高三数学(文)二轮复习集训: 集合、常用逻辑用语、平面向量、附属、算法、推理与证明1.1 Word版含解析
2021年高考数学大二轮复习专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明1.2

1.2 不等式【课时作业】1.集合M ={x |x 2-4x >0},N ={x |m <x <8},假设M ∩N ={x |6<x <n },那么m +n =( ) A .10 B .12 C .14D .16解析: M ={x |x 2-4x >0}={x |x >4或x <0},N ={x |m <x <8},由于M ∩N ={x |6<x <n },∴m =6,n =8,∴m +n =14,应选C.答案: C2.假设a <b <0,那么以下不等式错误的选项是( ) A.1a >1bB .1a -b >1aC .|a |>|b |D .a 2>b 2解析: 因为a <b <0,所以1a >1b,故A 对.因为a <b <0,所以0<-b ,a <a -b <0, 所以1a >1a -b,故B 错.因为a <b <0,所以-a >-b >0,即|-a |>|-b |, 所以|a |>|b |,故C 对. 因为a <b <0,所以-a >-b >0,所以(-a )2>(-b )2,即a 2>b 2,故D 对. 答案: B 3.a ∈R ,不等式x -3x +a≥1的解集为p ,且-2∉p ,那么a 的取值范围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析: ∵-2∉p ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.答案: D4.(2021·北京卷)设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},那么( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析: 假设点(2,1)∈A ,那么不等式x -y ≥1显然成立,且同时要满足⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,即⎩⎪⎨⎪⎧a >32,a ≥0,解得a >32.即点(2,1)∈A ⇒a >32,其等价命题为a ≤32⇒点(2,1)∉A 成立.应选D. 答案: D5.(2021·广东清远清城一模)关于x 的不等式ax -b <0的解集是(1,+∞),那么关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)解析: 关于x 的不等式ax -b <0的解集是(1,+∞),即不等式ax <b 的解集是(1,+∞),∴a =b <0,∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3,∴所求解集是(-1,3).应选C.答案: C6.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -4≤0,-2≤x <2,y ≤1,假设z =2x -y ,那么z 的取值范围是( )A .[-5,6)B .[-5,6]C .(2,9)D .[-5,9]解析: 作出可行域如图中阴影局部所示,由z =2x -y ,得y =2x -z ,作出直线y =2x ,并平移,可知当该直线经过点A (-2,1)时,z 取得最小值,z min =2×(-2)-1=-5,当该直线经过点B (2,-2)时,z =2×2+2=6,由于点B 不在可行域内,应选A.答案: A7.在平面直角坐标系中,假设不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,那么a 的值为( )A .-5B .1C .2D .3解析: 如图,阴影局部即为满足x -1≤0与x +y -1≥0的区域,而ax -y +1=0的直线恒过点(0,1),故看作直线绕点(0,1)旋转,当a =-5时,那么可行域不是一个封闭区域,当a =1时,面积是1;a =2时,面积是32;当a =3时,面积恰好为2,应选D.答案: D8.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.该容器的底面造价是每平方米20元,侧面造价是每平方米10元,那么该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析: 设底面矩形的一条边长是x m ,总造价是y 元,由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,那么另一条边长是4xm ,又设总造价是y 元,那么y =20×4+10×⎝ ⎛⎭⎪⎫2x +8x ≥80+202x ·8x =160,当且仅当2x =8x,即x =2时取得等号.答案: C9.(2021·江西九江二模)实数x ,y 满足线性约束条件⎩⎪⎨⎪⎧x -a ≤0,x +y -2≥0,2x -y +2≥0,假设z =y -1x +3的最大值为1,那么z 的最小值为( ) A .-13B .-37C.13D .-15解析: 作出可行域如图中阴影局部所示,目标函数z =y -1x +3的几何意义是可行域内的点(x ,y )与点A (-3,1)两点连线的斜率,当取点B (a,2a +2)时,z 取得最大值1,故2a +2-1a +3=1,解得a =2,那么C (2,0).当取点C (2,0)时,z 取得最小值,即z min =0-12+3=-15.应选D.答案: D10.(2021·湖北省五校联考)某企业生产甲、乙两种产品均需用A ,B 两种原料,生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,那么该企业每天可获得的最大利润为( )甲 乙 原料限额 A (单位:吨) 3 2 12 B (单位:吨)128A.15万元 B .16万元 C .17万元D .18万元解析: 设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,那么有⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,z =3x +4y ,作出可行域如图阴影局部所示,由图形可知,当直线z =3x +4y 经过点M (2,3)时,z 取最大值,最大值为3×2+4×3=18,应选D.答案: D11.假设两个正实数x ,y 满足13x +3y =1,且不等式x +y 4-n 2-13n12<0有解,那么实数n的取值范围是( )A.⎝ ⎛⎭⎪⎫-2512,1B .⎝⎛⎭⎪⎫-∞,-2512∪(1,+∞)C.()1,+∞D .⎝⎛⎭⎪⎫-∞,-2512 解析: 因为不等式x +y 4-n 2-13n 12<0有解,所以⎝ ⎛⎭⎪⎫x +y 4min <n 2+13n 12,因为x >0,y >0,且13x +3y =1,所以x +y 4=⎝⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫13x +3y =1312+3x y +y 12x ≥1312+23xy ·y 12x =2512,当且仅当3x y =y 12x ,即x =56,y =5时取等号,所以⎝ ⎛⎭⎪⎫x +y 4min =2512,故n 2+13n 12-2512>0,解得n <-2512或n >1,所以实数n 的取值范围是⎝⎛⎭⎪⎫-∞,-2512∪(1,+∞),应选B.答案: B12.实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,假设y ≥kx -3恒成立,那么实数k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-115,0B .⎣⎢⎡⎦⎥⎤0,113C .(-∞,0]∪⎣⎢⎡⎭⎪⎫115,+∞D .⎝⎛⎦⎥⎤-∞,-115∪[0,+∞)解析: 由约束条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,作可行域如图,联立⎩⎪⎨⎪⎧x =3,x +y =0,解得B (3,-3).联立⎩⎪⎨⎪⎧x +y =0,x -y +5=0,解得A ⎝ ⎛⎭⎪⎫-52,52.由题意得⎩⎪⎨⎪⎧-3≥3k -3,52≥-52k -3,解得-115≤k ≤0.所以实数k 的取值范围是⎣⎢⎡⎦⎥⎤-115,0.答案: A13.不等式12x -3>0的解集为________.解析: 由题意知2x-3>0,所以x >log 23,即不等式12x-3>0的解集为(log 23,+∞). 答案: (log 23,+∞)14.(2021·南昌市摸底调研)函数y =x +mx -2(x >2)的最小值为6,那么正数m 的值为________.解析: ∵x >2,m >0,∴y =x -2+mx -2+2≥2x -2·mx -2+2=2m +2,当x=2+m 时取等号,又函数y =x +mx -2(x >2)的最小值为6,即2m +2=6,解得m =4.答案: 415.(2021·北京卷)假设x ,y 满足x +1≤y ≤2x ,那么2y -x 的最小值是________.解析: 由条件得⎩⎪⎨⎪⎧x +1≤y ,y ≤2x ,即⎩⎪⎨⎪⎧x -y +1≤0,2x -y ≥0,作出可行域,如图阴影局部所示. 设z =2y -x ,即y =12x +12z ,作直线l 0:y =12x 并向上平移,显然当l 0过点A (1,2)时,z 取得最小值,z min =2×2-1=3.答案: 316.定义min{x ,y }=⎩⎪⎨⎪⎧x ,x <y ,y ,x ≥y ,那么不等式min ⎩⎨⎧⎭⎬⎫x +4x,4≥8 min ⎩⎨⎧⎭⎬⎫x ,1x 的解集是________.解析: 因为min ⎩⎨⎧⎭⎬⎫x +4x ,4=⎩⎪⎨⎪⎧4,x >0,x +4x,x <0,min ⎩⎨⎧⎭⎬⎫x ,1x =⎩⎪⎨⎪⎧x ,x ≤-1,1x ,-1<x <0,x ,0<x ≤1,1x ,x >1,所以当x >1时,由4≥8x得x ≥2;当0<x ≤1时,由4≥8x ,得0<x ≤12;当x ≤-1时,由x +4x≥8x ,得x ≤-1;当-1<x <0时,由x +4x ≥8x得-1<x <0.综上所述,原不等式的解集为(-∞,0)∪⎝ ⎛⎦⎥⎤0,12∪[2,+∞). 答案: (-∞,0)∪⎝ ⎛⎦⎥⎤0,12∪[2,+∞)。
高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式1集合常用逻辑用语限时速解

高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式1集合常用逻辑用语限时速解训练文1(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=( )A.{1,3,5,6}B.{2,3,7}D.{2,5,7}C.{2,4,7} 解析:选C.由补集的定义,得∁UA={2,4,7}.故选C. 2.已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是( )A.-3∈AB.3∉BD.A∪B=BC.A∩B=B 解析:选 C.由题知A={y|y≥-1},因此A∩B={x|x≥2}=B,故选C.3.设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( )A.[0,1]B.(0,1]D.(-∞,1]C.[0,1) 解析:选A.M={x|x2=x}={0,1},N={x|lgx≤0}={x|0<x≤1},M∪N=[0,1],故选A.4.(2016·山东聊城模拟)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )B.1A.0D.4C.2解析:选D.因为A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},所以则a=4. 5.(2016·湖北八校模拟)已知a∈R,则“a>2”是“a2>2a”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.因为a>2,则a2>2a成立,反之不成立,所以“a>2”是“a2>2a”成立的充分不必要条件.6.已知集合A={z∈C|z=1-2ai,a∈R},B={z∈C||z|=2},则A∩B等于( )B.{-i}A.{1+i,1-i}D.{1-i}C.{1+2i,1-2i} 解析:选A.问题等价于|1-2ai|=2,a∈R,解得a=±.故选A.7.已知命题p:对任意x>0,总有ex≥1,则綈p为( )A.存在x0≤0,使得ex0<1B.存在x0>0,使得ex0<1C.对任意x>0,总有ex<1D.对任意x≤0,总有ex<1解析:选B.因为全称命题的否定是特称命题,所以,命题p:对任意x >0,总有ex≥1的否定綈p为:存在x0>0,使得ex0<1.故选B. 8.已知命题p:∃x0∈R,tan x0=1,命题q:∀x∈R,x2>0.下面结论正确的是( )A.命题“p∧q”是真命题B.命题“p∧(綈q)”是假命题C.命题“(綈p)∨q”是真命题D.命题“(綈p)∧(綈q)”是假命题解析:选D.取x0=,有tan=1,故命题p是真命题;当x=0时,x2=0,故命题q是假命题.再根据复合命题的真值表,知选项D是正确的.9.给出下列命题:①∀x∈R,不等式x2+2x>4x-3均成立;②若log2x+logx2≥2,则x>1;③“若a>b>0且c<0,则>”的逆否命题;④若p且q为假命题,则p,q均为假命题.其中真命题是( )B.①②④A.①②③D.②③④C.①③④ 解析:选A.①中不等式可表示为(x-1)2+2>0,恒成立;②中不等式可变为log2x+≥2,得x>1;③中由a>b>0,得<,而c<0,所以原命题是真命题,则它的逆否命题也为真;④由p且q为假只能得出p,q中至少有一个为假,④不正确.10.(2016·山东济南模拟)设A,B是两个非空集合,定义运算A×B={x|x∈A∪B,且x∉A∩B}.已知A={x|y=},B={y|y=2x,x>0},则A×B=( )B.[0,1)∪[2,+∞)A.[0,1]∪(2,+∞)D.[0,2]C.[0,1] 解析:选 A.由题意得A={x|2x-x2≥0}={x|0≤x≤2},B={y|y>1},所以A∪B=[0,+∞),A∩B=(1,2],所以A×B=[0,1]或(2,+∞).11.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.若“直线y=x+b与圆x2+y2=1相交”,则圆心到直线的距离为d=<1,即|b|<,不能得到0<b<1;反过来,若0<b<1,则圆心到直线的距离为d=<<1,所以直线y=x+b与圆x2+y2=1相交,故选B.12.(2016·陕西五校二模)下列命题正确的个数是( )①命题“∃x0∈R,x+1>3x0”的否定是“∀x∈R,x2+1≤3x”;②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③x2+2x≥ax在x∈[1,2]上恒成立⇔(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”.B.2A.1D.4C.3 解析:选 B.