2017年新疆自治区区内初中班招生摸底测试数学模拟试卷(三)

合集下载

2017中考数学模拟试卷

2017中考数学模拟试卷

2017中考数学模拟试卷A卷(共100分)一.选择题(本大题共10个小题,每小题3分,共30分)1.9的平方根是()A.﹣3 B. ±3 C. 3 D.2.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()3.用科学记数法表示0.0000061,结果是()A.6.1×10﹣5B.6.1×10﹣6C.0.61×10﹣5D.61×10﹣74.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是()(A)25台(B)50台(C)75台(D)100台5.如图所示,在菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A. 6cm B. 4cm C. 3cm D. 2cm6.抛物线y=x2+2x﹣3的顶点在第()象限.A.一B.二C.三D.四7.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形8.不等式组的解在数轴上表示为()A.B.C.D.9.函数y=+中自变量x的取值范围是()A.x≤2B.x≤2且x≠1C. x<2且x≠1D.x≠110.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB 交于点P,则∠ADP的度数为()A. 40°B. 35°C. 30°D. 45°二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.二次函数y=﹣(x﹣1)(x+3)的对称轴是直线.12.如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.13.对于下面四个结论:①CH⊥BE;②HO BG;③S正方形ABCD:S正方形ECGF=1:;④EM:MG=1:(1+),其中正确结论的序号为.14.如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每小题6分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+.(2)解方程:x(x﹣2)+x﹣2=016. (本小题满分6分)已知x=1是关于x的一元二次方程x2﹣4mx+m2=0的根,求代数式的值.17.(本小题满分8分)我市准备在相距2千米的M,N两工厂间修一条笔直的公路,但在M地北偏东45°方向、N地北偏西60°方向的P处,有一个半径为0.6千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:≈1.41,≈1.73)18. (本小题满分8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式;(2)求△CDE的面积.19. (本小题满分10分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~10;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.20、(本小题满分10分)已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE 在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D、C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为.22.二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2008在y轴的正半轴上,点B1,B2,B3,…,B2008在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,则△A2007B2008A2008的边长=.23.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).24.已知实数a,b满足:a2+1=,b2+1=,则2015|a﹣b|=.25.(1)填空:(a﹣b)(a3+a2b+ab2+b3)=.(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2=.二、解答题(本大题共3个小题,共30分,解答过程写在大题卡上)26、(本小题满分8分)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低且Z与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少并求出总收益w的最大值.27、(本小题满分10分)如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.28、(本小题满分12分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A 为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.。

2023年新疆维吾尔自治区区内初中班招生测试卷数学

2023年新疆维吾尔自治区区内初中班招生测试卷数学

1. 一个长方形的长是20厘米,宽是10厘米。

如果将长增加到30厘米,宽减少到5厘米,新的长方形面积是多少平方厘米?- A. 150- B. 200- C. 250- D. 3002. 解方程:2(3x - 4) = 4x + 6,x的值是多少?- A. 2- B. 3- C. 4- D. 53. 一个圆的周长是31.4厘米。

求圆的半径是多少厘米?(取π≈3.14)- A. 4- B. 5- C. 6- D. 74. 一个等腰三角形的底边长为12厘米,两腰边长为10厘米。

求这个三角形的高是多少厘米?- A. 6- B. 8- C. 9- D. 105. 已知直角三角形的两个直角边分别为6厘米和8厘米,求它的面积是多少平方厘米?- A. 24- B. 30- C. 36- D. 486. 解不等式:3x + 5 < 2(x + 7),x的范围是:- A. x < 9- B. x > 9- C. x < -9- D. x > -97. 一个长方体的长为5厘米,宽为3厘米,高为2厘米。

它的表面积是多少平方厘米?- A. 22- B. 30- C. 62- D. 708. 解方程:x²- 9 = 0,x的值可能是:- A. 3和-3- B. 9和-9- C. 6和-6- D. 2和-29. 一个正方形的对角线长度是√50厘米,求它的边长是多少厘米?- A. 5- B. 7- C. 10- D. 2510. 一个等边三角形的周长为21厘米,它的面积是多少平方厘米?(取√3≈1.732)- A. 15.6- B. 18- C. 20.7- D. 22.5。

2017年新疆中考数学试卷(含答案解析版)

2017年新疆中考数学试卷(含答案解析版)

