2020年高考数学真题汇编 12:统计 理
精品解析:2020年全国统一高考数学试卷(理科)(新课标Ⅲ)(解析版)

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A. 2B. 3C. 4D. 6【答案】C 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.复数113i-的虚部是( ) A. 310-B. 110-C.110D.310【答案】D 【解析】 【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p ==== B. 14230.4,0.1p p p p ==== C. 14230.2,0.3p p p p ==== D. 14230.3,0.2p p p p ====【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组标准差最大. 故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t KI t e--=+结合()0.95I t K *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( ) A. 3135-B. 1935-C.1735D.1935【答案】D 【解析】 【分析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos ,a a b <+>的值. 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B. 13C. 12D.23【答案】A 【解析】 【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由22299161 cos22339 AB BC ACBAB BC+-+-===⋅⨯⨯故1 cos9B=.故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A. 6+42B. 4+42C. 6+23D. 4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:22AB AD DB===∴ADB△是边长为22根据三角形面积公式可得:211sin60222ADBS AB AD=⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tanθ–tan(θ+π4)=7,则tanθ=()A. –2B. –1C. 1D. 2【答案】D【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan74πθθ⎛⎫-+=⎪⎝⎭,tan12tan71tanθθθ+∴-=-,令tan,1t tθ=≠,则1271ttt+-=-,整理得2440t t-+=,解得2t=,即tan2θ=.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l与曲线yx2+y2=15都相切,则l的方程为()A. y=2x+1B. y=2x+12C. y=12x+1 D. y=12x+12【答案】D【解析】【分析】根据导数的几何意义设出直线l的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y=(0x,则00x>,函数y=y'=,则直线l的斜率k=,设直线l的方程为)0y x x=-,即x x-+=,由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A. 1 B. 2C. 4D. 8【答案】A 【解析】 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >. 综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以max 31227z =⨯+⨯=.故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x+的展开式中常数项是__________(用数字作答).【答案】240 【解析】 【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项. 【详解】622x x ⎛⎫+ ⎪⎝⎭ 其二项式展开通项:()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭= 1226(2)r r r r x C x --⋅=⋅1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=. 故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C r n r rr n T a b -+=,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】2π 【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于223122AM =-=1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯= 解得:2r,其体积:3423V r π==. 2. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可; (2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+, 证明如下:当1n =时,13a =成立; 假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; (2)由(1)可知,2(21)2nnn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 33 37空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【答案】(1)证明见解析;(2)427. 【解析】 【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内; (2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG =,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =, 同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F , ()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的法向量为()111,,m x y z =,由0m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的法向量为()222,,n x y z =,由110n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,7cos ,321m n m n m n⋅<>===⨯⋅ 设二面角1A EF A --的平面角为θ,则7cos θ=,242sin 1cos 7θθ∴=-=. 因此,二面角1A EF A --42. 【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m +=<<的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<< ∴5a =,b m =,根据离心率c e a ==== 解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=; (2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:22231111055125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:15555252⨯⨯=;②当P 点为(3,1)-时, 故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题. 21.设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【答案】(1)34b =-;(2)证明见解析 【解析】 【分析】(1)利用导数的几何意义得到'1()02f =,解方程即可; (2)由(1)可得'2311()32()()422f x x x x =-=+-,易知()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭则34b =-; (2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-,令'()0f x >,得12x >或21x <-;令'()0f x <,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增, 且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+, 若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <, 即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>, 又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x ,即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<, 又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0x ',即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1. 