易知①正确;因为f(x)=cos 2ax,所以=π,即a=±1,因此②正确;因为x2+2x≥ax在x∈[1,2]上恒成立⇒a≤x+2在x∈[1,2]上恒成立⇒a≤(x+2)min,x∈[1,2],因此③不正确;因为钝角不包含180°,而由a·b<0得向量夹角包含180°,因此“平面向量a与b的夹角是钝角”的充要条件是“a·b<0且a与b不反向”,故④不正确.二、填空题(把答案填在题中横线上) 13.若关于x的不等式|x-m|<2成立的充分不必要条件是2≤x≤3,则实数m的取值范围是________.解析:由|x-m|<2得-2<x-m<2,即m-2<x<m+2.依题意有集合{x|2≤x≤3}是{x|m-2<x<m+2}的真子集,于是有,由此解得1<m<4,即实数m的取值范围是(1,4).答案:(1,4) 14.若命题“∃x0∈R,x-2x0+m≤0”是假命题,则m的取值范围是________.解析:由题意,命题“∀x∈R,x2-2x+m>0”是真命题,故Δ=(-2)2-4m<0,即m>1.答案:(1,+∞) 15.已知p:∃x0∈R,mx+2≤0,q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是________.解析:因为p∨q是假命题,所以p和q都是假命题.由p:∃x0∈R,mx+2≤0为假命题知,綈p:∀x∈R,mx2+2>0为真命题,所以m≥0.①由q:∀x∈R,x2-2mx+1>0为假命题知,綈q:∃x0∈R,x-2mx0+1≤0为真命题,所以Δ=(-2m)2-4≥0⇒m2≥1⇒m≤-1或m≥1.②由①和②得m≥1.答案:[1,+∞) 16.下列四个命题中,真命题有________.(写出所有真命题的序号)①若a,b,c∈R,则“ac2>bc2”是“a>b”成立的充分不必要条件;②命题“∃x0∈R,x+x0+1<0”的否定是“∀x∈R,x2+x+1≥0”;③命题“若|x|≥2,则x≥2或x≤-2”的否命题是“若|x|<2,则-2<x<2”;④函数f(x)=ln x+x-在区间(1,2)上有且仅有一个零点.解析:①若c=0,则不论a,b的大小关系如何,都有ac2=bc2,而若ac2>bc2,则有a>b,故“ac2>bc2”是“a>b”成立的充分不必要条件,故①为真命题;②特称命题的否定是全称命题,故命题“∃x0∈R,x+x0+1<0”的否定是“∀x∈R,x2+x+1≥0”,故②为真命题;③命题“若p,则q”形式的命题的否命题是“若綈p,则綈q”,故命题“若|x|≥2,则x≥2或x≤-2”的否命题是“若|x|<2,则-2<x<2”,故③为真命题;④由于f(1)f(2)==×<0,则函数f(x)=ln x+x-在区间(1,2)上存在零点,又函数f(x)=ln x+x-在区间(1,2)上为增函数,所以函数f(x)=ln x+x-在区间(1,2)上有且仅有一个零点,故④为真命题.答案:①②③④。
2021年高考数学大二轮复习专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明1.3

1.3 平面向量【课时作业】1.向量m =(t +1,1),n =(t +2,2),假设(m +n )⊥(m -n ),那么t =( ) A .0 B .-3 C .3D .-1解析: 法一:由(m +n )⊥(m -n )可得(m +n )·(m -n )=0,即m 2=n 2,故(t +1)2+1=(t +2)2+4,解得t =-3.法二:m +n =(2t +3,3),m -n =(-1,-1),∵(m +n )⊥(m -n ),∴-(2t +3)-3=0,解得t =-3.答案: B2.在△ABC 中,P ,Q 分别是边AB ,BC 上的点,且AP =13AB ,BQ =13BC .假设AB →=a ,AC →=b ,那么PQ →=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析: PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,应选A.答案: A3.向量a =(1,1),2a +b =(4,2)那么向量a ,b 的夹角的余弦值为( ) A.31010 B .-31010 C.22D .-22解析: 因为向量a =(1,1),2a +b =(4,2),所以b =(2,0),那么向量a ,b 的夹角的余弦值为1×2+1×02×2=22.答案: C4.在平面直角坐标系中,点A (0,1),向量AB →=(-4,-3),BC →=(-7,-4),那么点C 的坐标为( )A .(11,8)B .(3,2)C .(-11,-6)D .(-3,0)解析: 设C (x ,y ),∵在平面直角坐标系中,点A (0,1),向量AB →=(-4,-3),BC →=(-7,-4),∴AC →=AB →+BC →=(-11,-7),∴⎩⎪⎨⎪⎧x -0=-11,y -1=-7,解得x =-11,y =-6,故C (-11,-6).应选C.答案: C5.(2021·广东广雅中学等四校2月联考)两个单位向量a ,b 的夹角为120°,k ∈R ,那么|a -k b |的最小值为( )A.34 B .32C .1D .32解析: ∵两个单位向量a ,b 的夹角为120°,∴|a |=|b |=1,a·b =-12,∴|a -k b |=a 2-2k a ·b +k 2b 2=1+k +k 2=⎝ ⎛⎭⎪⎫k +122+34.∵k ∈R ,∴当k =-12时,|a -k b |取得最小值32,应选B. 答案: B6.在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3→与向量a =(1,-1)共线,假设OP 3→=λOP 1→+(1-λ)OP 2→,那么λ=( )A .-3B .3C .1D .-1解析: 设OP 3→=(x ,y ),那么由OP 3→∥a 知x +y =0,于是OP 3→=(x ,-x ).假设OP 3→=λOP 1→+(1-λ)OP 2→,那么有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,应选D.答案: D7.(2021·河北衡水中学2月调研)一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,假设AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R ),那么52μ-λ=( )A .-12B .1 C.32D .-3解析: AM →=λAB →-μAC →=λAB →-μ(AB →+AD →)=(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →,因为E 、M 、F 三点共线,所以2(λ-μ)+(-3μ)=1,即2λ-5μ=1,∴52μ-λ=-12,应选A.答案: A8.在矩形ABCD 中,AB =2,AD =1,E 为线段BC 上的点,那么AE →·DE →的最小值为( ) A .2 B .154C.174D .4解析: 如图,以B 为原点,BC 所在的直线为x 轴,BA 所在的直线为y 轴建立平面直角坐标系,那么A (0,2),D (1,2).设E (x,0)(0≤x ≤1),那么AE →=(x ,-2),DE →=(x -1,-2).∴AE →·DE →=(x ,-2)·(x -1,-2)=x 2-x +4=⎝ ⎛⎭⎪⎫x -122+154.∵0≤x ≤1,∴当x =12,即E 为BC 的中点时,AE →·DE→取得最小值,最小值为154.应选B.答案: B9.a ,b 为平面向量,假设a +b 与a 的夹角为π3,a +b 与b 的夹角为π4,那么|a ||b |=( )A.33 B .63C.53D .2解析: 在平行四边形ABCD 中,设AB →=a ,AD →=b ,那么AC →=a +b ,∠BAC =π3,∠DAC=π4.在△ABC 中,由正弦定理,得|a ||b |=sin ∠ACB sin ∠BAC =sin ∠DACsin ∠BAC =sinπ4sinπ3=2232=63.应选B. 答案: B10.向量OA →=(3,1),OB →=(-1,3),OC →=mOA →-nOB →(m >0,n >0),假设m +n =1,那么|OC →|的最小值为( )A.52B .102C. 5 D .10解析: 由OA →=(3,1),OB →=(-1,3)得OC →=mOA →-nOB →=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC →=(1+2m,4m -3),那么|OC →|=1+2m2+4m -32=20m 2-20m +10=20⎝ ⎛⎭⎪⎫m -122+5(0<m <1),所以当m =12时,|OC →|min = 5.答案: C11.(2021·惠州市第二次调研)等边三角形ABC 的边长为2,其重心为G ,那么BG →·CG →=( )A .2B .-14C .-23D .3解析: 法一:如图,建立平面直角坐标系,那么A (0,3),B (-1,0),C (1,0),得重心G ⎝ ⎛⎭⎪⎫0,33,那么BG →=⎝ ⎛⎭⎪⎫1,33,CG →=⎝⎛⎭⎪⎫-1,33,所以BG →·CG →=-1×1+33×33=-23,应选C. 法二:因为AC →·AB →=|AC →|·|AB →|cos 60°=2×2×12=2,BG →=13AC →-23AB →,CG →=13AB →-23AC →,所以BG →·CG →=⎝ ⎛⎭⎪⎫13AC →-23AB →·⎝ ⎛⎭⎪⎫13AB →-23AC →=19AC →·AB →-29AC →2-29AB →2+49AC →·AB →=59AC →·AB →-29×4-29×4=59×2-169=-69=-23,应选C. 答案: C12.向量a ,b 满足|a |=1,(a +b )·(a -2b )=0,那么|b |的取值范围为( ) A .[1,2]B .[2,4]C.⎣⎢⎡⎦⎥⎤14,12D .⎣⎢⎡⎦⎥⎤12,1 解析: 由题意知b ≠0,设向量a ,b 的夹角为θ,因为(a +b )·(a -2b )=a 2-a·b -2b 2=0,又|a |=1,所以1-|b |cos θ-2|b |2=0,所以|b |cos θ=1-2|b |2,因为-1≤cosθ≤1,所以-|b |≤1-2|b |2≤|b |,所以12≤|b |≤1,所以|b |的取值范围是⎣⎢⎡⎦⎥⎤12,1.答案: D13.(2021·全国卷Ⅲ)向量a =(1,2),b =(2,-2),c =(1,λ).假设c ∥(2a +b ),那么λ=________.解析: 2a +b =(4,2),因为c ∥(2a +b ),所以4λ=2,得λ=12.答案: 1214.等边△ABC 的边长为2,假设BC →=3BE →,AD →=DC →,那么BD →·AE →=________.解析: 如下图,BD →·AE →=(AD →-AB →)·(AB →+BE →)=⎝ ⎛⎭⎪⎫12AC →-AB →·⎝ ⎛⎭⎪⎫AB →+13AC →-13AB →=⎝ ⎛⎭⎪⎫12AC→-AB →·⎝ ⎛⎭⎪⎫13AC →+23AB →= 16AC →2-23AB →2=16×4-23×4=-2. 答案: -215.(2021·益阳市,湘潭市调研试卷)向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,那么tan θ=________.解析: 法一:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a·b =5+2a·b =1+3,∴a ·b =-12,∴cos θ=a·b |a |·|b |=-14,∴sin θ=1-⎝ ⎛⎭⎪⎫-142=154,∴tan θ=sin θcos θ=-15. 法二:∵a +b =(1,3),∴|a +b |=1+3=2,记OA →=a ,AB →=b ,那么OB →=a +b ,由题意知|AB →|=|OB →|=2,|OA →|=1,θ=π-∠OAB ,∴在等腰三角形OBA 中,tan ∠OAB =22-⎝ ⎛⎭⎪⎫12212=15,∴tan θ=-tan ∠OAB =-15. 答案: -1516.(2021·福州市质量检测)如图,在平面四边形ABCD 中,∠ABC =90°,∠DCA =2∠BAC .假设BD →=xBA →+yBC →(x ,y ∈R ),那么x -y 的值为________.解析: 如图,延长DC ,AB 交于点E ,因为∠DCA =2∠BAC ,所以∠BAC =∠CEA . 又∠ABC =90°,所以BA →=-BE →.因为BD →=xBA →+yBC →,所以BD →=-xBE →+yBC →.因为C ,D ,E 三点共线,所以-x +y =1,即x -y =-1.答案: -1。
2021-2022年高考数学二轮复习专题一集合逻辑用语不等式向量复数算法推理专题能力训练3平面向量与

2021年高考数学二轮复习专题一集合逻辑用语不等式向量复数算法推理专题能力训练3平面向量与复数理1.(xx全国Ⅰ,理3)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p42.设a,b是两个非零向量,则下列结论一定成立的为()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|3.若z=1+2i,则=()A.1B.-1C.iD.-i4.在复平面内,若复数z的对应点与的对应点关于虚轴对称,则z=()A.2-iB.-2-iC.2+iD.-2+i5.已知向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1D.26.下面是关于复数z=的四个命题:p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为-1,其中的真命题为()A.p2,p3B.p1,p2C.p2,p4D.p3,p47.已知菱形ABCD的边长为a,∠ABC=60°,则=()A.-a2B.-a2C.a2D.a28.已知非零向量m,n满足4|m|=3|n|,cos<m,n>=.若n⊥(t m+n),则实数t的值为()A.4B.-4C.D.-9.(xx浙江,10)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=,I2=,I3=,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I310.(xx全国Ⅰ,理13)已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=.11.(xx天津,理13)在△ABC中,∠A=60°,AB=3,AC=2.若=2=λ(λ∈R),且=-4,则λ的值为.12.设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=.13.(xx浙江,12)已知a,b∈R,(a+b i)2=3+4i(i是虚数单位),则a2+b2=,ab=.14.设D,E分别是△ABC的边AB,BC上的点,|AD|=|AB|,|BE|=|BC|.若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.思维提升训练15.在△ABC中,已知D是AB边上一点,+λ,则实数λ=()A.