2017年新疆中考一、选择题(本大题共9题,每题5分,共45分)1.下列四个数中,最小的数是()A.﹣1 B.0 C.D.32.某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥3.已知分式的值是零,那么x的值是()A.﹣1 B.0 C.1 D.±14.下列事件中,是必然事件的是()A.购买一张彩票,中奖B.通常温度降到0℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯5.下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5C.3a2+2a3=5a5D.2a•3a2=6a36.如图,AB∥CD,∠A=50°,∠C=30°,则∠AEC等于()A.20°B.50°C.80°D.100°7.已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是()A.﹣3 B.﹣2 C.3 D.68.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是()A.=B.=C.=D.=9.如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12 B.15 C.16 D.18二、填空题(本大题共6题,每题5分,共30分)10.分解因式:x2﹣1=.11.如图,它是反比例函数y=图象的一支,根据图象可知常数m的取值范围是.12.某餐厅供应单位为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为元.13.一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.14.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.15.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.正确的是(填写所有正确结论的序号)三、解答题(一)(本大题共4题,共30分)16.(6分)计算:()﹣1﹣|﹣|++(1﹣π)0..17.(6分)解不等式组>18.(8分)如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.19.(10分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)四、解答题(二)(本大题共4题,共45分)20.(10分)阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.请根据图表中的信息,解答下列问题:(1)表中的a=,b=,中位数落在组,将频数分布直方图补全;(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.21.(10分)某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距千米,小宇在活动中心活动时间为小时,他从活动中心返家时,步行用了小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.22.(12分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.23.(13分)如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.2017年新疆生产建设兵团中考数学试卷参考答案与试题解析一、选择题(本大题共9题,每题5分,共45分)1.(5分)(2017•新疆)下列四个数中,最小的数是()A.﹣1 B.0 C.D.3【考点】18:有理数大小比较.【分析】根据有理数的大小比较方法:负数<0<正数,找出最小的数即可.【解答】解:∵﹣1<0<<3,∴四个数中最小的数是﹣1.故选:A.【点评】本题考查了有理数大小比较的方法:正数都大于0;负数都小于0;两个负数,绝对值大的反而小.比较有理数的大小也可以利用数轴,他们从左到右的顺序,就是从大到小的顺序.2.(5分)(2017•新疆)某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥【考点】U3:由三视图判断几何体.【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解答】解:根据主视图是三角形,圆柱和球不符合要求,A、B错误;根据俯视图是圆,三棱锥不符合要求,C错误;根据几何体的三视图,圆锥符合要求.故选:D.【点评】本题考查的是由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.(5分)(2017•新疆)已知分式的值是零,那么x的值是()A.﹣1 B.0 C.1 D.±1【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】分式的值为0的条件是:(1)分子等于0;(2)分母不等于0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:若=0,则x﹣1=0且x+1≠0,故x=1,故选C.【点评】命题立意:考查分式值为零的条件.关键是要注意分母不能为零.4.(5分)(2017•新疆)下列事件中,是必然事件的是()A.购买一张彩票,中奖B.通常温度降到0℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯【考点】X1:随机事件.【分析】根据随机事件与必然事件的定义即可求出答案.【解答】解:(A)购买一张彩票中奖是随机事件;(B)根据物理学可知0℃以下,纯净的水结冰是必然事件;(C)明天是晴天是随机事件;(D)经过路口遇到红灯是随机事件;故选(B)【点评】本题考查随机事件的定义,解题的关键是正确理解随机事件与必然事件,本题属于基础题型.5.(5分)(2017•新疆)下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5C.3a2+2a3=5a5D.2a•3a2=6a3【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】根据单项式乘以单项式的法则、幂的乘方法则及合并同类项的法则进行运算即可.【解答】解:A、6a﹣5a=a,故错误;B、(a2)3=a6,故错误;C、3a2+2a3,不是同类项不能合并,故错误;D、2a•3a2=6a3,故正确;故选D.【点评】本题考查了单项式乘以单项式,幂的乘方、合并同类项的法则及负整数指数幂的运算,属于基础题.6.(5分)(2017•新疆)如图,AB∥CD,∠A=50°,∠C=30°,则∠AEC等于()A.20°B.50°C.80°D.100°【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠ADC=∠A=50°,再根据三角形外角性质,即可得到∠AEC的度数.