【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)2)3cos sin 120ρθρθ-+=【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==(2)由(1)可知12030(4)AB k -==--, 则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }.【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明; (2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc +++=⋅==,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=. 当且仅当b c =时,取等号,a ∴≥,即3max{,,}4abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。
全国各地市2020届高三数学模拟试题分类解析汇编 12 统计与概率

全国各地市2020年模拟试题分类解析汇编:统计与概率【2020三明市普通高中高三上学期联考文】在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形的面积和的14,且样本容量为160,则中间一组的频数为A.32 B.0.2 C.40 D.0.25【答案】A【解析】本题主要考查样本的频率分布直方图、频数概念、频数与频率的区别. 属于基础知识、基本运算的考查.频率等于长方形的面积,所有长方形的面积等于1,中间长方形的面积等于S,则S=1 4(1-S),S=15,设中间一组的频数为x,则11605x=,得32x=【2020金华十校高三上学期期末联考文】分别写有数字1,2,3,4的4张卡片,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率是()A.14B.13C.12D.23【答案】 D【解析】本题主要考查基本事件的概念、古典概型的计算公式. 属于基础知识、基本运算的考查.从写有数字1,2,3,4的4张卡片,从这4张卡片中随机抽取2张,有12, 13,14,23,24,34共6种,取出的2张卡片上的数字之和为奇数的取法有12,14,23,34共4种,取出的2张卡片上的数字之和为奇数的概率是42 63 =【2020武昌区高三年级元月调研文】通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:由22()()()()()n ad bcKa b c d a c b d-=++++,算得22110(40302020)~7.8.60506050K⨯⨯-⨯=≈⨯⨯⨯附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“选择过马路的方式与性别有关”B .有99%以上的把握认为“选择过马路的方式与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关” 【答案】A【解析】本题主要考查列联表以及独立性检验的简单方法. 属于基础知识、基本方法的考查.22110(40302020)~7.8.60506050K ⨯⨯-⨯=≈⨯⨯⨯ 2( 6.635)0.01199%P K ≥==-∴有99%以上的把握认为“选择过马路的方式与性别有关”【2020年西安市高三年级第一次质检文】某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个为,则=A.B.C.D.2【答案】A【解析】本题主要样本的数字特征. 属于基础知识、基本运算的考查.222222127[(67)(77)(77)(87)(77)]55x -+-+-+-+-=甲甲=,S = 222222167[(67)(77)(67)(77)(97)]55x -+-+-+-+-=乙甲=,S =两组数据的方差中较小的一个为,=25【2020粤西北九校联考理】 已知{(,)|6,0,0}x y x y x y Ω=+≤≥≥,{(,)|4,0,20}A x y x y x y =≤≥-≥,若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为( )A .31B .32C .91D .92【答案】D【解析】属于几何概型,{(,)|6,0,0}x y x y x y Ω=+≤≥≥的面积为18,{(,)|4,0,20}A x y x y x y =≤≥-≥的面积为4,92184==P【2020韶关第一次调研理】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果分成五组:每一组[13,14);第二组[14,15),…,第五组[]17,18.右图是按上述分组方法得到的频率分布直方图若成绩大于或等于14秒且小于16秒认为良好,则该班在这次百米测试中成绩良好的人数是__________. 【答案】27,【解析】成绩大于或等于14秒且小于16秒的频率为0.54,所以良好人数=0.54⨯50=27 【2020深圳中学期末理】袋中装有m 个红球和n 个白球,4≥>n m ,现从中任取两球,若取出的两球是同色的概率等于取出的两球是异色的概率,则满足关系40≤+n m 的数组()n m ,的个数为A .3B .4C .5D .6 【答案】A【解析】记“取出两个红球”为事件A ,“取出两个白球”为事件B ,“取出一红、一白两球”为事件C ,则()22nm m C /C A P +=,()22nm n C /C B P +=,()211nm n m C /C C C P +=。
2020年全国各地高中数学真题分类汇编—数列(含答案)

2020年全国各地⾼考真题分类汇编—数列1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b82.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.324.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.155.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.58.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=.11.(2020•浙江)已知数列{a n}满⾜a n=,则S3=.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=.15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.。
2020年全国统一高考数学试卷(理科)(新课标Ⅲ)附答案

(400,600]
25 12 8 0
(1)分别估计该市一天的空气质量等级为 1,2,3,4 的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点 值为代表)
(3)若某天的空气质量等级为 1 或 2:则称这天"空气质量好"若某天的空气质量等级 为 3 成 4,则称这天"空气质量不好"·根据所给数据,完成下面的 2×2 列联表并根据列 联表,判断是否有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质 量有关?
的离心率为 ,A,B 分别为 C 的左右顶
点. (1)求 C 的方程; (2)若点 P 在 C 上,点 Q 在直线 x=6 上,且|BP|=|BQ|,BP
BQ,求
APQ 的面积.
21. 设函数 f(x)=x3+bx+c,曲线 y=f(x)在点
处的切线与 y 轴垂直
(1)求 b; (2)若 f(x)有一个绝对值不大于 1 的零点,证明:f(x)所有零点的绝对值都不大于 1.
f(x)的图像关于 y 轴对称. f(x)的图像关于原点对称,
f(x)的图像关于直线 x= 对称.
f(x)的最小值为 2.
其中所有真命题的序号是__________. 三、解答题(本大题共 7 小题,共 82.0 分) 17. 设数列{ }满足 =3, = -4n.
(1) 计算 , , 猜想{ }的通项公式并加以证明;
第 4 页,共 19 页
22. 在直角坐标系 xOy 中,曲线 C 的参数方程为
(t 为参数且 t 1),C
与坐标轴交于 A,B 两点.
(1)求|AB|;
(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.
