :a b =是条件q :a b c c>的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 5.已知集合30x A xx ⎧⎫-=≤⎨⎬⎩⎭,{}B x x a =<,若A B B ⋃=,则实数a 的取值范围是( ) A. [)3,+∞ B. ()3,+∞ C. (],0-∞ D. ,0 6.已知偶函数()f x 的定义域为R ,当[)0,+x ∈∞时,()f x 是增函数,()2f -,()f π,()3f -的大小关系是( )A. ()()()23ff f π>->- B. ()()()32f f f π>->- C. ()()()23f f f π>->- D. ()()()32f f f π>->-7.函数()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩的零点个数是( )A. 0B. 1C. 2D. 38.已知函数()2,00x x f x x ⎧≥⎪=<,若()4f a =,则a 等于( ) A. 2 B. 2- C. 2± D. 2或16- 9.我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税,已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率%x ),则每年销售量将减少10x 万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x 的最小值为( )A. 2B. 6C. 8D. 10 10.定义{},min ,,a a b a b b a b≤⎧=⎨>⎩,已知,αβ为函数()2f x x px q =++的两个零点,若存在整数n 满足1n n αβ<<<+,则()(){}min ,1f n f n +的值( )A. 一定大于12B. 一定小于12C. 一定等于14D. 一定小于14第Ⅱ卷二、填空题11.函数()f x =的定义域是______.12.已知函数()2,01,0x x f x x x ⎧≤=⎨-+>⎩;则()3f f -⎡⎤⎣⎦等于______.13.已知()1,x ∈+∞,则函数91y x x =+-的最小值等于______. 14.已知函数()221f x x x =-++, ①函数的值域是______.②若函数在[]3,a -上不是单调函数,则实数a 的取值范围是______.15.已知实数,a b 满足2850a a -+=,2850b b -+=,则22a b +=______.16.若方程2210ax x --=在()0,1内恰有一个根,则实数a 的取值范围是______.17.函数y = f(x)是定义域为R 的偶函数,当x≥0时,函数f(x)的图象是由一段抛物线和一条射线组成(如图所示).①当[]1,1x ∈-时,y 的取值范围是______;②如果对任意[],x a b ∈ (b <0),都有[]2,1y ∈-,那么b 的最大值是______.18.能够说明“若()0f x <对任意的(]0,2x ∈都成立,则函数()f x 在(]0,2是减函数”为假命题的一个函数是______.(答案不唯一)19.对于函数()1f x x=(0x >)的定义域中任意1x ,2x (12x x ≠)有如下结论: ①()()()1212f x x f x f x +=+;②()()12120f x f x x x ->-;③()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭上述结论中正确结论的序号是______.20.已知函数()212f x x x=+,a ,b 均为正数且2a b +=,则()()f a f b +的最小值等于______. 三、解答题21.已知函数()43f x x x =-+的定义城为A ,集合{}11B x a x a =-<<+ (1)求集合A ;(2)若全集{}5U x x =≤,2a =,求u A B ;(3)若x B ∈是x A ∈的充分条件,求a 的取值范围.22.已知函数()4f x x x=- (1)判断函数的奇偶性,并说明理由:(2)证明:函数()f x 在0,上单调递增; (3)求函数()4f x x x=-,[]4,1x ∈--的值域.23.已知函数()()22f x x a x b =+++,其中a ,b R ∈. (1)当1a =,4b =-时,求函数()f x 的零点;(2)当2b a =时,解关于x 的不等式()0f x ≤;(3)如果函数()f x 的图象恒在直线22y x =+的上方,证明:2b >.参考答案1【答案】C【详解】解:因为集合()0,1,2,3M =,{}02N x N x =∈≤≤, 所以{}{}00,1,22N x N x =∈≤≤=,所以{}0,1,2M N ⋂=,则M N ⋂中元素的个数为3个.故选:C2【答案】A【详解】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确. 故选A.3【答案】C【详解】解: 选项A.:()f x =R ,()g x x =的定义域为R()f x x ==,对应法则不同,不是同一函数.选项B.:()f x x =定义域为R ,()21x x g x x -=-定义域为{}|1x x ≠, 定义域不同,不是同一函数.选项C:()f x x = 定义域为R ,(),0,0x x g x x x ≥⎧=⎨-<⎩定义域为R . (),0,0f x x x x x x ≥⎧=⎨-<=⎩,定义域相同,对应法则也相同,是同一函数.选项D:()f x ={}|1x x ≥,()g x =定义域为|11x x ,定义域不同,不是同一函数.