【解答】解:∵AB∥CD,∠A=50°,∴∠ADC=∠A=50°,∵∠AEC是△CDE的外角,∠C=30°,∴∠AEC=∠C+∠D=30°+50°=80°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.(5分)(2017•新疆)已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是()A.﹣3 B.﹣2 C.3 D.6【考点】AB:根与系数的关系.【专题】11 :计算题.【分析】设方程的另一个根为t,利用根与系数的关系得到2+t=﹣1,然后解一元一次方程即可.【解答】解:设方程的另一个根为t,根据题意得2+t=﹣1,解得t=﹣3,即方程的另一个根是﹣3.故选A.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.8.(5分)(2017•新疆)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】设原计划平均每天生产x台机器,根据题意可知现在每天生产(x+40)台机器,而现在生产600台所需时间和原计划生产4800台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得,=.故选B.【点评】此题主要考查了分式方程应用,利用本题中“现在平均每天比原计划多生产40台机器”这一个隐含条件,进而得出等式方程是解题关键.9.(5分)(2017•新疆)如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12 B.15 C.16 D.18【考点】M5:圆周角定理;M2:垂径定理.【分析】先根据垂径定理求出AC的长,再设OA=r,则OC=r﹣2,在Rt△AOC中利用勾股定理求出r 的值,再求出BE的长,利用三角形的面积公式即可得出结论.【解答】解:∵⊙O的半径OD垂直于弦AB,垂足为点C,AB=8,∴AC=BC=AB=4.设OA=r,则OC=r﹣2,在Rt△AOC中,∵AC2+OC2=OA2,即42+(r﹣2)2=r2,解得r=5,∴AE=10,∴BE===6,∴△BCE的面积=BC•BE=×4×6=12.故选A.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.二、填空题(本大题共6题,每题5分,共30分)10.(5分)(2017•新疆)分解因式:x2﹣1=(x+1)(x﹣1).【考点】54:因式分解﹣运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了平方差公式分解因式的知识.题目比较简单,解题需细心.11.(5分)(2017•新疆)如图,它是反比例函数y=图象的一支,根据图象可知常数m的取值范围是m>5.【考点】G4:反比例函数的性质.【分析】根据图象可知反比例函数中m﹣5>0,从而可以求得m的取值范围,本题得以解决.【解答】解:由图象可知,反比例函数y=图象在第一象限,∴m﹣5>0,得m>5,故答案为:m>5.【点评】本题考查反比例函数的性质,解答本题的关键是明确反比例函数的性质,利用数形结合的思想解答.12.(5分)(2017•新疆)某餐厅供应单位为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为17元.【考点】VB:扇形统计图.【分析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解;【解答】解:25×20%+10×30%+18×50%=17;答:该餐厅销售抓饭的平均单价为17元.故答案为:17.【点评】本题考查扇形统计图及相关计算,扇形统计图直接反映部分占总体的百分比大小.13.(5分)(2017•新疆)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是1000元.【考点】8A:一元一次方程的应用.【分析】可以设该商品的进价是x元,根据标价×6折﹣进价=进价×20%列出方程,求解即可.【解答】解:设该商品的进价为x元,根据题意得:2000×0.6﹣x=x×20%,解得:x=1000.故该商品的进价是1000元.故答案为:1000.【点评】本题考查了一元一次方程的应用,解题的关键是要明确6折及利润率的含义.14.(5分)(2017•新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.【考点】H7:二次函数的最值;LE:正方形的性质.【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积关于t的函数关系式,配方后即可得出结论.﹣4个△AEH的面积,即可得出S四边形EFGH【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,四边形EFGH∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;18【点评】本题考查了二次函数的最值、三角形以及正方形的面积,通过分割图形求面积法找出S四边形关于t的函数关系式是解题的关键.EFGH15.(5分)(2017•新疆)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.正确的是①④(填写所有正确结论的序号)【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.【解答】解:①在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD +S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;所以正确的有:①④;故答案为:①④.【点评】本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,第1问可以利用等边对等角,由等量加等量和相等来解决.三、解答题(一)(本大题共4题,共30分)16.(6分)(2017•新疆)计算:()﹣1﹣|﹣|++(1﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.【解答】解:原式=2﹣+2+1=3+.【点评】本题综合考查了零指数幂,负整数指数幂,实数的运算,属于基础题,掌握运算法则即可解题.17.(6分)(2017•新疆)解不等式组>.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≤1,解不等式②,得:x<4,则不等式组的解集为x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(8分)(2017•新疆)如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.【考点】L6:平行四边形的判定;KD:全等三角形的判定与性质.【分析】(1)由SSS证明证明△ADC≌△CEB即可;(2)由全等三角形的性质得出得到∠ACD=∠CBE,证出CD∥BE,即可得出结论.