北京市2020-2024年高考真题汇编(数学)PDF版含答案

北京市2020-2024年普通高等学校招生全国统一考试真题汇编数学目录北京市2020年普通高等学校招生全国统一考试数学北京市2021年普通高等学校招生全国统一考试数学北京市2022年普通高等学校招生全国统一考试数学北京市2023年普通高等学校招生全国统一考试数学北京市2024年普通高等学校招生全国统一考试数学参考答案说明:本套资源为北京市2020-2024年普通高等学校招生全国统一考试数学试卷的汇编,即北京市2020-2024年数学高考真题的汇编,含2020年,2021年,2022年,2023年,2024年数学高考真题各一套,共五套,附有参考答案,可供北京市高三学生总复习时参考。
北京市2020年普通高等学校招生全国统一考试数学第一部分(选择题共40分)一、选择题:10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B = ().A.{1,0,1}- B.{0,1}C.{1,1,2}- D.{1,2}2.在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=().A.12i+ B.2i-+ C.12i- D.2i--3.在52)-的展开式中,2x 的系数为().A.5-B.5C.10- D.104.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A.6B.6+C.12+D.12+5.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.76.已知函数()21x f x x =--,则不等式()0f x >的解集是().A.(1,1)-B.(,1)(1,)-∞-+∞C.(0,1)D.(,0)(1,)-∞⋃+∞7.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线().A.经过点OB.经过点PC.平行于直线OPD.垂直于直线OP8.在等差数列{}n a 中,19a =-,31a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ().A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项9.已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(πDay ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().A.30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B.30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C.60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D.60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.函数1()ln 1f x x x =++的定义域是____________.12.已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.13.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD =_________;PB PD ⋅=_________.14.若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.15.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强;③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强.其中所有正确结论的序号是____________________.三、解答题:共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.16.如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.17.在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.18.某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)19.已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.20.已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.21.已知{}n a 是无穷数列,给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n ,在{}n a 中都存在两项,()k l a a k l >.使得2k n la a a =.(Ⅰ)若(1,2,)n a n n == ,判断数列{}n a 是否满足性质①,说明理由;(Ⅱ)若12(1,2,)n n a n -== ,判断数列{}n a 是否同时满足性质①和性质②,说明理由;(Ⅲ)若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列.北京市2021年普通高等学校招生全国统一考试数学第一部分(选择题共40分)一、选择题:共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B = ()A.()1,2- B.(1,2]- C.[0,1) D.[0,1]2.在复平面内,复数z 满足(1)2i z -=,则z =()A.2i +B.2i -C.1i -D.1i +3.已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.某四面体的三视图如图所示,该四面体的表面积为()A.332+ B.4C.3D.25.双曲线2222:1x y C a b -=过点,且离心率为2,则该双曲线的标准方程为()A.2213x y -= B.2213y x -=C.2213x -=D.2213y -=6.{}n a 和{}n b 是两个等差数列,其中()15kka kb ≤≤为常值,1288a =,596=a ,1192b =,则3b =()A.64B.128C.256D.5127.函数()cos cos 2f x x x =-,试判断函数的奇偶性及最大值()A.奇函数,最大值为2 B.偶函数,最大值为2C.奇函数,最大值为98D.偶函数,最大值为988.定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10mm <),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A.小雨B.中雨C.大雨D.暴雨9.已知圆22:4C x y +=,直线:l y kx m =+,当k 变化时,l 截得圆C 弦长的最小值为2,则m =()A.2±B.C.D.10.数列{}n a 是递增的整数数列,且13a ≥,12100n a a a ++⋅⋅⋅+=,则n 的最大值为()A.9B.10C.11D.12第二部分(非选择题共110分)二、填空题:5小题,每小题5分,共25分.11.341(x x-展开式中常数项为__________.12.已知抛物线2:4C y x =,焦点为F ,点M 为抛物线C 上的点,且6FM =,则M 的横坐标是_______;作MN x ⊥轴于N ,则FMN S = _______.13.(2,1)a = ,(2,1)b =-,(0,1)c = ,则()a b c +⋅= _______;a b ⋅=_______.14.