故选:C4【答案】D 详解】解:证充分性:若:p a b =,则a b c c=,则 p q ≠>,则充分性不成立.证必要性: 若q : a b c c>,则a b >,则q p ≠>,则必要性不成立. 故条件:p a b =是条件q :a b c c>的既不充分也不必要条件. 故选:D5【答案】B【详解】解: {}3003x A x x x x ⎧⎫-=≤=<≤⎨⎬⎩⎭, 又因为: {}B x x a =<,若A B B ⋃=,所以A B ⊂,则|3a a所以实数a 的取值范围是: ()3,+∞.故选:B6【答案】B【详解】由题意,函数()f x 为定义域上的偶函数,可得()()2(2),3(3)f f f f -=-=, 又由当[)0,+x ∈∞时,()f x 是增函数,且32π>>,所以()()()32f f f π>>,即()()()32f f f π>->-.故选:B .7【答案】B【详解】解: ()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩,当1x ≥ 时, ()10f x x ==无解,则不存在零点. 当1x < 时,()220f x x =-+=,解得x =1x =>(舍去),则零点为x =综上所述: ()f x 的零点个数是1.故选:B8【答案】D【详解】解:因为函数()2,0,x xf xx x⎧≥⎪=⎨-<⎪⎩,()4f a=当0a≥时, ()24f a a==,解得2a=.当0a<时, ()4f a a=-=,解得16a=-故a等于2或16-.故选:D9【答案】A【详解】2(10010)70%1121016028x x x x x-⨯⨯≥⇒-+≤∴≤≤,x的最小值为2,选A. 10【答案】D【详解】由题可得:()()10f nf n⎧>⎪⎨+>⎪⎩.又,αβ为函数()2f x x px q=++的两个零点,所以pαβ+=-,qαβ⋅=.将函数()2f x x px q=++图像往上平移时,开口大小保持不变,如图当函数()2f x x px q=++图像往上平移时,()(){}min,1f n f n+变大,即:当αβ→时,()(){}min,1f n f n+越大,又由二次函数的对称性得:当2121,22n nαβ++→→时,()(){}min,1f n f n+最大令212nαβ+==,则:122nαβ+=-,()(){}min,1f n f n+就是()f n.又()2f n n pn q=++=2112222p q αβαβ++⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭ ()2112222αβαβαβαβ++⎛⎫⎛⎫=--+-+⋅ ⎪ ⎪⎝⎭⎝⎭ =()2144αβ--由已知得αβ<,所以()f n 一定小于14, 所以()(){}min ,1f n f n +一定小于14. 故选D 【点睛】本题主要考查了韦达定理及方程与函数关系,考查了计算能力及转化能力,属于中档题. 11【答案】[]2,2-【详解】解: ()f x =:20x -≥,解得22x -≤≤ ,故函数的定义域为:[]2,2-.故答案: []2,2-12【答案】8-【解析】【详解】解: 因为函数()2,01,0x x f x x x ⎧≤=⎨-+>⎩, 则()()()2339918f f f f ⎡⎤-=-==-+=-⎡⎤⎣⎦⎣⎦. 故答案为:8-.【点睛】本题考查分段函数求值,看清楚自变量所在的区间是解题的关键.13【答案】7【详解】解: 已知()1,x ∈+∞,则10x ->, 所以()991111y x x x x =+=-++--17≥=, 当且仅当911x x -=-,即4x =时,等号成立. 所以函数91y x x =+-的最小值为7. 故答案为: 714【答案】 (1). (],2-∞ (2). 1,【详解】解: ①()221f x x x =-++,定义域为R ,开口向下,()221f x x x =-++()2212x x =--++()2122x =--+≤,所以函数的值域是(],2-∞.②因为()()212f x x =--+,对称轴为1x =,若函数在[]3,a -上不是单调函数,则1a >,故实数a 的取值范围是1,.故答案为: ①(],2-∞;②1,15【答案】54或54±【详解】解:因为2850a a -+=,2850b b -+=, ①当a b 时,可设,a b 是方程2850x x -+=的两根, 85a b a b , ()2222282554a b a b ab ∴+=+-=-⨯=②当a b =时,解2850a a -+=得411a ,所以当4a b ==, 2254a b +=+当4a b ==, 2254a b +=-综上所述: 22a b +的值为54或54±.故答案为: 54或54±16【答案】1,【详解】解:令()221f x ax x =--.当0a =时,()1f x x =--,0f x 的根为1x =-,显不在区间0,1内,所以0a =时不成立.当0a ≠时,若一元二次方程0f x在0,1内恰有一个根, 则有以下两种情况:①0f x有两个相等的实数根, 则180a ,18a =, 此时0f x的解为2x =-,不在区间0,1内, 所以18a =时不成立; ②0f x 有两个不相等的实数根,且有一个根在0,1内,则()()010f f ⋅<,则()()22200121110a a ⨯--⋅⨯--<,解得1a >.综上可知,实数a 的取值范围是:1,.故答案为: 1,17【答案】 (1). []1,2 (2). 