【解答】(1)证明:∵点C是AB的中点,∴AC=BC;在△ADC与△CEB中,,∴△ADC≌△CEB(SSS),(2)证明:连接DE,如图所示:∵△ADC≌△CEB,∴∠ACD=∠CBE,∴CD∥BE,又∵CD=BE,∴四边形CBED是平行四边形.【点评】该题主要考查了平行四边形的判定、平行线的判定、全等三角形的判定与性质;熟练掌握平行四边形的判定,证明三角形全等是解决问题的关键.19.(10分)(2017•新疆)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△BCD中可求得CD的长,即求得乙的高度,过A作F⊥CD于点F,在Rt△ADF中可求得DF,则可求得CF的长,即可求得甲的高度.【解答】解:如图,过A作AF⊥CD于点F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC•tan60°=30m,∴乙建筑物的高度为30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度为(30﹣30)m.【点评】本题主要考查角直角三角形的应用,构造直角三角形,利用特殊角求得相应线段的长是解题的关键.四、解答题(二)(本大题共4题,共45分)20.(10分)(2017•新疆)阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.请根据图表中的信息,解答下列问题:(1)表中的a=12,b=0.2,中位数落在1≤t≤1.5组,将频数分布直方图补全;(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)先求得抽取的学生数,再根据频率计算频数,根据频数计算频率;(2)根据每周课余阅读时间不足0.5小时的学生的频率,估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生数即可;(3)通过画树状图,根据概率的计算公式,即可得到抽取的两名学生刚好是1名男生和1名女生的概率.【解答】解:(1)∵抽取的学生数为6÷0.15=40人,∴a=0.3×40=12人,b=8÷40=0.2,频数分布直方图如下:故答案为:12,0.2,1≤t≤1.5;(2)该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有:0.15×2000=300人;(3)树状图如图所示:总共有12种等可能的结果,其中刚好是1名男生和1名女生的结果有6种,∴抽取的两名学生刚好是1名男生和1名女生的概率==.【点评】本题主要考查了树状图法或列表法求概率,以及频数分布直方图的运用,解题时注意:当有两个元素时,可用树形图列举,也可以列表列举.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.21.(10分)(2017•新疆)某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距22千米,小宇在活动中心活动时间为2小时,他从活动中心返家时,步行用了0.4小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.【考点】FH:一次函数的应用.【分析】(1)根据点A、B坐标结合时间=路程÷速度,即可得出结论;(2)根据离家距离=22﹣速度×时间,即可得出y与x之间的函数关系式;(3)由小宇步行的时间等于爸爸开车接到小宇的时间结合往返时间相同,即可求出小宇从活动中心返家所用时间,将其与1比较后即可得出结论.【解答】解:(1)∵点A的坐标为(1,22),点B的坐标为(3,22),∴活动中心与小宇家相距22千米,小宇在活动中心活动时间为3﹣1=2小时.(22﹣20)÷5=0.4(小时).故答案为:22;2;0.4.(2)根据题意得:y=22﹣5(x﹣3)=﹣5x+37.(3)小宇从活动中心返家所用时间为:0.4+0.4=0.8(小时),∵0.8<1,∴小宇12:00前能到家.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列式计算;(2)根据离家距离=22﹣速度×时间,找出y与x之间的函数关系式;(3)由爸爸开车的速度不变,求出小宇从活动中心返家所用时间.22.(12分)(2017•新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.【考点】ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接BO,根据△OBC和△BCE都是等腰三角形,即可得到∠BEC=∠OBC=∠OCB=30°,再根据三角形内角和即可得到∠EBO=90°,进而得出BE是⊙O的切线;(2)在Rt△ABC中,根据∠ACB=30°,BC=3,即可得到半圆的面积以及Rt△ABC的面积,进而得到阴影部分的面积.【解答】解:(1)如图所示,连接BO,∵∠ACB=30°,∴∠OBC=∠OCB=30°,∵DE⊥AC,CB=BD,∴Rt△DCE中,BE=CD=BC,∴∠BEC=∠BCE=30°,∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,∴BE是⊙O的切线;(2)当BE=3时,BC=3,∵AC为⊙O的直径,∴∠ABC=90°,又∵∠ACB=30°,∴AB=tan30°×BC=,∴AC=2AB=2,AO=,∴阴影部分的面积=半圆的面积﹣Rt△ABC的面积=π×AO2﹣AB×BC=π×3﹣××3=﹣.【点评】本题主要考查了切线的判定以及扇形面积的计算,解题时注意:经过半径的外端且垂直于这条半径的直线是圆的切线.23.(13分)(2017•新疆)如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)直接利用y=0,x=0分别得出A,B,C的坐标;(2)①利用旋转的性质结合三角形各边长得出D点坐标;②利用平行四边形的判定方法结合勾股定理的逆定理得出四边形ADBC的形状;(3)直接利用相似三角形的判定与性质结合三角形各边长进而得出答案.【解答】解:(1)当y=0时,0=﹣x2+x+2,解得:x1=﹣1,x2=4,则A(﹣1,0),B(4,0),当x=0时,y=2,故C(0,2);(2)①过点D作DE⊥x轴于点E,∵将△ABC绕AB中点M旋转180°,得到△BAD,∴DE=2,AO=BE=1,OM=ME=1.5,∴D(3,﹣2);②∵将△ABC绕AB中点M旋转180°,得到△BAD,∴AC=BD,AD=BC,∴四边形ADBC是平行四边形,∵AC==,BC==2,AB=5,∴AC2+BC2=AB2,∴△ACB是直角三角形,∴∠ACB=90°,∴四边形ADBC是矩形;(3)由题意可得:BD=,AD=2,则=,当△BMP∽△ADB时,==,可得:BM=2.5,则PM=1.25,故P(1.5,1.25),当△BMP1∽△ABD时,P1(1.5,﹣1.25),当△BMP2∽△BDA时,可得:P2(1.5,5),当△BMP3∽△BDA时,可得:P3(1.5,﹣5),综上所述:点P的坐标为:(1.5,1.25),(1.5,﹣1.25),(1.5,5),(1.5,﹣5).【点评】此题主要考查了二次函数的综合以及相似三角形的判定与性质等知识,正确分类讨论是解题关键.。