-B.-C.D.16.已知,||=,||=t.若点P是△ABC所在平面内的一点,且,则的最大值等于()A.13B.15C.19D.2117.已知两点M(-3,0),N(3,0),点P为坐标平面内一动点,且||·||+=0,则动点P(x,y)到点M(-3,0)的距离d的最小值为()A.2B.3C.4D.618.(xx浙江,15)已知向量a,b满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是,最大值是.19.在任意四边形ABCD中,E,F分别是AD,BC的中点,若=λ+μ,则λ+μ=.20.(xx天津,理9)已知a∈R,i为虚数单位,若为实数,则a的值为.参考答案专题能力训练3平面向量与复数能力突破训练1.B解析p1:设z=a+b i(a,b∈R),则R,所以b=0,所以z∈R.故p1正确;p2:因为i2=-1∈R,而z=i∉R,故p2不正确;p3:若z1=1,z2=2,则z1z2=2,满足z1z2∈R,而它们实部不相等,不是共轭复数,故p3不正确;p4:实数的虚部为0,它的共轭复数是它本身,也属于实数,故p4正确.2.C解析设向量a与b的夹角为θ.对于A,可得cosθ=-1,因此a⊥b不成立;对于B,满足a ⊥b时|a+b|=|a|-|b|不成立;对于C,可得cosθ=-1,因此成立,而D显然不一定成立.3.C解析由题意知=1-2i,则=i,故选C.4.D解析=2+i所对应的点为(2,1),它关于虚轴对称的点为(-2,1),故z=-2+i.5.C解析∵2a+b=(1,0),又a=(1,-1),∴(2a+b)·a=1+0=1.6.C解析z==-1-i,故|z|=,p1错误;z2=(-1-i)2=(1+i)2=2i,p2正确;z的共轭复数为-1+i,p3错误;p4正确.7.D解析如图,设=a,=b.则=()=(a+b)·a=a2+a·b=a2+a·a·cos60°=a2+a2=a2.8.B解析由4|m|=3|n|,可设|m|=3k,|n|=4k(k>0),又n⊥(t m+n),所以n·(t m+n)=n·t m+n·n=t|m|·|n|cos<m,n>+|n|2=t×3k×4k+(4k)2=4tk2+16k2=0.所以t=-4,故选B.9.C解析由题图可得OA<AC<OC,OB<BD<OD,∠AOB=∠COD>90°,∠BOC<90°,所以I2=>0,I1=<0,I3=<0,且|I1|<|I3|,所以I3<I1<0<I2,故选C.10.2解析因为|a+2b|2=(a+2b)2=|a|2+4·|a|·|b|·cos60°+4|b|2=22+4×2×1+4×1=12,所以|a+2b|==211解析=2,)=又=,∠A=60°,AB=3,AC=2,=-4,=3×2=3,()=-4,即=-4,4-9+3=-4,即-5=-4,解得λ=12.-1解析∵(1+i)(a+i)=a-1+(a+1)i∈R,∴a+1=0,即a=-1.13.52解析由题意可得a2-b2+2ab i=3+4i,则解得则a2+b2=5,ab=2.14解析由题意)=-,故λ1=-,λ2=,即λ1+λ2=思维提升训练15.D解析如图,D是AB边上一点,过点D作DE∥BC,交AC于点E,过点D作DF∥AC,交BC于点F,则因为+,所以=由△ADE∽△ABC,得,所以,故λ=16.A解析以点A为原点,所在直线分别为x轴、y轴建立平面直角坐标系,如图,则A(0,0),B,C(0,t),=(1,0),=(0,1),=(1,0)+4(0,1)=(1,4),∴点P的坐标为(1,4),=(-1,t-4),=1--4t+16=-+17≤-4+17=13.当且仅当=4t,即t=时取“=”,的最大值为13.17.B解析因为M(-3,0),N(3,0),所以=(6,0),||=6,=(x+3,y),=(x-3,y).由||·||+=0,得6+6(x-3)=0,化简得y2=-12x,所以点M是抛物线y2=-12x的焦点,所以点P到M的距离的最小值就是原点到M(-3,0)的距离,所以d min=3.18.42解析设向量a,b的夹角为θ,由余弦定理得|a-b|=,|a+b|=,则|a+b|+|a-b|=令y=,则y2=10+2[16,20],据此可得(|a+b|+|a-b|)max==2,(|a+b|+|a-b|)min==4.即|a+b|+|a-b|的最小值是4,最大值是219.1解析如图,因为E,F分别是AD与BC的中点,所以=0,=0.又因为=0,所以①同理由①+②得,2+()+()=,所以).所以λ=,μ=所以λ+μ=1.20.-2解析i为实数,∴-=0,即a=-2.。
天津市高考数学二轮复习专题一集合、逻辑用语、不等式、向量、复数、算法、推理1.3平面向量与复数课件文

-6-
热点1 热点2 热点3 热点4 热点5
对点训练 1(1)已知点 A(0,1),B(3,2),向量������������=(-4,-3),则向量
+
������������ )=������������
+
������������
=
1 2
(������������
+
������������ )=������������ .
-4-
(2)
如图,由三角形法则可知:
2 ������������ = ������������ + ������������ = ������������ + 3 ������������
为
.
答案:(1)4 2 5 (2)131
-11-
解析: (1)设向量 a,b 的夹角为 θ,由余弦定理得 |a-b|= 12 + 22-2 × 1 × 2 × cos������ = 5-4cos������,
|a+b|= 12 + 22-2 × 1 × 2 × cos(π-������) = 5 + 4cos������,
热点1 热点2 热点3 热点4 热点5
-9-
题后反思平面向量数量积的计算方法: (1)已知向量a,b的模及夹角θ,利用公式a·b=|a||b|cos θ求解. (2)已知向量a,b的坐标,利用数量积的坐标形式求解.即若 a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2. (3)对于向量数量积与线性运算的综合问题,可先利用数量积的运 算律化简,再进行运算.
[高考总复习资料]数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式必考点文1
![[高考总复习资料]数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式必考点文1](https://img.taocdn.com/s3/m/52593729ba1aa8114431d9b4.png)
专题一集合、常用逻辑用语、平面向量、复数、算法、合情推理、不等式必考点一集合、常用逻辑用语[高考预测]——运筹帷幄1.以函数的定义域、值域、不等式的解集等为背景考查集合之间的交集、并集及补集的基本运算.2.利用集合之间的关系求解参数的值或取值范围.3.考查全称命题、特称命题的否定,以及全称命题与特称命题的真假判断.4.考查充分必要条件与集合、函数、方程、数列、三角函数、不等式、平面向量、立体几何中的线面位置关系等相交汇的问题.[速解必备]——决胜千里1.设有限集合A,card(A)=n(n∈N*),则(1)A的子集个数是2n;(2)A的真子集个数是2n-1;(3)A的非空子集个数是2n-1;(4)A的非空真子集个数是2n-2.2.(1)(∁R A)∩B=B⇔B⊆∁R A;(2)A∪B=B⇔A⊆B⇔A∩B=A;(3)∁U(A∪B)=(∁U A)∩(∁U B);(4)∁U(A∩B)=(∁U A)∪(∁U B).3.若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件.[速解方略]——不拘一格类型一集合的概念及运算[例1] (1)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( ) A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}解析:基本法:化简集合B,利用交集的定义求解.由题意知B={x|-2<x<1},所以A∩B={-1,0}.故选A.速解法:验证排除法:∵-1∈B,故排除B、D.∵1∉B,∴1∉A∩B,排除C.答案:A(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )A.1 B.3C.5 D.9解析:基本法:用列举法把集合B中的元素一一列举出来.当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.故选C.速解法一:排除法:估算x-y值的可能性,排除不可能的结果.∵x∈A,y∈A,∴x-y=±1,x-y=±2.B中至少有四个元素,排除A、B,而D选项是9个元素.即3×3更不可能.故选C.速解法二:当x=y时,x-y=0;当x≠y时,x与y可以相差1,也可以相差2,即x-y=±1,x-y=±2.故B中共有5个元素,B={0,±1,±2}.故选C.答案:C错误!1.(2016·河南郑州市高三质检)设全集U={x∈N*|x≤4},集合A={1,4},B={2,4},则∁U(A∩B)=( )A.{1,2,3} B.{1,2,4}C.{1,3,4} D.{2,3,4}解析:基本法:本题主要考查集合的基本运算.因为U={1,2,3,4},A∩B={4},所以∁U(A∩B)={1,2,3},故选A.速解法:∵A∩B={4}.∴4∉∁U(A∩B),排除B、C、D只能选A.答案:A2.(2016·高考全国甲卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=( ) A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}解析:基本法:(直接法)先化简集合B,再利用交集定义求解.∵x2<9,∴-3<x<3,∴B={x|-3<x<3}.又A ={1,2,3},∴A ∩B ={1,2,3}∩{x |-3<x <3}={1,2},故选D. 速解法:(代入检验法)12<9,22<9,32=9,且A ∩B ⊆A . 故A ∩B ={1,2},选D. 答案:D类型二 充分、必要条件[例2] (1) 函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:基本法:利用命题和逆命题的真假来判断充要条件,注意判断为假命题时,可以采用反例法.当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0. 综上知,p 是q 的必要条件,但不是充分条件. 答案:C(2)“x ∈⎣⎢⎡⎦⎥⎤-3π4,π4”是“函数y =sin ⎝⎛⎭⎪⎫x +π4为单调递增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:基本法:若函数y =sin ⎝⎛⎭⎪⎫x +π4为单调递增函数,则-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,即-3π4+2k π≤x ≤π4+2k π,k ∈Z .从而函数y =sin ⎝ ⎛⎭⎪⎫x +π4的单调递增区间是⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ).因此若x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,则函数y =sin ⎝ ⎛⎭⎪⎫x +π4为单调递增函数; 若函数y =sin ⎝ ⎛⎭⎪⎫x +π4为单调递增函数⇒/ x ∈⎣⎢⎡⎦⎥⎤-3π4,π4.所以“x ∈⎣⎢⎡⎦⎥⎤-3π4,π4”是“函数y =sin ⎝⎛⎭⎪⎫x +π4为单调递增函数”的充分不必要条件.故选A.速解法:当x ∈⎣⎢⎡⎦⎥⎤-3π4,π4时⇒x +π4∈⎣⎢⎡⎦⎥⎤-π2,π2⇒y =sin ⎝ ⎛⎭⎪⎫x +π4为增函数,但y =sin ⎝ ⎛⎭⎪⎫x +π4为增函数――→周期性⇒/ x +π4∈⎣⎢⎡⎦⎥⎤-π2,π2⇒/ x ∈⎣⎢⎡⎦⎥⎤-3π4,π4.答案:A方略点评:1.此类问题实质是判断命题真假或条件与结论的推导关系.第(1)题采用了特例(y =x 3)验证,第(2)题采用了“⇒”形式进行简单推理.2.先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .3.准确转化:若綈p 是綈q 的必要不充分条件,则p 是q 的充分不必要条件;若綈p 是綈q 的充要条件,那么p 是q 的充要条件.1.已知x ∈R ,则“x 2-3x >0”是“x -4>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:基本法:判断x 2-3x >0⇒x -4>0还是x -4>0⇒x 2-3x >0.注意到x 2-3x >0⇔x <0或x >3,x -4>0⇔x >4.由x 2-3x >0不能得出x -4>0;反过来,由x -4>0可得出x 2-3x >0,因此“x 2-3x >0”是“x -4>0”的必要不充分条件.故选B. 答案:B速解法:利用反例和实数的运算符号寻找推导关系.如x =4时,满足x 2-3x >0,但不满足x -4>0,即不充分.若x -4>0,则x (x -3)>0,即必要.故选B. 答案:B2.(2016·高考山东卷)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:根据直线、平面的位置关系及充分、必要条件的定义进行判断.由题意知a ⊂α,b ⊂β,若a ,b 相交,则a ,b 有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a ,b 的位置关系可能为平行、相交或异面.因此“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件. 答案:A类型三 命题判定及否定[例3] (1)设命题p :∃n ∈N ,n 2>2n,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:基本法:因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”.故选C.答案:C(2)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ) A .p ∧q B .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )解析:基本法:当x =0时,有2x =3x ,不满足2x <3x ,∴p :∀x ∈R,2x <3x是假命题. 如图,函数y =x 3与y =1-x 2有交点,即方程x 3=1-x 2有解,∴q :∃x ∈R ,x 3=1-x 2是真命题. ∴p ∧q 为假命题,排除A.∵綈p 为真命题,∴(綈p )∧q 是真命题.选B.速解法:当x =0时,不满足2x<3x,∴p 为假,排除A 、C.利用图象可知,q 为真,排除D ,必选B. 答案:B 方略点评:基本法是具体判断p ,綈p ,q ,綈q 的真假.速解法是利用“当p 、q 全真时,p ∧q 为真”的道理,利用逻辑关系排除. 