2-【详解】由图象可知,当0x =时,函数在[]1,1-上的最小值min 1y =, 当1x =±时,函数在[]1,1-上的最小值max 2y =, 所以当[]1,1x ∈-,函数()y f x =值域为[]1,2;当[]0,3x ∈时,函数()()212f x x =--+,当[)3,x ∈+∞时,函数()5f x x =-, 当()1f x =时,2x =或7x =,又因为函数为偶函数,图象关于y 轴对称,所以对于任意[],(0)x a b b ∈<,要使得[]2,1y ∈-,则a R ∈,7b =-或2b =-, 则实数b 的最大值是2b =-. 故答案为[]1,22-;18【答案】()sin f x x =-(答案不唯一)【详解】解:令()sin f x x =-,则对任意的(]0,2x ∈,()0f x <都成立. ()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递减,在,22π⎛⎤ ⎥⎝⎦单调递增. 故函数()f x 在(]0,2是减函数不成立.故()sin f x x =-是符合题意的一个函数.故答案为: ()sin f x x =-(答案不唯一)19【答案】③【详解】解: 对于①,12121f x x x x ,121211f x f x x x , 显然()()()1212f x x f x f x +≠+,故①不正确;对于②,取121,2x x ==,则1211,2f x f x , 可得()()121211120122f x f x x x --==-<--,故②不正确; 对于③121222x x f x x +⎛⎫=⎪+⎝⎭,()()12121212111222f x f x x x x x x x +⎛⎫+=+= ⎪⎝⎭, 2121212121222f x f x x x x x f x x x x ,120,0x x 且12x x ≠,21212120x x x x x x , 1212022f x f x x x f , 121222f x f x x x f ,故③正确.故答案为: ③20【答案】3【详解】解:因为a ,b 均为正数且2a b +=,所以20b a ,则02a <<,()()221122a b a f a f b b ++=++ ()212422a b a b ab ab ab ab+=+-+=-+ 因为a ,b 均为正数且2a b +=,所以a b +≥,则2220122a b ab +⎛⎫⎛⎫<≤== ⎪ ⎪⎝⎭⎝⎭令t ab =,则01t <≤, ()142f t t t=-+在01t <≤单调递减, 所以()min 142131f t =-⨯+= 所以()()3f a f b +≥. 故()()f a f b +的最小值等于3.故答案为:321【答案】(1)|34x x A ;(2){}|3134U A B x x x =-<≤-≤≤或;(3)|3a a .【详解】解: (1)要使函数()f x =有意义, 则4030x x -≥⎧⎨+>⎩,即34x 所以函数的定义域为|34x x.所以集合|34x x A(2)因为全集{}5U x x =≤,2a =, , {}{}1113B x a x a x x ∴=-<<+=-<<{}|135U B x x x ∴=≤-≤≤或,{}|3134U A B x x x =-<≤-≤≤或;(3)由(1)得|34x x A, 若x B ∈是x A ∈的充分条件,即B A ⊆,①当B =∅时, B A ⊆,即11,a a -≥+0a ∴≤②当B ≠∅时, B A ⊆,11013403143a a a a a a a a -<+>⎧⎧⎪⎪-≥-⇒≤⇒<≤⎨⎨⎪⎪+≤≤⎩⎩,综上所述: a 的取值范围为{}|3a a ≤ 22【答案】(1)证明见解析;(2)证明见解析;(3)[]3,3--.【详解】解: (1)证明:定义域为(,0)(0,)-∞+∞; 444()()f x x x x f x x x x ,f x 为奇函数.(2)证明:对任意的()12,0,x x ∈+∞,且12x x <,()()12112244x x f x f x x x ⎛⎫=--- ⎝-⎪⎭()121244x x x x ⎛⎫=--- ⎪⎝⎭()()1212124x x x x x x -=-+()121241x x x x ⎛⎫=-+ ⎪⎝⎭120x x <<,12120,0x x x x ,()()120f x f x ∴-<()()12f x f x ∴<f x 在0,上单调递增. (3)f x 为奇函数且在0,上是增函数, 则()f x 在,0上是增函数,f x 在[]4,1--上是增函数,()()()41f f x f -≤≤-,即()33f x -≤≤,所以函数()4f x x x=-,[]4,1x ∈--的值域为[]3,3-- 23【答案】(1) 4-或1;(2)当2a =时,解集为|2x x ,当2a >时解集为,2a ,当2a <时,解集为2,a ;(3)证明见解析.【详解】解: (1)因为函数()()22f x x a x b =+++, 当1a =,4b =-时, ()()2221434f x x x x x =++-=+- 0f x ,则2340x x +-=,解得4x =-或1x =. 所以函数的零点为4-或1;(2)当2b a =时,()()222f x x a x a =+++, 令0f x 解得x a =-或2x =-,①当2a =时, ()0f x ≤的解集为|2x x②当2a >时, ()0f x ≤的解集为,2a , ③当2a <时, ()0f x ≤的解集为2,a .(3)如果函数()f x 的图象恒在直线22y x =+的上方, 则()22f x x >+对任意的x ∈R 恒成立,即220x ax b ++->对任意的x ∈R 恒成立24(2)0a b ∴=--<,即224a b -> 又因为204a ≥,所以20b ->,2b >. 所以函数()f x 的图象恒在直线22y x =+的上方, 2b >成立.。