新人教版2017年中考数学模拟试题及答案.docx

新人教版2017年中考数学模拟试题及答案.docx

.2017 年中考数学模拟试题一、选择题(共 12 小题,每小题 3分,共 36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数-3的相反数是A.3.B.-3.11 C. D..332. 函数y x 2 中自变量x的取值围是A.x ≥0.B.x ≥-2.C.x ≥2.D.x ≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1>0, x-3>0.B.x+1>0, 3-x>0.C.x+1<0, x-3>0.D.x+1<0, 3-x>0.4.下列事件中,为必然事件的是A.购买一彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有 5 个黑球,从中摸出一个球是黑球.5.2+4x+3=0的两个根,则 x 1 x2的值是若 x1, x 2是一元二次方程 xA.4.B.3.C.-4.D.-3.6.据报道,2011年全国普通高等学校招生计划约675 万人 . 数 6750000用科学计数法表示为A.6754B.67.55C.6.7567×10 .×10 .×10 . D.0.675 ×10 .7.如图,在梯形 ABCD中, AB ∥ DC , AD=DC=CB,若∠ABD=25°,则∠BAD 的大小是A.40 °.B.45°.C.50 °.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的部不包含边界上的1的正方形部有 1个整点, 2 的正方形部有 1个整点, 3 的正方形部有 9个整点,⋯ 8的正方形部的整点的个数A.64.B.49.C.36.D.25.10.如,路MN和公路PQ在点O交,∠QON=30°.公路PQ上A距离O点 240 米.如果火行,周200 米以会受到噪音的影响.那么火在路 MN上沿 ON方向以72千米/的速度行,A受噪音影响的A.12秒.B.16秒.C.20 秒 .D.24秒.11.广泛开展健身活,2010 年星中学投入修地、安装施、置器材及其它目的金共 38 万元. 1、 2 分反映的是 2010 年投入金分配和 2008 年以来置器材投入金的年增率的具体数据.根据以上信息,下列判断:①在2010年投入中置器材的金最多;②②2009年置器材投入金比2010年置器材投入金多8%;③③若2011年置器材投入金的年增率与2010年置器材投入金的年增率相同,2011年置器材的投入是38×38%×(1+32%)万元.其中正确判断的个数是A.0.B.1.C.2.D.3.12.如,在菱形ABCD中,AB=BD,点E,F 分在AB, AD 上,且 AE=DF.接BF与 DE 相交于点 G,接CG与BD相交于点H.下列:①△ AED≌ △DFB;②S四边形BCDG=3CG2;4③若 AF=2DF,BG=6GF. 其中正确的A.只有①②.B.只有①③.C.只有②③.D.①②③.第Ⅱ卷(非,共84分)二、填空(共4小,每小3分,共 12 分).下列各不需要写出解答程,将果直接填写在答卡指定的位置.13.sin30°的_____.14.某次数学中,五位同学的分数分是:89,91,105,105,110. 数据的中位数是 _____,众数是_____,平均数是 _____.15.一个装有水管和出水管的容器,从某刻起只打开水管水,一段,再打开出水管放水.至 12 分,关停水管.在打开水管到关停水管段,容器的水量 y(单位:升)与时间 x(单位:分钟)之间的函数关系如图所示 . 关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点 A,B的坐标分别是 A(-1 ,0),B(0,-2 ),顶点 C,D在双曲线 y=k上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5 x倍,则 k=_____.三、解答题(共 9小题,共 72 分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分 6 分)解方程: x 2+3x+1=0.18.(本题满分 6x 22x4分)先化简,再求值:( x) ,其中x=3.x x19.(本题满分 6分)如图,D,E,分别是 AB,AC上的点,且 AB=AC,AD=AE.求证∠B=∠C.20.(本题满分 7 分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分 7 分)在平面直角坐标系中,△ABC 的顶点坐标是 A(-7 ,1),B(1,1),C(1,7).