2要判定一个全称命题是真命题,必须对限定集合M 中的每一个元素x 验证p x 成立,要判定其为假命题,只需举出一个反例即可.3要判定一个特称存在性命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p x 0成立即可;否则,这一特称存在性命题就是假命题.特别注意:命题的否命题是既否定命题的条件,又否定命题的结论;而命题的否定是只否定命题的结论.1.(2016·山西四校联考)已知命题p :∃x ∈R,2x >3x;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sinx ,则下列是真命题的是( )A .(綈p )∧qB .(綈p )∨(綈q )C .p ∧(綈q )D .p ∨(綈q )解析:基本法:先判断命题p 、q 的真假,然后根据选项得出正确结论. 当x =-1时,2-1>3-1,所以p 为真命题;当x ∈⎝⎛⎭⎪⎫0,π2时,tan x -sin x =sin x 1-cos xcos x >0,所以q 为真命题,所以p ∨(綈q )是真命题,其他选项都不正确,故选D.速解法:p 为真时,p 或任何命题为真,故选D. 答案:D2.(2016·陕西西安市高三质检)已知命题p :∃x ∈R ,log 2(3x+1)≤0,则( ) A .p 是假命题;綈p :∀x ∈R ,log 2(3x+1)≤0 B .p 是假命题;綈p :∀x ∈R ,log 2(3x +1)>0 C .p 是真命题;綈p :∀x ∈R ,log 2(3x +1)≤0 D .p 是真命题;綈p :∀x ∈R ,log 2(3x +1)>0解析:基本法:本题主要考查命题的真假判断、命题的否定.∵3x>0,∴3x+1>1,则log 2(3x+1)>0,∴p 是假命题;綈p :∀x ∈R ,log 2(3x+1)>0.故应选B. 答案:B[终极提升]——登高博见 选择题、填空题的解法——直接法限时速解训练一 集合、常用逻辑用语(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( )A .{1,3,5,6}B .{2,3,7}C .{2,4,7}D .{2,5,7}解析:选C.由补集的定义,得∁U A ={2,4,7}.故选C.2.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( ) A .-3∈A B .3∉B C .A ∩B =B D .A ∪B =B解析:选C.由题知A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B ,故选C. 3.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]解析:选A.M ={x |x 2=x }={0,1},N ={x |lg x ≤0}= {x |0<x ≤1},M ∪N =[0,1],故选A.4.(2016·山东聊城模拟)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4解析:选D.因为A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},所以⎩⎪⎨⎪⎧a 2=16,a =4,则a =4.5.(2016·湖北八校模拟)已知a ∈R ,则“a >2”是“a 2>2a ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.因为a >2,则a 2>2a 成立,反之不成立,所以“a >2”是“a 2>2a ”成立的充分不必要条件.6.已知集合A ={z ∈C |z =1-2a i ,a ∈R },B ={z ∈C ||z |=2},则A ∩B 等于( ) A .{1+3i,1-3i} B .{3-i} C .{1+23i,1-23i} D .{1-3i}解析:选A.问题等价于|1-2a i|=2,a ∈R ,解得a =±32.故选A. 7.已知命题p :对任意x >0,总有e x≥1,则綈p 为( ) A .存在x 0≤0,使得e x 0<1B .存在x 0>0,使得e x 0<1C .对任意x >0,总有e x<1 D .对任意x ≤0,总有e x<1解析:选B.因为全称命题的否定是特称命题,所以,命题p :对任意x >0,总有e x≥1的否定綈p 为:存在x 0>0,使得e x 0<1.故选B.8.已知命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2>0.下面结论正确的是( ) A .命题“p ∧q ”是真命题 B .命题“p ∧(綈q )”是假命题 C .命题“(綈p )∨q ”是真命题 D .命题“(綈p )∧(綈q )”是假命题解析:选D.取x 0=π4,有tan π4=1,故命题p 是真命题;当x =0时,x 2=0,故命题q 是假命题.再根据复合命题的真值表,知选项D 是正确的. 9.给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >c b”的逆否命题; ④若p 且q 为假命题,则p ,q 均为假命题. 其中真命题是( ) A .①②③ B .①②④ C .①③④ D .②③④解析:选A.①中不等式可表示为(x -1)2+2>0,恒成立; ②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.10.(2016·山东济南模拟)设A ,B 是两个非空集合,定义运算A ×B ={x |x ∈A ∪B ,且x ∉A ∩B }.已知A ={x |y =2x -x 2},B ={y |y =2x ,x >0},则A ×B =( )A .[0,1]∪(2,+∞) B.[0,1)∪[2,+∞) C .[0,1] D .[0,2]解析:选A.由题意得A ={x |2x -x 2≥0}={x |0≤x ≤2},B ={y |y >1},所以A ∪B =[0,+∞),A ∩B =(1,2],所以A ×B =[0,1]或(2,+∞).11.“直线y =x +b 与圆x 2+y 2=1相交”是“0<b <1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.若“直线y =x +b 与圆x 2+y 2=1相交”,则圆心到直线的距离为d =|b |2<1,即|b |<2,不能得到0<b <1;反过来,若0<b <1,则圆心到直线的距离为d =|b |2<12<1,所以直线y =x +b 与圆x 2+y 2=1相交,故选B. 12.(2016·陕西五校二模)下列命题正确的个数是( )①命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x ”;②“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件; ③x 2+2x ≥ax 在x ∈[1,2]上恒成立⇔(x 2+2x )min ≥(ax )max 在x ∈[1,2]上恒成立; ④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”. A .1 B .2 C .3 D .4解析:选B.易知①正确;因为f (x )=cos 2ax ,所以2π|2a |=π,即a =±1,因此②正确;因为x 2+2x ≥ax 在x ∈[1,2]上恒成立⇒a ≤x +2在x ∈[1,2]上恒成立⇒a ≤(x +2)min ,x ∈[1,2],因此③不正确;因为钝角不包含180°,而由a·b <0得向量夹角包含180°,因此“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0且a 与b 不反向”,故④不正确. 二、填空题(把答案填在题中横线上)13.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m+2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)14.若命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,则m 的取值范围是________.解析:由题意,命题“∀x ∈R ,x 2-2x +m >0”是真命题,故Δ=(-2)2-4m <0,即m >1. 答案:(1,+∞)15.已知p :∃x 0∈R ,mx 20+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是________.解析:因为p ∨q 是假命题, 所以p 和q 都是假命题.由p :∃x 0∈R ,mx 20+2≤0为假命题知, 綈p :∀x ∈R ,mx 2+2>0为真命题, 所以m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题知, 綈q :∃x 0∈R ,x 20-2mx 0+1≤0为真命题,所以Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②得m ≥1. 答案:[1,+∞)16.下列四个命题中,真命题有________.(写出所有真命题的序号)①若a ,b ,c ∈R ,则“ac 2>bc 2”是“a >b ”成立的充分不必要条件;②命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”;③命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”;④函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点.解析:①若c =0,则不论a ,b 的大小关系如何,都有ac 2=bc 2,而若ac 2>bc 2,则有a >b ,故“ac 2>bc 2”是“a >b ”成立的充分不必要条件,故①为真命题;②特称命题的否定是全称命题,故命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,故②为真命题;③命题“若p ,则q ”形式的命题的否命题是“若綈p ,则綈q ”,故命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”,故③为真命题;④由于f (1)f (2)=⎝⎛⎭⎪⎫ln 1+1-32⎝ ⎛⎭⎪⎫ln 2+2-32=⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫ln 2+12<0,则函数f (x )=ln x +x -32在区间(1,2)上存在零点,又函数f (x )=ln x +x -32在区间(1,2)上为增函数,所以函数f (x )=ln x+x -32在区间(1,2)上有且仅有一个零点,故④为真命题.答案:①②③④必考点二 平面向量、复数运算[高考预测]——运筹帷幄1.用平面向量的几何运算、坐标运算进行线性运算和数量积的运算. 2.复数的代数形式的四则运算及几何意义. [速解必备]——决胜千里1.向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP →=λ1OA →+λ2OB →(其中λ1+λ2=1).2.三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP →与向量OA →、OB →的关系是OP →=12(OA →+OB →).3.三角形重心坐标的求法:G 为△ABC 的重心⇔GA →+GB →+GC →=0⇔G ⎝ ⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3.OA →·OB →=OB →·OC →=OC →·OA →⇔O 为△ABC 垂心. 4.a ⊥b ⇔a ·b =0(a ≠0,b ≠0). 5.i 4n=1,i4n +1=i ,i4n +2=-1,i4n +3=-i.6.z ·z =|z |2,(1+i)2=2i ,(1-i)2=-2i ,1+i 1-i =i ,1-i 1+i =-i.[速解方略]——不拘一格类型一 平面向量的概念及线性运算[例1] (1)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)解析:基本法:设C (x ,y ),则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A.速解法:∵AB →=(3,2)-(0,1)=(3,1), BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 答案:A方略点评:1.基本法是设出点C 坐标,并利用AC →=(-4,-3)求出点C 坐标,然后计算BC →的坐标.速解法是利用向量减法的意义:BC →=AC →-AB →.2.向量的三角形法则要保证各向量“首尾相接”;平行四边形法则要保证两向量“共起点”,结合几何法、代数法(坐标)求解.(2)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.AD →B.12AD →C.BC →D.12BC →解析:基本法一:设AB →=a ,AC →=b ,则EB →=-12b +a ,FC →=-12a +b ,从而EB →+FC →=⎝ ⎛⎭⎪⎫-12b +a +⎝ ⎛⎭⎪⎫-12a +b =12(a +b )=AD →,故选A.基本法二:如图,EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →. 答案:A方略点评:基本法一是利用了基本定理运算.基本法二是利用了三角形法则进行运算.1.(2016·河北唐山市高三统考)在等腰梯形ABCD 中,AB →=-2CD →,M 为BC 的中点,则AM →=( )A.12AB →+12AD →B.34AB →+12AD →C.34AB →+14AD →D.12AB →+34AD → 解析:基本法:由于M 为BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B. 答案:B2.(2016·高考全国甲卷)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:基本法:∵a ∥b ,∴a =λb 即(m,4)=λ(3,-2)=(3λ,-2λ)∴⎩⎪⎨⎪⎧m =3λ,4=-2λ,故m =-6.速解法:根据向量平行的坐标运算求解: ∵a =(m,4),b =(3,-2),a ∥b ∴m ×(-2)-4×3=0 ∴-2m -12=0,∴m =-6. 答案:-6类型二 平面向量数量积的计算与应用[例2] (1)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2解析:基本法:因为2a +b =2(1,-1)+(-1,2)=(2,-2)+(-1,2)=(1,0),所以(2a +b )·a =(1,0)·(1,-1)=1×1+0×(-1)=1.故选C. 速解法:∵a =(1,-1),b =(-1,2),∴a 2=2,a·b =-3, 从而(2a +b )·a =2a 2+a·b =4-3=1.故选C. 答案:C方略点评:1.基本法是把2a +b 看作一个向量,求其坐标,最终用坐标法求数量积.速解法是通过展开(2a +b )·b ,分别计算a 2及a ·b ,较简单.2.