若点(cos ,sin )P θθ与点(cos(),sin())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ=___.15.已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,则()f x 有两个零点;②0k ∃<,使得()f x 有一个零点;③0k ∃<,使得()f x 有三个零点;④0k ∃>,使得()f x 有三个零点.以上正确结论得序号是_______.三、解答题:共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.16.已知在ABC 中,2cos c b B =,23C π=.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使ABC 存在且唯一确定,并求出BC 边上的中线的长度.①c =;②周长为4+;③面积为4ABC S ∆=;17.已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F.(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --的余弦值为53,求111A M A B 的值.18.为加快新冠肺炎检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和数学期望E (X );(2)若采用“5合1检测法”,检测次数Y 的期望为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).19.已知函数()232xf x x a-=+.(1)若0a =,求()y f x =在()()1,1f 处切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值.20.已知椭圆2222:1(0)x y E a b a b +=>>过点(0,2)A -,以四个顶点围成的四边形面积为(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.21.定义p R 数列{}n a :对实数p ,满足:①10a p +≥,20a p +=;②414,n n n N a a *-∀∈<;③{},1m n m n m n a a a p a a p +∈+++++,,m n N *∈.(1)对于前4项2,-2,0,1的数列,可以是2R 数列吗?说明理由;(2)若{}n a 是0R 数列,求5a 的值;(3)是否存在p ,使得存在p R 数列{}n a ,对10,n n N S S *∀∈≥?若存在,求出所有这样的p ;若不存在,说明理由.北京市2022年普通高等学校招生全国统一考试数学第一部分(选择题共40分)一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð()A.(2,1]-B.(3,2)[1,3)--C.[2,1)- D.(3,2](1,3)-- 2.若复数z 满足i 34i z ⋅=-,则z =()A.1B.5C.7D.253.若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ()A.12B.12-C.1D.1-4.已知函数1()12xf x =+,则对任意实数x ,有()A.()()0f x f x -+= B.()()0f x f x --=C.()()1f x f x -+= D.1()()3f x f x --=5.已知函数22()cos sin f x x x =-,则()A.()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减 B.()f x 在,412ππ⎛⎫-⎪⎝⎭上单调递增C.()f x 在0,3π⎛⎫⎪⎝⎭上单调递减D.()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增6.设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是()A.当220T =,1026P =时,二氧化碳处于液态B.当270T =,128P =时,二氧化碳处于气态C.当300T =,9987P =时,二氧化碳处于超临界状态D.当360T =,729P =时,二氧化碳处于超临界状态8.若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A.40B.41C.40-D.41-9.已知正三棱锥P ABC -的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为()A.34π B.πC.2πD.3π10.在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A.[5,3]- B.[3,5]- C.[6,4]- D.[4,6]-第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.函数1()1f x x x=+-的定义域是_________.12.已知双曲线221x y m +=的渐近线方程为33y x =±,则m =__________.13.若函数()sin 3cos f x A x x =-的一个零点为3π,则A =________;12f π⎛⎫= ⎪⎝⎭________.14.设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________.15.己知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3;②{}n a 为等比数列;③{}n a 为递减数列;④{}n a 中存在小于1100的项.其中所有正确结论的序号是__________.三、解答题:共6小愿,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC中,sin 2C C =.(1)求C ∠;(2)若6b =,且ABC的面积为ABC 的周长.17.如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.18.在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)19.已知椭圆:2222:1(0)x y E a b a b+=>>的一个顶点为(0,1)A ,焦距为(1)求椭圆E 的方程;(2)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当||2MN =时,求k 的值.20.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.21.已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.北京市2023年普通高等学校招生全国统一考试数学一、选择题:本题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{20},{10}M x x N x x =+≥=-<∣∣,则M N ⋂=()A.{21}xx -≤<∣ B.{21}xx -<≤∣C.{2}x x ≥-∣D.{1}xx <∣2.在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =()A.1+B.1-C.1-+D.1-3.已知向量a b ,满足(2,3),(2,1)a b a b +=-=- ,则22||||a b -= ()A.2- B.1- C.0 D.14.下列函数中,在区间(0,)+∞上单调递增的是()A.()ln f x x =- B.1()2xf x =C.1()f x x=-D.|1|()3x f x -=5.512x x ⎛⎫- ⎪⎝⎭的展开式中x 的系数为().A.80- B.40- C.40 D.806.