线段 DE 的端点坐标是 D(7,-1),E(-1,-7 ).(1)试说明如何平移线段 AC,使其与线段 ED 重合;(2)将△ABC 绕坐标原点 O 逆时针旋转,使 AC 的对应边为 DE,请直接写出点 B的对应点 F的坐标;(3)画出(2)中的△DEF,并和△ABC 同时绕坐标原点 O逆时针旋转 90°,画出旋转后的图形.22.(本题满分 8 分)如图,PA 为⊙O 的切线,A为切点.过 A作 OP 的垂线 AB,垂足为点 C,交⊙O 于点 B.延长 BO 与⊙O 交于点 D,与 PA 的延长线交于点E.(1)求证:PB为⊙O 的切线;1( 2 )若 tan ∠ ABE=,求sinE的值.223.(本题满分 10 分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30 米的篱笆围成.已知墙长为 18米(如图所示),设这个苗圃园垂直于墙的一边的长为 x 米 .(1 )若平行于墙的一边的长为 y 米,直接写出 y 与 x 之间的函数关系式及其自变量 x 的取值围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于 88 平方米时,试结合函数图像,直接写出 x 的取值围 .24.(本题满分 10 分)(1)如图1,在△ ABC 中,点D,E,Q 分别在 AB,AC,BC 上,且DE∥BC, AQDP PE交 DE于点 P.求证:.BQ QC(2)如图,在△ABC 中,∠BAC=90 °,正方形 DEFG 的四个顶点在△ABC 的边上,连接 AG,AF分别交DE于 M,N两点.①如图 2,若 AB=AC=1,直接写出 MN的长;②如图 32,求证 MN =DM ·EN.25.(本题满分 122经过 A(-3 ,0),B(-1 ,0)两分)如图 1 ,抛物线 y=ax +bx+3点 .(1)求抛物线的解析式;( 2 )设抛物线的顶点为 M ,直线 y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线 OD 上.若平移的抛物线与射线 CD(含端点 C)只有一个公共点,求它的顶点横坐标的值或取值围;(3 )如图 2 ,将抛物线平移,当顶点至原点时,过 Q ( 0 , 3 )作不平行于 x 轴的直线交抛物线于 E, F 两点 .问在 y 轴的负半轴上是否存在点 P,使△ PEF 的心2017 年中考数学模拟试题答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B11.C12.D二、填空题13.1/214.105; 105;10015.816.12三、解答题17.( 本题 6 分)解:∵ a=1,b=3,c=1∴ △ =b 2-4ac=9-4× 1 × 1 = 5 > 0 ∴ x=-3±52∴ x 1=-3+55, x2 =-3-2218.( 本题6分 ) 解:原式= x(x-2)/x÷ (x+2)(x-2)/x=x(x-2)/x·x/(x+2)(x-2)= x/(x+2)∴当 x=3时,原式=3/519.( 本题 6 分)解:证明:在△ABE 和△ACD中,AB=AC∠A=∠A AE= AD∴ △ ABE≌ △ ACD∴∠B=∠C20.( 本题7 分)解法 1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有 9 种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有 5 种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=5/9解法 2:根据题意,可以列出如下的表格:以下同解法 1(略)21.( 本题 7 分)(1)将线段 AC 先向右平移 6个单位,再向下平移 8个单位.(其它平移方式也可)(2) F(- 1,-1 )(3)画出如图所示的正确图形22.( 本题 8 分)(1)证明:连接 OA∵PA 为⊙O 的切线,∴∠ PAO=90 °∵OA=OB,OP⊥AB 于 C∴BC= CA , PB= PA∴△PBO≌△PAO∴∠PBO=∠PAO =90°∴PB 为⊙O 的切线(2)解法 1:连接 AD,∵BD 是直径,∠BAD =90°由(1)知∠BCO=90°∴AD∥ OP∴△ADE∽ △POE∴ EA/EP= AD/OP由 AD∥OC得AD = 2OC左直右= t,左(左,左)(左,直)(左,右)直(直,左)(直,直)(直,右)PC右(右,左)(右,直)(右,右)∵tan ∠ ABE=1/2∴OC/BC=1/2 ,设 OC 则BC = 2t,AD=2t由△PBC∽ △ BOC ,得= 2BC = 4t , OP = 5t∴ EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m ∵PA=PB ∴ PB=3m∴sinE=PB/EP=3/5.