当向量以几何图形的形式(有向线段)出现时,其数量积的计算可利用定义法;当向量以坐标形式出现时,其数量积的计算用坐标法;如果建立坐标系,表示向量的有向线段可用坐标表示,计算向量较简单.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 解析:基本法:以AB →、AD →为基底表示AE →和BD →后直接计算数量积. AE →=AD →+12AB →,BD →=AD →-AB →,∴AE →·BD →=⎝ ⎛⎭⎪⎫AD →+12AB →·(AD →-AB →)=|AD →|2-12|AB →|2=22-12×22=2.速解法:(坐标法)先建立平面直角坐标系,结合向量数量积的坐标运算求解.如图,以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,建立平面直角坐标系,则A (0,0),B (2,0),D (0,2),E (1,2),∴AE →=(1,2),BD →=(-2,2), ∴AE →·BD →=1×(-2)+2×2=2. 答案:2方略点评:1.向量的模的求法一是根据向量的定义,二是将向量的模转化为三角形的某条边求其长.2.求非零向量a ,b 的夹角一般利用公式cos 〈a ,b 〉=a ·b|a ||b |先求出夹角的余弦值,然后求夹角.也可以构造三角形,将所求夹角转化为三角形的内角求解,更为直观形象.1.(2016·高考全国丙卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30° B.45° C .60° D.120°解析:基本法:根据向量的夹角公式求解.∵BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,∴|BA →|=1,|BC →|=1,BA →·BC →=12×32+32×12=32,∴cos ∠ABC =cos 〈BA →,BC →〉=BA →·BC →|BA →|·|BC →|=32.∵0°≤〈BA →,BC →〉≤180°,∴∠ABC =〈BA →,BC →〉=30°.速解法:如图,B 为原点,则A ⎝ ⎛⎭⎪⎫12,32∴∠ABx =60°,C ⎝ ⎛⎭⎪⎫32,12∠CBx =30°,∴∠ABC =30°. 答案:A2.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b·c =0,则t =________. 解析:基本法:∵b ·c =0,∴b ·[t a +(1-t )b ]=0,t a·b +(1-t )·b 2=0, 又∵|a |=|b |=1,〈a ,b 〉=60°, ∴12t +1-t =0,t =2. 速解法:由t +(1-t )=1知向量a 、b 、c 的终点A 、B 、C 共线,在平面直角坐标系中设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,则c =⎝ ⎛⎭⎪⎫32,-32.把a 、b 、c 的坐标代入c =t a +(1-t )b ,得t =2.答案:2类型三 复数的代数运算及几何意义[例3] (1)设复数z 满足1+z1-z =i ,则|z |=( )A .1 B. 2 C. 3 D .2解析:基本法:由已知1+z1-z =i ,可得z =i -1i +1=-2+-=-2i -2=i ,∴|z |=|i|=1,故选A. 速解法:∵1+i1-i =i ,∴z =i ,∴|z |=1.答案:A方略点评:1.基本法是利用解方程思想求出未知数z . 速解法是利用了一个常用特殊运算结果直接得出z .2.复数的代数形式的运算,类比于多项式的乘除法与合并同类项,只是利用z z =|z |2,把i 2换为-1,复数除法的关键是将分母实数化.3.与复数的模、共轭复数、复数相等有关的问题,可设z =a +b i(a ,b ∈R ),利用待定系数法求解.(2)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1 D .2解析:基本法:∵(2+a i)(a -2i)=-4i ⇒4a +(a 2-4)i =-4i ,∴⎩⎪⎨⎪⎧4a =0,a 2-4=-4,解得a =0.速解法:检验法:将a =0代入适合题意,故选B. 答案:B方略点评:1.基本法是利用复数相等的条件求解,速解法是代入检验排除法,较简单.2.利用复数相等转化为实数运算是复数实数化思想的具体应用,是解决复数问题的常用方法.1.(2016·高考全国乙卷)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A .-3 B .-2 C .2 D .3解析:基本法:先化简复数,再根据实部与虚部相等列方程求解.(1+2i)(a +i)=a -2+(1+2a )i ,由题意知a -2=1+2a ,解得a =-3,故选A. 答案:A2.若a 为实数,且2+a i 1+i =3+i ,则a =( )A .-4B .-3C .3D .4解析:基本法:由已知得2+a i =(1+i)(3+i)=2+4i ,所以a =4,故选D. 答案:D[终极提升]——登高博见 速解选择题方法——排除法限时速解训练二 平面向量、复数运算(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.若复数z =i(3-2i)(i 是虚数单位),则z =( ) A .2-3i B .2+3i C .3+2i D .3-2i解析:选A.∵z =i(3-2i)=3i -2i 2=2+3i ,所以z =2-3i ,故选A. 2.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形解析:选C.由(BC →+BA →)·AC →=|AC →|2得(BC →+BA →-AC →)·AC →=0,则2BA →·AC →=0,即BA ⊥AC ,故选C. 3.已知-2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i解析:选D.z =-21+i=-2i 1+i =--1+i 1-i=-1-i. 4.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( ) A .-32a 2 B .-34a 2C.34a 2D.32a 2解析:选D.BD →·CD →=(BC →+CD →)·CD →=BC →·CD →+CD →2=12a 2+a 2=32a 2.5.(2016·广西南宁适应性测试)已知i 是虚数单位,z 是复数z 的共轭复数,若(1-i)z =2,则z 为( ) A .1+i B .1-i C .2+i D .2-i 解析:选B.依题意得z =21-i =+1-i 1+i=1+i ,∴z =1-i ,选B. 6.若向量AB →=(2,4),AC →=(1,3),则BC →=( ) A .(1,1) B .(-1,-1) C .(3,7) D .(-3,-7)解析:选B.因为AB →=(2,4),AC →=(1,3),所以BC →=AC →-AB →=(1,3)-(2,4)=(-1,-1),故选B.7.i 为虚数单位,则⎝ ⎛⎭⎪⎫1+i 1-i 2 018=( )A .-iB .-1C .iD .1 解析:选B.因为⎝⎛⎭⎪⎫1+i 1-i 2 018=(i 2)1 009=(-1)1 009=-1.8.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152C .-322D .-3152解析:选A.AB →=(2,1),CD →=(5,5),|CD →|=52, 故AB →在CD →上的投影为AB →·CD →|CD →|=1552=32 2.9.(2016·陕西西安质检)设复数z 1和z 2在复平面内的对应点关于坐标原点对称,且z 1=3-2i ,则z 1·z 2=( ) A .-5+12i B .-5-12i C .-13+12i D .-13-12i解析:选A.z 1=3-2i ,由题意知z 2=-3+2i , ∴z 1·z 2=(3-2i)·(-3+2i)=-5+12i ,故选A.10.(2016·辽宁沈阳质检)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259 D.269解析:选B.由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,它们的长不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 所在直线为x 轴,以AB 所在直线为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨令E 为BC 的靠近C 的三等分点,则E ⎝ ⎛⎭⎪⎫23,23, F ⎝ ⎛⎭⎪⎫13,43,所以AE →=⎝ ⎛⎭⎪⎫23,23,AF →=⎝ ⎛⎭⎪⎫13,43,所以AE →·AF →=23×13+23×43=109.11.(2016·辽宁五校联考)已知复数z =1+i ,则z 2-2zz -1=( )A .-2iB .2iC .-2D .2解析:选B.z 2-2z z -1=1+i2-21+i i =-2i=2i ,故选B.12.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( ) A. 5 B.10 C .2 5 D .10解析:选B.由⎩⎪⎨⎪⎧a ⊥c ,b ∥c ⇒⎩⎪⎨⎪⎧2x -4=0,2y +4=0⇒⎩⎪⎨⎪⎧x =2,y =-2,∴a =(2,1),b =(1,-2),a +b =(3,-1), ∴|a +b |=10,故选B.二、填空题(把答案填在题中横线上)13.已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 解析:∵λa +b =0,即λa =-b ,∴|λ||a |=|b |. ∵|a |=1,|b |=5,∴|λ|= 5. 答案: 514.设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=__________.解析:复数a +b i(a ,b ∈R )的模为a 2+b 2=3,则a 2+b 2=3,则(a +b i)(a -b i)=a 2-(b i)2=a 2-b 2·i 2=a 2+b 2=3. 答案:315.已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=__________. 解析:∵OA →⊥AB →,∴OA →·AB →=0, 即OA →·(OB →-OA →)=0, ∴OA →·OB →=OA →2=9. 答案:916.i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________. 解析:∵(1-2i)(a +i)=2+a +(1-2a )i 为纯虚数,∴⎩⎪⎨⎪⎧1-2a ≠0,2+a =0,解得a =-2.答案:-2必考点三 算法、框图与推理[高考预测]——运筹帷幄1.根据框图的程序进行结果的求解,判断条件的补写、完善过程. 2.以数表、数阵、图形、代数式为背景进行归纳推理与类比推理. [速解必备]——决胜千里 1.程序框图中有S =S +12i -12i +1,i =i +1时,表示数列裂项求和.2.程序中有“S =S +2n+n ,n =n +1”表示等比数列与等差数列求和. 3.三角形数N (n,3)=12n 2+12n (第n 个三角形数)四边形数N (n,4)=n 2(第n 个四边形数) 五边形数N (n,5)=32n 2+-12n (第n 个五边形数)k 边形数N (n ,k )=⎝ ⎛⎭⎪⎫k 2-1n 2-⎝ ⎛⎭⎪⎫k 2-2n (k ≥3)(第n 个k 边形数)4.类比推理常见的类比内容 平面几何中的点↔空间几何中的线 平面几何中的线↔空间几何中的面 平面几何中的三角形↔空间几何中的三棱锥 平面几何中的圆↔空间几何中的球 [速解方略]——不拘一格类型一 求算法与框图的输入或输出值[例1] (1)执行下面的程序框图,如果输入的t =0.01,则输出的n =( )A .5B .6C .7D .8解析:基本法:逐次运行程序,直至输出n . 运行第一次:S =1-12=12=0.5,m =0.25,n =1,S >0.01;运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S >0.01;运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S >0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S >0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S >0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S >0.01;运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S <0.01.输出n =7.故选C.速解法:由框图可知S =1-121-122-123-124-…-12n=1-12⎝ ⎛⎭⎪⎫1-12n 1-12=12n ≤0.01输出n ,∴2n≥100,∴n 的最小值为7. 答案:C方略点评:1.基本法是按程序一次次循环计算,当不满足条件时跳出循环得出结果. 2.速解法是归纳S =S -m 的运算规律利用数列求和进行估算,稍简单一点.(2)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =()A .0B .2C .4D .14解析:基本法:逐次运行程序,直至程序结束得出a 值.a =14,b =18.第一次循环:14≠18且14<18,b =18-14=4; 第二次循环:14≠4且14>4,a =14-4=10; 第三次循环:10≠4且10>4,a =10-4=6; 第四次循环:6≠4且6>4,a =6-4=2; 第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a =b =2,跳出循环,输出a =2,故选B.速解法:“更相减损术”是求两个正整数的最大公约数,本题求14,18的最大公约数,结合选项知为2,选B. 答案:B方略点评:1.基本法是按更相减损术的运算过程逐步求解.速解法是利用更相减损术的作用和公约数的定义直接得答案,显然简单.2.求输出结果的题目,要认清输出变量是什么,有的是求函数值,有的是求和、差、积、商的运算结果,有的是计数变量等.1.(2016·高考全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7 B.12C.17 D.34解析:基本法:逐次运行程序,直到满足条件时输出s值终止程序.输入x=2,n=2.第一次,a=2,s=2,k=1,不满足k>n;第二次,a=2,s=2×2+2=6,k=2,不满足k>n;第三次,a=5,s=6×2+5=17,k=3,满足k>n,输出s=17.答案:C2.阅读如图所示的程序框图,运行相应的程序.如果输入某个正整数n后,输出的S∈(10,20),那么n的值为( )A.3 B.4C .5D .6解析:基本法:依据初始条件,逐步求出S 的值,判断n 的值. 