已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =()A.7B.6C.5D.47.在ABC 中,()(sin sin )(sin sin )a c A C b A B +-=-,则C ∠=()A.π6B.π3C.2π3D.5π68.若0xy ≠,则“0x y +=”是“2y xx y+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m,10m AB BC AD ===,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD 的夹角的正切值均为5,则该五面体的所有棱长之和为()A.102mB.112mC.117mD.125m10.已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A.当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B.当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C.当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D.当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立二、填空题:本题共5小题,每小题5分,共25分.11.已知函数2()4log xf x x =+,则12f ⎛⎫=⎪⎝⎭____________.12.已知双曲线C 的焦点为(2,0)-和(2,0)2,则C 的方程为____________.13.已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p 为假命题的一组,αβ的值为α=__________,β=_________.14.我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =___________;数列{}n a 所有项的和为____________.15.设0a >,函数222,,(),,1,.x x a f x a x a x a x x a +<-⎧=--≤≤>⎪⎩,给出下列四个结论:①()f x 在区间(1,)a -+∞上单调递减;②当1a ≥时,()f x 存在最大值;③设()()()()()()111222,,,M x f x xa N x f x x a ≤>,则||1MN >;④设()()()()()()333444,,,P x f x xa Q x f x x a <-≥-.若||PQ 存在最小值,则a 的取值范围是10,2⎛⎤ ⎥⎝⎦.其中所有正确结论的序号是____________.三、解答题:本题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤.16.如图,在三棱锥-P ABC 中,PA ⊥平面ABC ,1PA AB BC PC ====,(1)求证:BC ⊥平面PAB ;(2)求二面角A PC B --的大小.17.设函数π()sin cos cos sin 0,||2f x x x ωϕωϕωϕ⎛⎫=+><⎪⎝⎭.(1)若(0)2f =-,求ϕ的值.(2)已知()f x 在区间π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,2π13f ⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:π3f ⎛⎫=⎪⎝⎭;条件②:π13f ⎛⎫-=- ⎪⎝⎭;条件③:()f x 在区间ππ,23⎡⎤--⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.时段价格变化第1天到第20天-++0---++0+0--+-+00+第21天到第40天++---++++---+-+用频率估计概率.(1)试估计该农产品价格“上涨”的概率;(2)假设该农产品每天的价格变化是相互独立的.在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;(3)假设该农产品每天的价格变化只受前一天价格变化的影响.判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)19.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,||4AC =.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y =-交于点N .求证://MN CD .20.设函数3()e ax b f x x x +=-,曲线()y f x =在点(1,(1))f 处的切线方程为1y x =-+.(1)求,a b 的值;(2)设函数()()g x f x '=,求()g x 的单调区间;(3)求()f x 的极值点个数.21.已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r i B A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.北京市2024年普通高等学校招生全国统一考试数学第一部分(选择题共40分)一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|41}M x x =-<≤,{|13}N x x =-<<,则M N ⋃=()A.{}43x x -<< B.{}11x x -<≤C.{}0,1,2 D.{}14x x -<<2.已知i 1iz=-,则z =().A.1i- B.i- C.1i-- D.13.求圆22260x y x y +-+=的圆心到20x y -+=的距离()A. B.2C. D.4.(4x -的二项展开式中3x 的系数为()A.15B.6C.4- D.13-5.已知向量a ,b ,则“()()·0a b a b +-= ”是“a b = 或a b =- ”的()条件.A.必要而不充分条件B.充分而不必要条件C.充分且必要条件D.既不充分也不必要条件6.已知()()sin 0f x x ωω=>,()11f x =-,()21f x =,12min π||2x x -=,则ω=()A.1B.2C.3D.47.记水的质量为1ln S d n-=,并且d 越大,水质量越好.若S 不变,且1 2.1d =,2 2.2d =,则1n 与2n 的关系为()A.12n n <B.12n n >C.若1S <,则12n n <;若1S >,则12n n >;D.若1S <,则12n n >;若1S >,则12n n <;8.已知以边长为4的正方形为底面的四棱锥,四条侧棱分别为4,4,,,则该四棱锥的高为()A.2B.2C. D.9.已知()11,x y ,()22,x y 是函数2x y =图象上不同的两点,则下列正确的是()A.12122log 22y y x x ++> B.12122log 22y y x x ++<C.12212log 2y y x x +>+ D.12212log 2y y x x +<+10.若集合(){}2,|(),01,12x y y x t xx t x =+-≤≤≤≤表示的图形中,两点间最大距离为d 、面积为S ,则()A.3d =,1S <B.3d =,1S >C.d =,1S < D.d =,1S >第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.已知抛物线216y x =,则焦点坐标为________.12.已知ππ,63α⎡⎤∈⎢⎥⎣⎦,且α与β的终边关于原点对称,则cos β的最大值为________.13.已知双曲线2214x y -=,则过()3,0且和双曲线只有一个交点的直线的斜率为________.14.