2022-2023学年北京市第八十中学高一上学期期中考试数学试卷(带讲解)

【详解】 ,即 ,所以 ,
, , ,即 ,
所以 ,即 ,解得:
又由 ,所以 .
故选:A.
12.已知集合 ,集合A1,A2,A3满足:①每个集合都恰有5个元素;② .集合Ai中元素的最大值与最小值之和称为集合Ai的特征数,记为 ,则 的最大值与最小值的和为()
A.56B.72C.87D.96
【答案】D
【答案】 , ## ,
【分析】利用特称命题的否定可得出结论.
【详解】命题 为特称命题,该命题的否定为“ , ”.
故答案为: , .
14.设集合 ,若 ,则 的值为__________.
【答案】
【分析】由集合元素的特性确定a的取值范围,再利用包含关系列式计算作答.
【详解】由集合M知, ,则 且 ,因 , ,
均有 ,
所以 ,
所以 ,
与 矛盾,
所以,对任意的 有 .
(3)不成立.
例如,
证明:当x为有理数时, , 均为有理数,

当x为无理数时, , 均为无理数,
所以,函数 对任意的 ,
均有 ,
即函数 具有性质 .
而当 且当x为无理数时, .
所以,在(2)的条件下,
“对任意 均有 ”不成立.
如 , ,
等.
【点睛】本题考查了函数的新定义及其应用,涉及命题时,举出反例是最有效,快捷,准确的方法.
∴当 , ,图象在 轴下方,当 , ,图象在 轴上方,
对于 ,当 时, ,当 时,图象在 图象的上方,不合题意,舍去;
当 时, ,开口向上,当 时,图象在 图象的上方,不合题意,舍去;
当 时, ,开口向下,函数 的图象恒在 图象的上方,即 恒成立,
即: 恒成立,即: 恒成立, ,