由S =0,k =1得S =1,k =2,应该为否,即2≤n ⇒S =1+2×1=3,k =3为否,即3≤n ⇒S =1+2×3=7,k =4为否,即4≤n ⇒S =1+2×7=15,k =5为是,即5>n 综上,4≤n <5,∴n =4.故选B.速解法:先读出框图的计算功能,再结合等比数列求和公式求解. 框图功能为求和,即S =1+21+22+…+2n -1.由于S =-2n1-2=2n-1∈(10,20),∴10<2n-1<20,∴11<2n<21, ∴n =4,即求前4项和.∴判断框内的条件为k >4,即n =4.故选B. 答案:B类型二 补写、完善程序框图[例2] (1)执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( )A .s ≤34?B .s ≤56?C .s ≤1112?D .s ≤2524?解析:基本法:由s =0,k =0满足条件,则k =2,s =12,满足条件;k =4,s =12+14=34,满足条件;k =6,s =34+16=1112,满足条件;k =8,s =1112+18=2524,不满足条件,输出k =8,所以应填s ≤1112.速解法:由题意可知S =12+14+16+18=2524,此时输出8,是不满足条件,故选C.答案:C方略点评:基本法是按程序过程逐步判断是否满足条件速解法是归纳了s =s +1k的作用求和直接验算.(2)阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( )解析:基本法:当i =2时,S =2×2+1=5<10;当i =3时,仍然循环,排除D ;当i =4时,S =2×4+1=9<10;当i =5时,不满足S <10,即此时S ≥10,输出i .此时A 项求得S =2×5-2=8,B 项求得S =2×5-1=9,C 项求得S =2×5=10,故只有C 项满足条件.故选C.答案:C方略点评:1.基本法是根据框图的程序对i 的取值验证,速解法是根据当s ≥10时,输出的i 值验证答案.2.循环结构有当型循环和直到型循环.当型循环是当满足条件时执行循环体.直到型循环是直到满足条件时才跳出循环.3.首先看懂每个图形符号的意义和作用,其次试走几步循环体,体会循环体的内容和功能,最后利用判断框中的条件确定循环的次数.1.给出30个数:1,2,4,7,11,16,…,要计算这30个数的和.下图给出了该问题的程序框图,那么框图中判断框①处和执行框②处可以分别填入( )A.i≤30?和p=p+i-1B.i≤31?和p=p+i+1C.i≤31?和p=p+iD.i≤30?和p=p+i解析:基本法:由题可知,程序要执行30次.所以①处应填i≤30?,②处应填p=p+i. 答案:D2.如图,给出的是计算12+14+16+…+12 016的值的程序框图,其中判断框内应填入的是( )A.i≤2 021? B.i≤2 019?C.i≤2 017? D.i≤2 015?解析:基本法:由题知,判断框内可填“i≤2016?”或“i≤2017?”或“i<2017?”或“i<2018?”,故选C.答案:C类型三合情推理、演绎推理[例3] (1)(2016·高考全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析:基本法:根据丙的说法及乙看了丙的卡片后的说法进行推理.由丙说“我的卡片上的数字之和不是5”,可推知丙的卡片上的数字是1和2或1和3.又根据乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”可知,乙的卡片不含1,所以乙的卡片上的数字为2和3.再根据甲的说法“我与乙的卡片上相同的数字不是2”可知,甲的卡片上的数字是1和3. 答案:1和3 (2)观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …,照此规律, 第n 个等式可为________. 解析:基本法:12=1, 12-22=-(1+2), 12-22+32=1+2+3,12-22+32-42=-(1+2+3+4), …,12-22+32-42+…+(-1)n +1n 2=(-1)n +1(1+2+…+n )=(-1)n +1n n +2.速解法:设a 1=1,a 2=3,a 3=6,a 4=10 即a 1=+2,a 2=+2, a 3=+2,a 4=+2,其符号规律为(-1)n +1∴第n 个等式右侧为(-1)n +1n n +2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1n n +2方略点评:1.基本法是分析式子的特点归纳出运算方法,利用数列求和. 速解法是直接归纳“=”右侧的数字规律,较为简单.2.在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.3.在进行类比推理时,要充分考虑已知对象性质的推理过程,然后通过类比,推导出类比对象的性质.4.归纳推理关键是找规律,类比推理关键是看共性.1.观察下列等式 1-12 =12 , 1-12 +13-14=13+14, 1-12 +13-14+15-16=14+15+16, …,据此规律,第n 个等式可为________________________.解析:基本法:规律为等式左边共有2n 项且等式左边分母分别为1,2,…,2n ,分子为1,奇数项为正、偶数项为负,即为1-12+13-14+…+12n -1-12n ;等式右边共有n 项且分母分别为n +1,n +2,…,2n ,分子为1,即为1n +1+1n +2+…+12n .所以第n 个等式可为1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n. 答案:1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)2.在平面几何中:△ABC 的∠C 的平分线CE 分AB 所成的线段的比为AC BC =AEBE(如图1).把这个结论类比到空间:在三棱锥A BCD 中(如图2),面DEC 平分二面角A CD B 且与AB 相交于E ,则类比得到的结论是________.解析:基本法:由平面中线段的比类比空间中面积的比可得AE EB =S △ACDS △BCD.答案:AE EB =S △ACDS △BCD[终极提升]——登高博见求解选择题,填空题的方法——特例法限时速解训练三算法、框图及推理(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的)1.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( ) A.8 B.9C.10 D.11解析:选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.2.下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:选B.对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大前提错误,故选B.。
高考数学文二轮复习讲义:第二编 专题一集合、常用逻辑用语 第二讲 向量、复数、算法、合情推理 含解析
第二讲 向量、复数、算法、合情推理必记公式]1.两个非零向量平行、垂直的充要条件若a =(x 1,y 1),b =(x 2,y 2),则①a ∥b ⇔a =λb (b ≠0,λ∈R )⇔x 1y 2-x 2y 1=0.②a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.复数的四则运算法则(a +b i)±(c +d i)=(a ±c )+(b ±d )i(a ,b ,c ,d ∈R ).(a +b i)(c +d i)=(ac -bd )+(bc +ad )i.(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -ad c 2+d 2i(a ,b ,c ,d ∈R ,c +d i ≠0). 重要结论]1.若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是 λ+μ=1.3.平面向量的三个性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)设θ为a 与b (a ≠0,b ≠0)的夹角,且a =(x 1,y 1),b =(x 2,y 2),则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. 4.复数运算中常用的结论①(1±i)2=±2i ;②1+i 1-i =i ;③1-i 1+i =-i ;④-b +a i =i(a +b i);⑤i 4n =1,i 4n +1=i ;i 4n +2=-1,i 4n +3=-i ,其中n ∈N *.5.归纳推理的思维过程 实验、观察―→概括、推广―→猜测一般性结论 6.类比推理的思维过程实验、观察―→联想、类推―→猜测新的结论失分警示]1.遇到i 2,忘记应化为-1,要注意i 的周期性.2.虚数与纯虚数的条件不要弄混,当b ≠0时,复数z =a +b i(a ,b ∈R )叫做虚数;当a =0且b ≠0时,复数z =a +b i 叫做纯虚数.3.读不懂程序框图的逻辑顺序,不能准确把握判断框中的条件.4.分不清当型循环与直到型循环,不注意控制循环的变量是什么,不清楚何时退出循环、循环体内的程序是什么.考点平面向量的运算及应用典例示法题型1 向量的概念及线性运算典例1 2015·北京高考]在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =______,y =________.解析] 由AM →=2MC →知M 为AC 上靠近C 的三等分点,由BN →=NC →知N 为BC 的中点,作出草图如下:则有AN →=12(AB →+AC →),所以MN →=AN →-AM →=12(AB →+AC →)-23AC →=12AB →-16AC →,又因为MN →=xAB →+yAC →,所以x =12,y =-16.答案] 12 -16题型2 向量的数量积典例2 2015·广东高考]在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.解] (1)∵m ⊥n ,∴m ·n =0. 故22sin x -22cos x =0,∴tan x =1.(2)∵m 与n 的夹角为π3,∴cos 〈m ,n 〉=m ·n |m ||n |=22sin x -22cos x 1×1=12, 故sin ⎝ ⎛⎭⎪⎫x -π4=12.又x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,x -π4=π6,即x =5π12,故x 的值为5π12.题型3 平面向量的综合应用典例3 2016·江苏高考]如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.解析] 解法一:以D 为坐标原点,BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,设B (-a,0),C (a,0),A (b ,c ),则E ⎝ ⎛⎭⎪⎫23b ,23c ,F ⎝ ⎛⎭⎪⎫13b ,13c ,BA →=(b +a ,c ),CA →=(b -a ,c ),BF →=⎝ ⎛⎭⎪⎫b 3+a ,c 3,CF →=⎝ ⎛⎭⎪⎫b 3-a ,c 3,BE →=⎝ ⎛⎭⎪⎫23b +a ,23c ,CE →=⎝ ⎛⎭⎪⎫23b -a ,23c ,由BA →·CA →=b 2-a 2+c 2=4,BF →·CF →=b 29-a 2+c 29=-1,解得b 2+c 2=458,a 2=138,则BE →·CE →=49(b 2+c 2)-a 2=78.解法二:设BD →=a ,DF →=b ,则BA →·CA →=(a +3b )·(-a +3b )=9|b |2-|a |2=4,BF →·CF →=(a +b )·(-a +b )=|b |2-|a |2=-1,解得|a |2=138,|b |2=58,则BE →·CE →=(a +2b )·(-a +2b )=4|b |2-|a |2=78.答案] 781.解决平面向量及线性运算问题应注意的几点(1)a ∥b ⇔a =λb (b ≠0)是判定两个向量共线的重要依据.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(3)若a 与b 不共线且λa =μb ,则λ=μ=0.(4)OA →=λOB →+μOC →(λ,μ为实数),若A 、B 、C 三点共线,则λ+μ=1.(5)平面向量的线性运算包括向量的加法、向量的减法及实数与向量的积,在解决这类问题时,经常出现的错误有:忽视向量的起点与终点,导致加法与减法混淆;错用数乘公式.对此,要注意三角形法则和平行四边形法则适用的条件.2.数量积、模和夹角的问题(1)涉及数量积和模的计算问题,通常有两种求解思路:①直接利用数量积的定义;②建立坐标系,通过坐标运算求解.(2)在利用数量积的定义计算时,要善于将相关向量分解为图形中模和夹角已知的向量进行计算.,求平面向量的模时,常把模的平方转化为向量的平方.(3)两个向量夹角的范围是0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.3.解向量与其他知识的综合问题应注意向量、不等式、解三角形的结合是现在高考的主流趋势,对于向量而言,要掌握相关的夹角、模、垂直、平行等重要公式.而在三角形中有关最值的求解通常借助于正弦型或余弦型函数的范围,或归结为二次函数的最值、或利用基本不等式等进行,无论采用哪种形式,都要强调变量的范围.处理三角形中的问题也要注意灵活地边角转化,并且注意一些隐含条件,如内角和为180°、大角对大边等内在属性.考点复数的概念及运算典例示法典例4 (1)2016·全国卷Ⅰ]设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( )A .1 B. 2 C. 3 D .2 解析] 因为(1+i)x =x +x i =1+y i ,所以x =y =1,|x +y i|=|1+i|=12+12=2,选B.答案] B(2)2015·郑州质检二]设i 是虚数单位,复数z =2i 1+i,则|z |=( ) A .1 B. 2 C. 3D .2解析] |z |=⎪⎪⎪⎪⎪⎪⎪⎪2i 1+i =22= 2.答案] B本例条件不变求z ?答案 1-i解析 由z =2i 1+i=2i (1-i )2=1+i ,所以z =1-i.复数的基本概念与运算问题的解题思路(1)与复数的相关概念和复数的几何意义有关的问题,一般是先变形分离出实部和虚部,把复数的非代数形式化为代数形式,然后再根据条件,列方程(组)求解.(2)与复数z 的模|z |和共轭复数有关的问题,一般都要先设出复数z 的代数形式z =a +b i(a ,b ,∈R ),代入条件,用待定系数法解决.针对训练1.2015·安徽高考]设i 是虚数单位,则复数2i 1-i在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,其在复平面内所对应的点位于第二象限.2.2016·天津高考]已知a ,b ∈R ,i 是虚数单位.