已知三个圆柱的体积为公比为10的等比数列.第一个圆柱的直径为65mm ,第二、三个圆柱的直径为325mm ,第三个圆柱的高为230mm ,求前两个圆柱的高度分别为________.15.已知{}|k k M k a b ==,n a ,n b 不为常数列且各项均不相同,下列正确的是______.①n a ,n b 均为等差数列,则M 中最多一个元素;②n a ,n b 均为等比数列,则M 中最多三个元素;③n a 为等差数列,n b 为等比数列,则M 中最多三个元素;④n a 单调递增,n b 单调递减,则M 中最多一个元素.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在△ABC 中,7a =,A 为钝角,3sin 2cos 7B b B =.(1)求A ∠;(2)从条件①、条件②和条件③这三个条件中选择一个作为已知,求△ABC 的面积.①7b =;②13cos 14B =;③sin c A =注:如果选择条件①、条件②和条件③分别解答,按第一个解答计分.17.已知四棱锥P -ABCD ,//AD BC ,1AB BC ==,3AD =,2DE PE ==,E 是AD 上一点,PE AD ⊥.(1)若F 是PE 中点,证明://BF 平面PCD .(2)若AB ⊥平面PED ,求平面PAB 与平面PCD 夹角的余弦值.18.已知某险种的保费为0.4万元,前3次出险每次赔付0.8万元,第4次赔付0.6万元赔偿次数01234单数800100603010在总体中抽样100单,以频率估计概率:(1)求随机抽取一单,赔偿不少于2次的概率;(2)(i )毛利润是保费与赔偿金额之差.设毛利润为X ,估计X 的数学期望;(ⅱ)若未赔偿过的保单下一保险期的保费下降4%,已赔偿过的增加20%.估计保单下一保险期毛利润的数学期望.19.已知椭圆方程C :()222210x y a b a b+=>>,焦点和短轴端点构成边长为2的正方形,过()0,t (t >的直线l 与椭圆交于A ,B ,()0,1C ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .20.已知()()ln 1f x x k x =++在()()(),0t f t t >处切线为l .(1)若切线l 的斜率1k =-,求()f x 单调区间;(2)证明:切线l 不经过()0,0;(3)已知1k =,()(),A t f t ,()()0,C f t ,()0,0O ,其中0t >,切线l 与y 轴交于点B时.当215ACO ABO S S =△△,符合条件的A 的个数为?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)21.设集合(){}{}{}{}(){},,,1,2,3,4,5,6,7,8,2M i j s t i j s t i j s t =∈∈∈∈+++.对于给定有穷数列{}():18n A a n ≤≤,及序列12:,,...,s ωωωΩ,(),,,k k k k k i j s t M ω=∈,定义变换T :将数列A 的第1111,,,i j s t 项加1,得到数列()1T A ;将数列()1T A 的第2222,,,i j s t 列加1,得到数列()21T T A …;重复上述操作,得到数列()21...s T T T A ,记为()A Ω.若1357a a a a +++为偶数,证明:“存在序列Ω,使得()A Ω为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”.参考答案北京市2020年普通高等学校招生全国统一考试数学参考答案一、选择题【答案】1.D 【解析】【详解】{1,0,1,2}(0,3){1,2}A B =-=I I ,故选:D.【答案】2.B 【解析】【详解】由题意得12z i =+,2iz i ∴=-.故选:B.【答案】3.C 【解析】【详解】)52-展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-.故选:C.【答案】4.D 【解析】【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭.故选:D.【答案】5.A 【解析】【详解】设圆心(),C x y ,则1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥22345=+=,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.【答案】6.D 【解析】【详解】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D.【答案】7.B 【解析】【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.【答案】8.B 【解析】【详解】由题意可知,等差数列的公差511925151a a d --+===--,则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-,注意到123456701a a a a a a a <<<<<<=<< ,且由50T <可知()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项,由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=.故数列{}n T 中存在最大项,且最大项为4T .故选:B.【答案】9.C 【解析】【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件.故选:C.【答案】10.A 【解析】【详解】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n︒︒=⨯,每条边长为302sinn︒,所以,单位圆的内接正6n 边形的周长为3012sin n n︒,单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒,303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭.故选:A.二、填空题【答案】11.(0,)+∞【解析】【详解】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞【答案】12.()3,0【解析】【详解】在双曲线C中,a =,b =,则3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为22y x =±,即0x ±=,所以,双曲线C=.故答案为:()3,0.【答案】;1-【解析】【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=-,()0,1PB =- ,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.;1-.【答案】14.2π(2,2k k Z ππ+∈均可)【解析】【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=.故答案为:2π(2,2k k Z ππ+∈均可).【答案】15.①②③【解析】【详解】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③三、解答题【答案】16.(Ⅰ)如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD ,1BC ⊄ 平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE = ,设平面1AD E 的法向量为(),,n x y z = ,由100n AD n AE ⎧⋅=⎨⋅=⎩ ,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅.因此,直线1AA 与平面1AD E 所成角的正弦值为23.【答案】17.选择条件①(Ⅰ)17,cos 7c A ==- ,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅- 8a ∴=(Ⅱ)213cos (0,)sin 1cos 77A A A A π=-∈∴=-=,由正弦定理得:873sin sin sin sin 2437a c C A C C===113sin (118)83222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,3757sin 816A B ∴===由正弦定理得:6sin sin 3757816a b a A B ==(Ⅱ)3795717sin sin()sin cos sin cos 8161684C A B A B B A =+=+=⨯+⨯=117157sin (116)62244S ba C ==-⨯⨯=【答案】18.(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313()(1()(13433436C -+-=;(Ⅲ)01p p <【答案】19.(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11,由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=.(Ⅱ)显然0t ≠,因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t +=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==,由()0S t '>,得2t >,由()0S t '<,得02t <<,所以()S t 在()0,2上递减,在()2,+∞上递增,所以2t =时,()S t 取得极小值,也是最小值为()16162328S ⨯==.【答案】20.(Ⅰ)设椭圆方程为:()222210x y a b a b +=>>,由题意可得:224112ab a b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩,故椭圆方程为:22182x y +=.(Ⅱ)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++,令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++,同理可得:()()222142Q k x y x -++=+.很明显0P Q y y <,且:PQPB y PQy =,注意到:()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==.【答案】21.【详解】(Ⅰ){}2323292,3,2n a a a a Z a ===∉∴Q 不具有性质①;(Ⅱ){}22*(2)1*2,,,2,2i j i i i j n j ja a i j N i j i j N a a a a ---∀∈>=-∈∴=∴Q 具有性质①;{}2*(2)11,3,1,2,22,k l n k n n la n N n k n l a n a a ---∀∈≥∃=-=-===∴Q 具有性质②;(Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数:显然()0*n a n N ≠∉,假设数列中存在负项,设{}0max |0n N n a =<,第一种情况:若01N =,即01230a a a a <<<<< ,由①可知:存在1m ,满足12210m a a a =<,存在2m ,满足22310m a a a =<,由01N =可知223211a a a a =,从而23a a =,与数列的单调性矛盾,假设不成立.第二种情况:若02N ≥,由①知存在实数m ,满足0210Nm a a a =<,由0N 的定义可知:0m N ≤,另一方面,000221NNm N N a a a a a a =>=,由数列的单调性可知:0m N >,这与0N 的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.综上可得,数列中的项数同号.其次,证明2231a a a =:利用性质②:取3n =,此时()23k la a k l a =>,由数列的单调性可知0k l a a >>,而3kk k la a a a a =⋅>,故3k <,此时必有2,1k l ==,即2231a a a =,最后,用数学归纳法证明数列为等比数列:假设数列{}n a 的前()3k k ≥项成等比数列,不妨设()111s s a a q s k -=≤≤,其中10,1a q >>,(10,01a q <<<的情况类似)由①可得:存在整数m ,满足211k k m k k a a a q a a -==>,且11k m k a a q a +=≥(*)由②得:存在s t >,满足:21s sk ss t ta a a a a a a +==⋅>,由数列的单调性可知:1t s k <≤+,由()111s s a a qs k -=≤≤可得:2211111s t k s k k ta a a q a a q a ---+==>=(**)由(**)和(*)式可得:211111ks t k a q a q a q ---≥>,结合数列的单调性有:211k s t k ≥-->-,注意到,,s t k 均为整数,故21k s t =--,。
2020届高考数学(理)二轮考点专训卷:(12)算法、推理与证明、复数

考点专训卷(12)算法、推理与证明、复数1、观察按下列顺序排列的等式:,,,9011⨯+=91211⨯+=92321⨯+=,…,猜想第个等式应为( )93431⨯+=*()∈n n N A .B .9(1)109++=+n n n 9(1)109-+=-n n n C .D .9(1)101+-=-n n n 9(1)(1)1010-+-=-n n n 2、观察这列数:则第2013个数是( )1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,,⋯A.403 B.404 C.405 D.4063、由①正方形的四个内角相等;②矩形的四个内角相等;③正方形是矩形,根据“三段论”推理出一个结论,则作为大前提、小前提、结论的分别为( )A.②①③B.③①②C.①②③D.②③①4、关于综合法和分析法的说法错误的是( )A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.分析法又叫逆推证法或执果索因法D.综合法和分析法都是因果分别互推的两头凑法5、用数学归纳法证明“能被3整除”的第二步中,当时,为了使用假设,应将52n n -1n k =+变形为( )1152k k ++-A .B .(52)452k k k k -+⨯-5(52)32k k k -+⨯C .D .(52)(52)k k --2(52)35k k k --⨯6、用秦九韶算法计算多项式,当时,( )65432()3456781f x x x x x x x =++++++4x =2V =A.96 B.69 C.16 D.70S7、执行如图所示的程序框图,输出的值为( )A.2B.4C.8D.16S8、执行如图所示的程序框图,则输出结果 ( )A. 1009B. 1010C. -1010D. -1011x6y9、根据下边框图,当输入为时,输出的等于( )A. 1B. 2C.5D.1010、( )()2121ii +=-A.112i--B.112i -+C.112i +D.112i -11、复数 (i 为虚数单位)对应的点位于( )112ii +-A.第一象限 B.第二象限 C.第三象限 D.