北京市高一上学期期中考试数学试卷含答案

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

北京市高一数学上学期期中试卷含答案

北京师大附中高一年级上学期期中考试数学试卷本试卷共150分,考试时间120分钟。

一、选择题:共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合}2,1,0{=A ,}3,2{=B ,则集合=B AA. }3,2,1{B. }3,2,1,0{C. }2{D. }3,1,0{2. 下列函数中,在其定义域内是减函数的是A. 3x y =B. 2x y =C. 1+-=x yD. xy 2= 3. 若0<a ,10<<b ,则有A. 2ab ab a >>B. a ab ab >>2C. 2ab a ab >>D. a ab ab >>2 4. “a=0”是“21)(x ax x f -=为奇函数”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件 5. 下列不等式中,不正确的是A. 21≥+x x B. 012>++x x C. 254522≥++x x D. 若3>x ,则531≥-+x x 6. 函数q px x x f ++=2)(满足对任意的x ,均有)1()1(x f x f -=+,那么)0(f ,)1(-f ,)1(f 的大小关系是A. )0()1()1(f f f <-<B. )1()1()0(f f f <-<C. )1()0()1(-<<f f fD. )1()0()1(f f f <<-7. 若函数22)(23--+=x x x x f 的一个正零点附近的函数值用二分法逐次计算,参考数据如下表:那么方程02223=--+x x x 的一个近似根(精确到0.1)为 A. 1.2 B. 1.3 C. 1.4 D. 1.58. 已知)(x f 为定义在[-1,1]上的奇函数,且)(x f 在[0,1]上单调递减,则使不等式0)31()(<-+x f x f 成立的x 的取值范围是A. )21,(-∞ B. )21,0[ C. )21,31[ D. ),21(+∞ 二、填空题:共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
北京四中第一学期期中考试
高一数学
一、选择题(本答题共10小题,每小题5分,共50分)
1.函数1yx的定义域为( )

A.
1xx B.1xxC.1xxD.1xx

2.设集合
2
2
10,log0AxxBxx
,则AB( )

A.
1xxB.0xx C. 1xxD.11xxx或

3.
3
2
log43
3
327lg0.01ln(e

)

A.14 B.0 C.1 D.6
4.如果函数
2
212fxxax在区间,4
上是减少的,那么实数a的取值范围是()

A.3aB.3aC.5aD.
5a

5.已知函数2log030xxxfxx,那么14ff的值为()

A. 19B.9C.1-9D.
-9
6.若
2
0.3

3
,0.3,log0.2,,,abcabc则的大小关系是
()

A.abcB.bacC.cbaD.
cab
7. 函数
log101
a
fxxaa且

的反函数图像必经过点()