若(1+i)(1-b i)=a ,则a b 的值为________.答案 2解析 (1+i)(1-b i)=1+b +(1-b )i =a ,所以b =1,a =2,a b =2.考点程序框图典例示法题型1 求输入或输出的值典例5 2016·全国卷Ⅰ]执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x解析] 输入x =0,y =1,n =1,得x =0,y =1,x 2+y 2=1<36,不满足条件,执行循环:n =2,x =12,y =2,x 2+y 2=14+4<36,不满足条件,执行循环:n =3,x =12+1=32,y =6,x 2+y 2=94+36>36,满足条件,结束循环,所以输出的x =32,y =6,满足y =4x ,故选C.答案] C题型2 完善程序框图典例6 2015·重庆高考]执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( )A .s ≤34B .s ≤56C .s ≤1112D .s ≤2524解析] 第一次循环,得k =2,s =12;第二次循环,得k =4,s=12+14=34;第三次循环,得k =6,s =34+16=1112;第四次循环,得k =8,s =1112+18=2524,此时退出循环,输出k =8,所以判断框内可填入的条件是s ≤1112,故选C.答案] C解答程序框图(流程图)问题的关注点(1)首先要读懂程序框图,要熟练掌握程序框图的三种基本结构,特别是循环结构,在如累加求和、累乘求积、多次输入等有规律的科学计算中,都有循环结构.(2)准确把握控制循环的变量,变量的初值和循环条件,弄清在哪一步结束循环;弄清循环体和输入条件、输出结果.(3)对于循环次数比较少的可逐步写出,对于循环次数较多的可先依次列出前几次循环结果,找出规律.提醒:解答循环结构的程序框图(流程图)问题要注意输出循环次数的情况,防止多一次或少一次的错误.考点合情推理典例示法题型1 利用归纳推理求解相关问题典例7 2016·河南郑州联考]观察下列等式:1=13+5=85+7+9=217+9+11+13=409+11+13+15+17=65……按此规律,第12个等号的等号右边等于________.解析] 从题中可找出规律,第n 行等号左边的式子是首项为2n -1的连续n 个奇数之和,所以第12个等式的等号右边=左边=23+25+…+45=12×(23+45)2=408. 答案] 408题型2 利用类比推理求解相关问题典例8 2015·衡水中学调研]椭圆中有如下结论:椭圆x 2a 2+y 2b 2=1(a >b >0)上斜率为1的弦的中点在直线x a 2+yb 2=0上,类比上述结论:双曲线x 2a 2-y 2b 2=1(a >0,b >0)上斜率为1的弦的中点在直线________上.解析] 将椭圆方程x 2a 2+y 2b 2=1中的x 2变为x ,y 2变为y ,右边变为0,得到椭圆x 2a 2+y 2b 2=1上斜率为1的弦的中点在直线x a 2+yb 2=0上.类比上述结论,将双曲线的方程作上述变换可知,双曲线x 2a 2-y 2b 2=1上斜率为1的弦的中点在直线x a 2-yb 2=0上.不妨设弦的两个端点为(x 1,y 1),(x 2,y 2),则y 2-y 1x 2-x 1=1,弦中点设为(x 0,y 0),则x 0=x 1+x 22,y 0=y 1+y 22.将上述两端点代入双曲线方程,得⎩⎪⎨⎪⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1,两式相减,得x 22-x 21a 2-y 22-y 21b 2=0,即(x 2-x 1)(x 2+x 1)a 2-(y 2-y 1)(y 2+y 1)b 2=0, 所以(x 2-x 1)(x 2+x 1)a 2-(x 2-x 1)(y 2+y 1)b 2=0, 化简,得x 2+x 1a 2-y 2+y 1b 2=0,2x 0a 2-2y 0b 2=0, 所以x 0a 2-y 0b 2=0,于是(x 0,y 0)在直线x a 2-yb 2=0上.答案] x a 2-yb 2=0合情推理的解题思路(1)在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.(2)在进行类比推理时,要充分考虑已知对象性质的推理过程,然后通过类比,推导出类比对象的性质.(3)归纳推理关键是找规律,类比推理关键是看共性.全国卷高考真题调研]1.2015·全国卷Ⅰ]设复数z 满足1+z1-z =i ,则|z |=( )A .1 B. 2 C. 3 D .2答案 A解析 由题意知1+z =i -z i ,所以z =i -1i +1=(i -1)2(i +1)(i -1)=i ,所以|z |=1.2.2015·全国卷Ⅰ]设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC → 答案 A解析 由题意得AD →=AC →+CD →=AC →+13BC →=AC →+13AC →-13AB →=-13AB →+43AC →,故选A.3.2015·全国卷Ⅰ]执行如图所示的程序框图,如果输入的t =0.01,则输出的n =( )A .5B .6C .7D .8答案 C解析 由程序框图可知,S =1-12=12,m =14,n =1,12>0.01; S =12-14=14,m =18,n =2,14>0.01; S =14-18=18,m =116,n =3,18>0.01; S =18-116=116,m =132,n =4,116>0.01; S =116-132=132,m =164,n =5,132>0.01; S =132-164=164,m =1128,n =6,164>0.01; S =164-1128=1128,m =1256,n =7,1128<0.01.故选C.4.2016·全国卷Ⅰ]设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________.答案 -2解析 由|a +b |2=|a |2+|b |2得a ⊥b ,则m +2=0,所以m =-2.其它省市高考题借鉴]5.2016·天津高考]阅读如图所示的程序框图,运行相应的程序,则输出S 的值为( )A .2B .4C .6D .8答案 B解析 第一次循环,S =8,n =2;第二次循环,S =2,n =3;第三次循环,S =4,n =4,故输出S 的值为4.6.2015·陕西高考]观察下列不等式: 1-12=12,1-12+13-14=13+14,1-12+13-14+15-16=14+15+16, …据此规律,第n 个等式可为____________________. 答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n解析 等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n .一、选择题1.2016·沈阳质检]已知i 为虚数单位,则复数21-i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 本题主要考查复数的计算和复平面的概念.21-i =1+i ,其在复平面内对应的点为(1,1),故选A.2.2016·太原一模]已知复数z =1+2i2-i (i 为虚数单位),则z 的虚部为( )A .-1B .0C .1D .i答案 C解析 z =(1+2i )(2+i )(2-i )(2+i )=2+5i +2i 24-i 2=i ,所以z 的虚部是1. 3.2016·唐山统考]在等腰梯形ABCD 中,AB →=-2CD →,M 为BC 的中点,则AM →( )A.12AB →+12AD →B.34AB →+12AD →C.34AB →+14AD →D.12AB →+34AD →答案 B解析 本题主要考查平面向量的加减运算.因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12⎝⎛⎭⎪⎪⎫AB →+AD →+12AB →=34AB →+12AD →,故选B.4.2016·沈阳质检]已知两个非零向量a ,b 满足a ·(a -b )=0,且2|a |=|b |,则〈a ,b 〉=( )A .30°B .60°C .120°D .150°答案 B解析 本题主要考查平面向量数量积的运用.由题知a 2=a ·b ,而cos 〈a ,b 〉=a ·b |a ||b |=|a |22|a |2=12,所以〈a ,b 〉=60°,故选B.5.2016·郑州质检]按如下程序框图,若输出结果为273,则判断框内应补充的条件为( )A .i >7B .i ≥7C .i >9D .i ≥9答案 B解析本题主要考查程序框图的应用.由程序框图可知:第一步,S=0+31=3,i=3;第二步,S=3+33=30,i=5;第三步,S=30+35=273,i=7.故判断框内可填i≥7,选B.6.2016·贵阳质检]阅读如图所示的程序框图,为使输出的数据为31,则①处应填的表达式为()A.i≤3 B.i≤4C.i≤5 D.i≤6答案 B解析本题主要考查程序框图.第一次循环,得S=3,i=2;第二次循环,得S=7,i=3;第三次循环,得S=15,i=4;第四次循环,得S=31,此时满足题意,输出的S=31,所以①处可填i≤4,故选B.7.2016·重庆检测]执行如图所示的程序框图,则输出s的值为()A .-7B .-5C .2D .9答案 A解析 本题主要考查程序框图.依题意,执行题中的程序框图,k =-4<0,s =-1×(-4)=4,k =-4+2=-2;k =-2<0,s =4×(-2)=-8,k =-2+2=0;k =0≥0,s =-8+0=-8,k =0+1=1;k =1<2,s =-8+1=-7,k =1+1=2≥2,此时结束循环,输出s 的值为-7,选A.8.在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14.推广到空间可以得到类似结论,已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2等于( )A.18B.19C.127D.164答案 C解析 从平面图形类比空间图形,从二维类比三维,如图,设正四面体的棱长为a ,E 为等边三角形ABC 的中心,O 为内切球与外接球球心.则AE =33a ,DE =63a ,设OA =R ,OE =r , 则OA 2=AE 2+OE 2,即R 2=⎝ ⎛⎭⎪⎫63a -R 2+⎝ ⎛⎭⎪⎫33a 2,∴R =64a ,r =612a ,∴正四面体的外接球和内切球的半径之比为3∶1,故正四面体P -ABC 的内切球体积V 1与外接球体积V 2之比等于127.9.已知a ,b 是两个互相垂直的单位向量,且c·a =c·b =1,则对任意的正实数t ,⎪⎪⎪⎪⎪⎪c +t a +1t b 的最小值是( )A .2B .2 2C .4D .4 2答案 B解析 设a =(1,0),b =(0,1),则c =(1,1), 代入得c +t a +1t b =⎝ ⎛⎭⎪⎫1+t ,1+1t , 所以⎪⎪⎪⎪⎪⎪c +t a +1t b =(1+t )2+⎝⎛⎭⎪⎫1+1t 2 =t 2+1t 2+2t +2t +2≥2 2.10.2016·广州模拟]已知△ABC 的三个顶点A ,B ,C 的坐标分别为(0,1),(2,0),(0,-2),O 为坐标原点,动点P 满足|CP →|=1,则|OA →+OB →+OP →|的最小值是( )A.3-1B.11-1C.3+1D.11+1答案 A解析 本题主要考查向量的坐标运算,向量模的几何意义及坐标运算公式,圆的参数方程,三角函数的恒等变换.设P (cos θ,-2+sin θ),则|OA →+OB →+OP →|=(cos θ+2)2+(sin θ-1)2=4+22cos θ-2sin θ=4+23cos (θ+φ)≥4-23=3-1.二、填空题11.如果z =1-a i1+i 为纯虚数,则实数a 等于________.答案 1解析 设z =1-a i1+i=t i ,则1-a i =-t +t i ,⎩⎨⎧1=-t-a =t,a =1.12.执行如图所示的程序框图,输出的S 的值是________.答案 -1-22解析 由程序框图可知,n =1,S =0;S =cos π4,n =2;S =cos π4+cos 2π4,n =3;…;n =2015,S =cos π4+cos 2π4+cos 3π4+…+cos 2014π4=251( cos π4+cos 2π4+…+cos 8π4 )+cos π4+cos 2π4+…+cos 6π4=251×0+22+0+⎝ ⎛⎭⎪⎫-22+(-1)+⎝⎛⎭⎪⎫-22+0=-1-22,n =2105,输出S .13.2016·合肥质检]已知等边△ABC 的边长为2,若BC →=3BE →,AD →=DC →,则BD →·AE →=________.答案 -2解析 本题主要考查平面向量数量积的计算.如图所示,BD →·AE →=(AD →-AB →)·(AB →+BE →)=⎝ ⎛⎭⎪⎪⎫12AC →-AB →·⎝ ⎛⎭⎪⎪⎫AB →+13AC →-13AB →=⎝ ⎛⎭⎪⎪⎫12AC →-AB →·⎝ ⎛⎭⎪⎪⎫13AC →+23AB →=16AC →2-23AB →2=16×4-23×4=-2. 14. 如图所示,在平面上,用一条直线截正方形的一个角,截下的是一个直角三角形,有勾股定理c 2=a 2+b 2.空间中的正方体,用一平面去截正方体的一角,截下的是一个三条侧棱两两垂直的三棱锥,若这三个两两垂直的侧面的面积分别为S 1,S 2,S 3,截面面积为S ,类比平面中的结论有________.答案 S 2=S 21+S 22+S 23解析 建立从平面图形到空间图形的类比,在由平面几何的性质类比推理空间立体几何的性质时,注意平面几何中点的性质可类比推理空间几何中线的性质,平面几何中线的性质可类比推理空间几何中面的性质,平面几何中面的性质可类比推理空间几何中体的性质.所以三角形类比空间中的三棱锥,线段的长度类比图形的面积,于是作出猜想:S 2=S 21+S 22+S 23.。
高三数学二轮复习保温特训1 集合、逻辑用语、算法、推理与证明 理.pdf