=2OC∵ tan∠ ABE=1/2,∴ OC/BC=1/2,OC =t ,BC =2t,AB=4t由△PBC ∽ △ BOC ,得 PC = 2BC = 4t ,∴ PA= PB= 2 5 tA 作 AF ⊥ PB 于 F,AF · PB=AB · PC8565∴ AF=t而由勾股定理得 PF=t55∴sinE=sin ∠ FAP=PF/PA=3/523.( 本10 分 )解:( 1 ) y=30-2x(6≤ x<15)(2)矩形苗圃园的面S S=xy=x(30-2x)=-2x 22+30x∴ S=-2(x-7.5)+112.5由( 1 )知, 6 ≤ x<15∴当 x=7.5,S 最大= 112.5即当矩形苗圃园垂直于的7.5 米,个苗圃园的面最大,最大112.5 ( 3 ) 6 ≤ x≤ 1124.(本10 分)(1)明:在△ABQ中,由于 DP∥BQ,∴△ADP∽△ABQ,∴ DP/BQ = AP/AQ.同理在△ ACQ中,EP/CQ=AP/AQ.2∴ DP/BQ = EP/CQ. ( 2 )99.( 3)明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠ BGD= ∠ EFC,∴ △ BGD ∽ △ EFC. ⋯⋯ 3 分∴ DG/CF = BG/EF ,∴ DG · EF= CF· BG 又∵ DG =GF=EF,∴ GF2= CF·BG由( 1 )得 DM/BG=MN/GF=EN/CF∴ (MN/GF)2=(DM/BG)· (EN/CF)∴MN 2= DM ·EN25. ( 1 )抛物y=ax2+bx+3 A ( -3,0 ), B( -1,0)两点∴ 9a-3b+3= 0 且 a-b+3= 0解得 a = 1b = 4 ∴抛物的解析式y=x 2+4x+3 ( 2 )由( 1 )配方得 y=(x+2)2-1 ∴抛物的点 M ( -2 , ,1 )∴直OD 的解析式y=1x 2于是平移的抛物的点坐( h ,1h ),∴平移的抛物解析式221h. ①当抛物点21,y= ( x-h ) +2C ,∵ C( 0 , 9 ),∴ h+h=92解得 h=- 1145. ∴当- 1- 145 ≤h<- 1145444,平移的抛物与射CD 只有一个公共点.②当抛物与直CD 只有一个公共点,由方程y= ( x-h )2+1h,y=-2x+9.211得x2+ ( -2h+2 ) x+h2+h-9=0 ,∴ △ = ( -2h+2)2-4( h2+h-9)=0,22解得 h=4.2此抛物y= ( x-4 ) +2 与射CD 唯一的公共点(3,3),符合意..-1 -围是h=4或(3)方法145 ≤h< - 1145 . 441将抛物线平移,当顶点至原点时,其解析式为y=x 2,设 EF 的解析式为 y=kx+3 ( k≠ 0 ) .假设存在满足题设条件的点 P( 0 , t ),如图,过 P 作 GH ∥ x 轴,分别过 E, F 作 GH 的垂线,垂足为 G,H. ∵ △ PEF 的心在 y 轴上,∴∠ GEP= ∠ EPQ= ∠ QPF= ∠ HFP ,∴ △ GEP ∽ △ HFP , ...............9分∴ GP/PH=GE/HF,∴ -x E/x F=(y E-t)/(y F-t)=(kx E+3-t)/(kx F +3-t)∴2kx E· x F= ( t-3 )( x E+x F)由y=x 2, y=-kx+3. 得 x 2 -kx-3=0.∴ x E+x F =k,x E· x F =-3.∴ 2k(-3)=(t-3)k, ∵ k≠ 0, ∴ t=-3.∴ y轴的负半轴上存在点P(0,-3),使△ PEF 的心在 y 轴上 .方法2设EF的解析式为y=kx+3(k≠ 0),点E,F的坐标分别为( m,m 2)( n,n 2)由方法 1 知: mn=-3.作点 E 关于 y 轴的对称点 R( -m,m 2) ,作直线 FR 交 y 轴于点 P,由对称性知∠EPQ= ∠FPQ,∴点 P就是所求的点.由 F,R 的坐标,可得直线 FR 的解析式为 y=( n-m )x+mn.当 x=0 , y=mn=-3, ∴ P ( 0 , -3 ) .∴ y 轴的负半轴上存在点P( 0,-3 ),使△ PEF 的心在 y 轴上 .。