A.0,2B.2,0C.0,3D.
3,0

8.函数
1
0,1xyaaa

a
的图像可能是()
2

9.函数
2
log2fxxx

的零点个数为()

A.0 B.1 C.2 D. 3

10.函数23413xxy的单调递增区间是()
A.1,2B. 1,3C.,2 D.
2,
二、填空题(本大题共6小题,每小题4分,共24分).
11.已知集合0,,1,2,1,MxNMNMN若则__________.
12. 函数31fxx,若23fgxx,则gx_____________;

13. 不等式226526155xxxx的解集是_____________;
14. 函数
1301x
fxaaa且
的图像恒过定点P,则P点坐标是___________;

15. 如果函数34431xxaafx为奇函数,则a的值为___________;

16. 若定义运算aababbab,例如121,则
12
x
的取值范围是_____________.

三、解答题(本大题共3小题,共26分)
17.(本小题满分8分)

已知函数
2
121xfx

(Ⅰ)求fx的定义域;
(Ⅱ)判断fx的奇偶性,并证明;
(Ⅲ)求fx的值域
3

18. (本小题满分8分)
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线
MN过C点,已知32ABAD米,米,要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?

19. (本小题满分10分)
lg10xxfxabab

(Ⅰ)求fx的定义域;
(Ⅱ)判断fx在其定义域内的单调性;
(Ⅲ)若fx在1,内恒为正,试比较ab与1的大小.
4

卷( II )
四、选填题(本大题共6小题,每小题5分,共30分).
20. 若
3

34,log2a则

的值等于()

A.2aB.aC. 2a D.
4

a

21. 若函数
2
4fxxxa
有4个零点,则实数a的取值范围是()

A.4,0B.0,4 C.0,4D.
4,0
22. 定义域为R的奇函数fx是减函数,当
2
0fafa
成立时,实数a的取值范围是()

A.1a或0a B.10a C. 0a或1a D. 1a或
1a

23. 若不等式23xxa的解集是空集,则实数a的取值范围是___________

24. 已知函数11142xxfx的定义域是-32,,则该函数的值域为_____________
25. 函数fx是定义域R上的奇函数,且11f,若
2
13,faa
则该函数的值域为__________。

五、解答题:(本大题共2小题,26题8分,27题12分,共20分)
26.解关于x的不等式442log1log21xax(a为常数且2a)的解集。
5

27. 已知函数1fxmxx的图象与函数1124hxxx的图象关于点0,1A对称.
(Ⅰ)求m的值;
(Ⅱ)若
4agxfxx
在区间0,2上为减函数,求实数a的取值范围.
6
参考答案:
第一卷(100分)
一、选择题(满分40分)
题号1 2 3 4 5 6 7 8 9 10
答案D A B A A C A D B D

二、填空题(满分24分)
题号11 12 13 14 15 16

答案
(注:两空的填空,第一空3分,第二空2分)

三、解答题(满分26分)
17.(本小题满分8分)

(Ⅰ)定义域为
(Ⅱ)奇函数

证明:
(Ⅲ)值域为

18.(本小题满分8分)
解: 设米,,则
7


答: ;
19.(本小题满分10分)

解: (Ⅰ)要使函数有意义,则,,
,,的定义域为.
(Ⅱ)设,,
,,则,

,.
函数在定义域上是增函数,
,即,
在是增函数.
(Ⅲ)由(2)知,函数在是增函数,
在是增函数,即有,
要使恒成立,必须函数的最小值,
即,则.
8

第二卷(50分)
四、选填题(满分30分)
题号20 21 22 23 24 25

答案C D B

五、解答题(满分20分)
26. (本小题满分8分)
解:

原不等式等价于
∵a>0,

∴,则

从而不等式组等价于:
∴不等式的解集为。

27. (本小题满分12分)
解: (Ⅰ)由得,关于的对称点在函数的图象
上,故,计算得出,;
(Ⅱ),
故,
9

,
计算得出.

相关文档
最新文档