保温特训(一) 集合、逻辑用语、算法、推理与证明 基础回扣训练(限时30分钟) 1.设集合A={x|0≤x≤3},B={x|x2-3x+2≤0,xZ},则A∩B等于( ). A.(-1,3) B.[1,2] C.{0,1,2} D.{1,2} 2.复数z满足(-1+i)z=(1+i)2,其中i为虚数单位,则在复平面上复数z对应的点位于( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.关于命题p:A∩=,命题q:A=A,则下列说法正确的是( ). A.(p)q为假 B.(p)(q)为真 C.(p)(q)为假 D.(p)q为真 4.“α=”是“cos 2α=”的( ). A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.已知i为虚数单位,复数为纯虚数,则实数a等于( ). A.-2 B.- C. D.2 6.下列命题中真命题的个数是( ). “?x∈R,x2-x>0”的否定是“x∈R,x2-x1,则0<<1或<0;x∈N*,2x4+1是奇数. A.0 B.1 C.2 D.3 7.设A={x|x2-4x-51},则A∩B=( ). A.{x|-1<x<0或2<x<5} B.{x|-1<x<5} C.{x|-1<x<0} D.{x|x2} 8.如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于( ). A.- B. C. D.2 9.已知二次函数f(x)=ax2+bx,则“f(2)≥0”是“函数f(x)在(1,+∞)单调递增”的( ). A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 10.下列有关命题的说法正确的是( ). A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则;x≠1” B.“x=-1”是“x2-5x-6=0”的必要不充分条件 C.命题“x∈R,使得:x2+x+1<0”的否定是:“x∈R,均有x2+x+10恒成立,则p是q的( ). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 14.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( ). A.f(x) B.-f(x) C.g(x) D.-g(x) 15.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,aA},则集合U(A∪B)=________. 16.设复数z满足i(z+1)=-3+2i(i是虚数单位),则z的实部是________. 17.设n≥2,nN,n-n=a0+a1x+a2x2+…+anxn,将|ak|(0≤k≤n)的最小值记为Tn,则T2=0,T3=-,T4=0,T5=-,…,Tn,…,其中Tn=________. 18.如图是一个算法流程图,则输出的S的值是________.(注:框图中的赋值符号“←”也可以写成“=”或“:=”) 临考易错提醒 1.不能正确理解集合的表示中元素的意义,数集与点集混淆、函数的定义域与值域混淆、图形集与点集混淆等,如{x|y=}、{y|y=}以及{(x,y)|y=}分别表示函数y=的定义域、值域以及函数图象上的点集. 2.容易忽视两个集合的基本运算中端点值的取舍导致增解或漏解,求解集合的补集时由于错误否定条件导致错解,如已知A=,误把集合A的补集写为导致漏解. 3.易把命题的否定与否命题混淆,否定含有一个量词的命题时忽视量词的改变导致出错. 4.易混淆充要条件的判断中“甲是乙的什么条件”与“甲的一个什么条件是乙”导致误判. 5.不能正确分析程序框图的实际意义是什么,也就是这个框图要计算的是什么,这个计算是从什么时候开始,中间按照什么规律进行,最后计算到什么位置.尤其是循环结构的条件判断不准导致出错. 6.对复数的概念不清,运算法则特别是除法法则不熟练,几何定义不明确等,导致概念与运算类试题出错,复数中的最值问题无法利用数形结合的思想进行解决. 7.类比不当、归纳不准致使合情推理错误.归纳与类比中,“合情推理”是其主要特征,即我们作出的归纳首先要适合“部分”,其次归纳的结论要体现“部分”的发展规律,而类比要注意“对应”,如平面上的三角形对应空间的三棱锥(四面体),平面上的面积对应空间的体积等. 8.归纳假设使用不当致误.数学归纳法的两个步骤缺一不可,前者是基础,后者是递推的依据,在证明第二步时,必须用上归纳假设的命题,否则证明无法传递下去,无法得到正确的命题. 保温特训(一) 1.D [B={1,2},A∩B={1,2}.] 2.D [(-1+i)z=(1+i)2=2i,则z===-i(i+1)=1-i,所以复数z在复平面上对应的点为(1,-1),则这个点位于第四象限.] 3.C [由题意得命题p,q均是真命题,又复合命题的真假判断可知C项正确.] 4.A [当α=,则cos 2α=cos=成立,但是cos 2α=得到α=+kπ,kZ不一定可以推出α=,因此“α=”是“cos 2α=”的充分不必要条件.”] 5.A [由于==为纯虚数,所以=0,≠0,即a=-2.] 6.C [错误,应为“x2-x≤0”;正确,解|2x-1|>1得x>1或x<0与“0<<1或<0”等价;正确.] 7.A [x2-4x-5<0,(x-5)(x+1)<0,解得A={x|-1<x1,解得x-1>1或x-12或x<0}.A∩B={x|-1<x<0或2<x0,x=-≤1,所以b≥-2a.这与f(2)≥0等价.而f(2)≥0,不能确定函数f(x)在(1,+∞)单调递增.] 10.D [对于A:命题“若x2=1,则x=1”的否命题应为“若x2≠1,则x≠1”,故错误.对于B:因为x=-1x2-5x-6=0,应为充分条件,故错误.对于C:命题“x∈R,使得x2+x+10恒成立,即x>0时,m≥max,而=≤=2,故m≥2.当p成立时q不一定成立,即p不是q的充分条件,但如果p不成立,即m33,循环结束,故输出S的值是63. 答案 63。
高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式2平面向量复数运算课件文
速解法:(坐标法)先建立平面直角坐标系,结合向量数量积的坐标 运算求解. 如图,以 A 为坐标原点,AB 所在的直线为 x 轴,AD 所在的直线 为 y 轴,建立平面直角坐标系,则 A(0,0),B(2,0),D(0,2),E(1,2), ∴A→E=(1,2),B→D=(-2,2), ∴A→E·B→D=1×(-2)+2×2=2.
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页 共10页 A级 1.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( ) A.3 B.2 C.1 D.0 解析: 集合A表示以原点O为圆心,半径为1的圆上的所有点的集合, 集合B表示直线y=x上的所有点的集合. 结合图形可知,直线与圆有两个交点, 所以A∩B中元素的个数为2.故选B. 答案: B 2.(2017·云南省第一次统一检测)设集合A={x|-x2-x+2<0},B={x|2x-5>0},则集合A与B的关系是( ) A.B⊆A B.B⊇A C.B∈A D.A∈B
解析: 因为A={x|-x2-x+2<0}={x|x>1或x<-2},B={x|2x-5>0}=x x>52,所以B⊆A,故选A. 答案: A 3.(2017·成都市第一次诊断性检测)命题“若a>b,则a+c>b+c”的否命题是( ) A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤b C.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c 解析: 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A. 答案: A 4.设集合U={1,2,3,4},集合A={x|2 018x-2 018=2 018},集合C=(1,4],C⊆N*,则(∁UA)∩C=( ) A.{2,3} B.{4} C.{3,4} D.{1,2,3,4} 解析: 因为2 018x-2 018=2 018,所以x=2,即A={2},因为U={1,2,3,4},所以∁UA={1,3,4}.又C=(1,4],C⊆N*,即C={2,3,4},所以(∁UA)∩C={3,4}. 第2页 共10页
答案: C 5.(2017·杭州一模)在△ABC中,“sin B=1”是“△ABC为直角三角形”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
解析: 在△ABC中,若sin B=1,则B=π2,所以△ABC为直角三角形;若△ABC为直角三角形,则sin B=1或sin A=1或sin C=1.所以在△ABC中,“sin B=1”是“△ABC为直角三角形”的充分不必要条件,故选A. 答案: A
6.已知f(x)=3sin x-πx,命题p:∀x∈0,π2,f(x)<0,则( ) A.p是假命题,綈p:∀x∈0,π2,f(x)≥0 B.p是假命题,綈p:∃x0∈0,π2,f(x0)≥0 C.p是真命题,綈p:∃x0∈0,π2,f(x0)≥0 D.p是真命题,綈p:∀x∈0,π2,f(x)>0 解析: 因为f′(x)=3cos x-π,所以当x∈0,π2时,f′(x)<0,函数f(x)单调递减,即对∀x∈0,π2,f(x)所以綈p:∃x0∈0,π2,f(x0)≥0. 答案: C 7.(2017·长沙市统一模拟考试)已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A},若A∩B≠∅,则a的值为( ) A.1 B.2 C.3 D.1或2 解析: 当a=1时,B中元素均为无理数,A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,则A∩B=∅.故a的值为2.选B. 答案: B 8.(2017·兰州市高考实战模拟)设向量a=(x-1,x),b=(x+2,x-4),则“a⊥b”是“x=2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 第3页 共10页
解析: a=(x-1,x),b=(x+2,x-4),若a⊥b,则a·b=0,即(x-1)(x+2)+x(x-4)=0,解得x=2或x=-12,∴x=2⇒a⊥b,反之a⊥b⇒x=2或x=-12,∴“a⊥b”是“x=2”的必要不充分条件,故选B. 答案: B
9.定义集合的商集运算为AB=x x=mn,m∈A,n∈B.已知集合A={2,4,6},B=
x x=k2-1,k∈A,则集合BA∪B中的元素个数为( )
A.6 B.7 C.8 D.9
解析: 由题意知,B={0,1,2},BA=0,12,14,16,1,13,则BA∪B=
0,12,14,16,1,13,2,共有7个元素,故选B.
答案: B 10.下列有关命题的说法正确的是( ) A.命题“若xy=0,则x=0”的否命题:“若xy=0,则x≠0” B.“若x+y=0,则x,y互为相反数”的逆命题为真命题 C.命题“∃x∈R,2x2-1<0”的否定:“∀x∈R,2x2-1<0” D.命题“若cos x=cos y,则x=y”的逆否命题为真命题 解析: “若xy=0,则x=0”的否命题:“若xy≠0,则x≠0”,故A错误;“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,为真命题,故B正确;“∃x∈R,2x2-1<0”的否定:“∀x∈R,2x2-1≥0”,故C错误;“若cos x=cos y,则x=y”为假命题,根据原命题与其逆否命题的真假相同可知,逆否命题为假命题,故D错误.故选B. 答案: B 11.若集合A={x|x2-x-2<0},B={x|-2A.a>-2 B.a≤-2 C.a>-1 D.a≥-1 解析: A={x|-1
如图所示: ∵A∩B≠∅,∴a>-1. 答案: C 12.若命题“∃x0∈R,x20+(a-1)x0+1<0”是真命题,则实数a的取值范围是( ) 第4页 共10页
A.[-1,3] B.(-1,3) C.(-∞,-1]∪[3,+∞) D.(-∞,-1)∪(3,+∞) 解析: 因为命题“∃x0∈R,x20+(a-1)x0+1<0”等价于x20+(a-1)x0+1=0有两个不等的实根,所以Δ=(a-1)2-4>0,即a2-2a-3>0,解得a<-1或a>3. 答案: D 13.设全集U={x∈Z|-2≤x≤4},A={-1,0,1,2,3}.若B⊆∁UA,则集合B的个数是________. 解析: 由题意得,U={-2,-1,0,1,2,3,4},所以∁UA={-2,4},所以集合B的个数是22=4. 答案: 4 14.设命题p:∀a>0,a≠1,函数f(x)=ax-x-a有零点,则綈p:____________________. 解析: 全称命题的否定为特称命题,綈p:∃a0>0,a0≠1,函数f(x)=ax0-x-a0没有零点. 答案: ∃a0>0,a0≠1,函数f(x)=ax0-x-a0没有零点 15.命题“若△ABC不是等腰三角形,则它的任何两个内角不相等”与它的逆命题、逆否命题、否命题中,真命题有____________________________________________个. 解析: 原命题:“若△ABC不是等腰三角形,则它的任何两个内角不相等”是真命题,故其逆否命题也是真命题;它的逆命题是“若△ABC的任何两个内角不相等,则它不是等腰三角形”,也是真命题,故其否命题也是真命题. 答案: 4 16.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c不是年龄最小,那么a的年龄最大”都是真命题,则a,b,c的年龄由小到大依次是________. 解析: 显然命题A和B的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A可知,当b不是最大时,则a是最小,所以c最大,即c>b>a;而它的逆否命题也为真,即“若a的年龄不是最小,则b的年龄是最大”为真,即b>a>c. 同理,由命题B为真可得a>c>b或b>a>c. 故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b最大,a次之,c最小. 答案: c,a,b B级
1.(2017·郑州市第二次质量预测)已知集合A={x|log2x≤1},B=x 1x>1,则A∩(∁RB)=( ) 第5页 共10页
A.(-∞,2] B.(0,1] C.[1,2] D.(2,+∞) 解析: 因为A={x|0x≥1}={x|1≤x≤2},故选C. 答案: C 2.给出下列命题: ①若给定命题p:∃x∈R,使得x2+x-1<0,则綈p:∀x∈R,均有x2+x-1≥0; ②若p∧q为假命题,则p,q均为假命题; ③命题“若x2-3x+2=0,则x=2”的否命题为“若x2-3x+2=0,则x≠2”. 其中正确的命题序号是( ) A.① B.①② C.①③ D.②③ 解析: 对于①,若给定命题p:∃x∈R,使得x2+x-1<0,则綈p:∀x∈R,均有x2+x-1≥0,故①是正确的;对于②,若p∧q为假命题,则p或q为假命题,故②是错误的;对于③,命题“若x2-3x+2=0,则x=2”的否命题为“若x2-3x+2≠0,则x≠2”,故③是错误的. 答案: A 3.已知集合A={y|y=x2+2},集合B={x|y=lgx-3},则下列命题中真命题的个数是( ) ①∃m∈A,m∉B;②∃m∈B,m∉A;③∀m∈A,m∈B;④∀m∈B,m∈A. A.4 B.3 C.2 D.1 解析: 因为A={y|y=x2+2},所以A={y|y≥2},因为B={x|y=lgx-3},所以B={x|x>3},所以B是A的真子集,所以①④为真命题,②③为假命题,所以真命题的个数为2,故选C. 答案: C 4.(2017·浙江卷)已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析: 法一:S4+S6>2S5等价于(S6-S5)+(S4-S5)>0,等价于a6-a5>0,等价于d>0.故选C.
法二:∵Sn=na1+12n(n-1)d,∴S4+S6-2S5=4a1+6d+6a1+15d-2(5a1+10d)=d,即