【真题】2017年新疆实验中学高中实验班招生数学试卷及参考答案PDF

【真题】2017年新疆实验中学高中实验班招生数学试卷及参考答案PDF

2017年新疆实验中学高中实验班招生数学试卷一、填空题(本大题共6小题,每小题5分,共30分)1.(5分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.2.(5分)对于两个不相等的实数a、b,定义一种新的运算如下,,如:,那么6*(5*4)=.3.(5分)在△ABC中,作MN∥BC,且MN分别交AB,AC于点M,N两点;若AM=1,BM=3,MN=,则BC的长为.4.(5分)如图所示是二次函数y=ax2+bx+c的图象,则方程ax2+bx+c=0的两根之和为.5.(5分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,则AC的长度为.6.(5分)如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为.二、解答题(本大题共8小题,共90分)7.(8分)先化简,再求值:(﹣)÷,其中,a是方程x2+3x+1=0的根.8.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?9.(12分)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB 的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为9,求△ABD的面积.10.(12分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.11.(12分)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B 与点A关于x轴对称,若△OAB的面积为6,求m的值.12.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?13.(13分)已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.①当点P'落在该抛物线上时,求m的值;②当点P'落在第二象限内,P'A2取得最小值时,求m的值.14.(13分)如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6,AB=10,求CG的长.2017年新疆实验中学高中实验班招生数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题5分,共30分)1.(5分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.2.(5分)对于两个不相等的实数a、b,定义一种新的运算如下,,如:,那么6*(5*4)=1.【解答】解:∵,∴5*4==3,∴6*(5*4)=6*3,=,=1.故答案为:1.3.(5分)在△ABC中,作MN∥BC,且MN分别交AB,AC于点M,N两点;若AM=1,BM=3,MN=,则BC的长为6.【解答】解:∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴△AMN∽△ABC,∴=,即=,∴BC=6.故答案为:6.4.(5分)如图所示是二次函数y=ax2+bx+c的图象,则方程ax2+bx+c=0的两根之和为4.【解答】解:设y=ax2+bx+c=0(a≠0)和x轴交点横坐标分别为:x1,x2,∵其对称轴为x=(x1+x2)=2,∴其对称(x1+x2)=2,∴x1+x2=4,即方程ax2+bx+c=0的两根之和为4,故答案为:4.5.(5分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,则AC的长度为2cm或4cm.【解答】解:连接OA,∵⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,∴OD=OC=OA=5cm,AM=AB=4cm,∴OM===3(cm),∴MC=OA﹣OM=5﹣3=2cm,∴AC===2cm.同理可得:A′C===4cm.故答案为:2cm或4cm.6.(5分)如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为12+15π.【解答】解:由几何体的三视图可得:该几何体的表面是由3个长方形与两个扇形围成,该几何体的表面积为:S=2×2×3+×2+×3=12+15π,故答案为:12+15π.二、解答题(本大题共8小题,共90分)7.(8分)先化简,再求值:(﹣)÷,其中,a是方程x2+3x+1=0的根.【解答】解:原式=[+]÷=(+)•=•=,∵a是方程x2+3x+1=0的根,∴a2+3a=﹣1,则原式=﹣.8.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.9.(12分)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB 的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为9,求△ABD的面积.【解答】(1)证明:∵DC=AC,CF是∠ACB的平分线,∴AF=FD,又点E是AB的中点,∴EF∥BC;(2)解:∵AF=FD,点E是AB的中点,∴EF=BD,EF∥BD,∴△AEF∽△ABD,∴S=S△ABD,△AEF=S四边形BDFE=3,∴S△AEF∴△ABD的面积=12.10.(12分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是126度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.【解答】解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;故答案为:126;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.4选2只有6种可能,AB,AC,AD,BC,BD,CD,七年级特等奖作文被选登在校刊上的结果有3种可能,∴P(七年级特等奖作文被选登在校刊上)==.11.(12分)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B 与点A关于x轴对称,若△OAB的面积为6,求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.12.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.13.(13分)已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.①当点P'落在该抛物线上时,求m的值;②当点P'落在第二象限内,P'A2取得最小值时,求m的值.【解答】解:(1)∵抛物线y=x2+bx﹣3经过点A(﹣1,0),∴0=1﹣b﹣3,解得b=﹣2,∴抛物线解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线顶点坐标为(1,﹣4);(2)①由P(m,t)在抛物线上可得t=m2﹣2m﹣3,∵点P′与P关于原点对称,∴P′(﹣m,﹣t),∵点P′落在抛物线上,∴﹣t=(﹣m)2﹣2(﹣m)﹣3,即t=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m=或m=﹣;②由题意可知P′(﹣m,﹣t)在第二象限,∴﹣m<0,﹣t>0,即m>0,t<0,∵抛物线的顶点坐标为(1,﹣4),∴﹣4≤t<0,∵P在抛物线上,∴t=m2﹣2m﹣3,∴m2﹣2m=t+3,∵A(﹣1,0),P′(﹣m,﹣t),∴P′A2=(﹣m+1)2+(﹣t)2=m2﹣2m+1+t2=t2+t+4=(t+)2+;∴当t=﹣时,P′A2有最小值,∴﹣=m2﹣2m﹣3,解得m=或m=,∵m>0,∴m=不合题意,舍去,∴m的值为.14.(13分)如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6,AB=10,求CG的长.【解答】(1)证明:连接OD.∵AB与⊙O相切于点D,又AC与⊙O相切于点C,∴AC=AD,OC⊥CA.∴CF是⊙O的直径,∵OC=OD,∴OA⊥CD,∵CF是直径,∴∠CDF=90°,∴DF⊥CD,∴DF∥AO.(2)过点作EM⊥OC于M,∵AC=6,AB=10,∴BC==8,∴AD=AC=6,∴BD=AB﹣AD=4,∵BD2=BF•BC,∴BF=2,∴CF=BC﹣BF=6.OC=CF=3,∴OA==3,∵OC2=OE•OA,∴OE=,∵EM∥AC,∴===,∴OM=,EM=,FM=OF+OM=,∴===,∴CG=EM=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档