第四象限12、若复数满足,则的虚部为( )(34)43i zi -=+A. 4-B. 45-C. 4D. 4513、已知,i 为虚数单位,且,则( ),R x y ∈i 1i x y -=-+(1i)(i)x y --=A. B.2 C. D.4-2i 2i-14、设复数z 满足,则( )(2)(2)5z i i --=z =A . B . C .23i +23i -32i +D .32i -15、若复数z 满足z 的共轭复数的模为( )()1i 1z +=+A .1BC .2D .16、已知复数z 满足,z 的共轭复数为,则( )2z i +∈R z z z -=A.0 B.4i C. D.4i -4-17、设复数,则复数的共轭复数为______.1i z =+22z z +18、设复数,则=__________.2i i 1z =+z z +19、设复数 (,)则__________.a bi +ab R ∈3()()a bi a bi +-=20、若复数z 对应的点在直线上,且,则复数____________.2y x =5z =z =21、i 是虚数单位,________.2018621i (()1i+=22、的值是__________.232019i i i i +++⋯+答案以及解析1答案及解析:答案:B解析:2答案及解析:答案:C解析:3答案及解析:答案:D解析:用三段论的形式写出的演绎推理是:大前提②矩形的四个内角相等小前提③正方形是矩形结论:①正方形的四个内角相等故选D.4答案及解析:答案:D解析:根据综合法的定义可得,综合法是由因导果法,是顺推证法;根据分析法的定义可得,分析法是执果索因法,是逆推证法,它们都是直接证法.故选D.5答案及解析:答案:B解析:115255225(52)52225(52)32k k k k k k k k k k k++-=⋅-⋅=-+⨯-⨯=-+⨯6答案及解析:答案:B解析:7答案及解析:答案:C解析:;0,1k S ==循环;1122,2S k =⋅==循环;2228,3S k =⋅==停止,输出,所以答案为C.8S =8答案及解析:答案:B解析:9答案及解析:答案:D解析:该程序框图运行如下: ,,,6330x =-=>330x =-=0330x =-=-<,故答案选D.()23110y =-+=10答案及解析:答案:B 解析:.()21212212221ii i i i i ++-===---11答案及解析:答案:B解析:由可知复数在复平面内对应的点的坐()()1121125i i i i+++=-135i -+=1355i =-+112i i +-标为,该点位于第二象限,故选B.13,55⎛⎫- ⎪⎝⎭12答案及解析:答案:D解析:∵,(34)43i z i -=+∴.435(34)34342555i i z i i ++====+-∴的虚部为.4513答案及解析:答案:D解析:14答案及解析:答案:A解析:15答案及解析:答案:B解析:16答案及解析:答案:C解析:设,则.,,,(R)z x yi x y =+∈,()22z i x y i +=++2R z i +∈Q 2y ∴=-2z x i ∴=-则,因此,故选C.2z x i =+4z z i -=-17答案及解析:答案:1i-解析:复数,则复数1i z =+.()()()()2221i 221i 2i 1i 1i 1i 1i z z -+=++=+=+++-复数的共轭复数为:22z z +1i -故答案为.1i -18答案及解析:答案:2解析:19答案及解析:答案:3解析:复数 (,),则,所以a bi +a b R ∈=223a b +=.()()222223a bi a bi a b i a b +-=-⋅=+=20答案及解析:答案:或12i +12i--解析:依题意可设复数,由,解得,故2i(R)z a a a =+∈z ==1a =±或.12i z =+12i z =--21答案及解析:答案:1i-+解析:22答案及解析:答案:-1解析:。
2020年高考理科数学二轮专题复习十:统计、概率、计数原理、随机变量及其分布、统计案例(附解析)

2020年高考理科数学二轮专题复习十:统计、概率、计数原理、随机变量及其分布、统计案例(附解析)
1.抽样方法、样本的数字特征、统计图表、回归分析与独立性检验主要以选择题、填空题形式命题,难度较小.
2.注重知识的交汇渗透,统计与概率,回归分析与概率是近年命题的热点. 3.计数原理、古典概型、几何概型的考查多以选择或填空的形式命题,中低档难度. 4.概率模型多考查独立重复试验、相互独立事件、互斥事件、对立事件及正态分布等;对离散型随机变量的分布列及期望的考查是重点中的“热点”.
1.抽样方法 抽样方法包括简单随机抽样、系统抽样、分层抽样,三种抽样方法都是等概率抽样,体现了抽样的公平性,
但又各有其特点和适用范围.
2.统计中的四个数据特征 (1)众数:在样本数据中,出现次数最多的那个数据. (2)中位数:样本数据中,将数据按大小排列,位于最中间的数据. 如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.
(3)平均数:样本数据的算术平均数,即121()nxxxxnL. (4)方差与标准差.
知识与技巧的梳理 考向预测 2222121[()()()]nsxxxxxxnL
,222121[()()()]nsxxxxxxnL.
3.直方图的两个结论 (1)小长方形的面积组距频率组距频率. (2)各小长方形的面积之和等于1.
4.回归分析与独立性检验 (1)回归直线ˆˆˆybxa经过样本点的中心点(,)xy,若x取某一个值代入回归直线方程ˆˆˆybxa
中,可求出y的估计值.
(2)独立性检验 对于取值分别是12{,}xx和12{,}yy的分类变量X和Y,其样本频数列联表是:
1y 2y 总计
1x a b ab
2x c d cd
总计 ac bd n
则22()()()()()nadbcKabcdacbd(其中nabcd为样本容量).
2020高考数学 试题汇编 第七节 统计、统计案例 理(含解析)

第七节统计、统计案例抽样方法考向聚焦从近三年的高考试题可以看出,高考对抽样方法的考查侧重于考查系统抽样和分层抽样中的数值计算问题,尤其是系统抽样中所抽样本的编号问题、分层抽样中各层所抽样本数量的计算等,多以小题形式出现,难度为中低档,所占分值为4~5分1.(2012年山东卷,理4,5分)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为( )(A)7 (B)9 (C)10 (D)15解析:本小题主要考查随机抽样与等差数列.由系统抽样可知,32人的号码间隔为30,抽到的号码构成等差数列{a n},且a n=30n-21(n∈N*),由451≤a n≤750可得16≤n≤25,即做问卷B 的人数为10人.答案:C.2.(2012年江苏数学,2,5分)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.解析:本题考查随机抽样中分层抽样.关键算出高二学生人数在总数中的比例.因为高二年级学生人数占总数的,样本容量为50,所以50×=15.答案:153.(2012年天津卷,理9,5分)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取所学校,中学中抽取所学校.解析:本题考查分层抽样,属容易题.从小学中抽取的学校数为30×=18(所),从中学中抽取的学校数为30×=9(所).答案:18 94.(2011年天津卷,理9)一支田径队有男运动员48人,女运动员36人.若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为.解析:∵=,∴48×=12(人). 答案:12频率分布直方图与茎叶图考向聚焦从近三年的高考试题可以发现,统计图表(频率分布表、频率分布直方图、频率分布折线图、茎叶图)是高考考查的重点和热点内容,几乎每年都考,可以单独命题,多是一道选择或填空题,为容易题,5分左右;可以以统计图象为载体,以现实生活为背景,结合样本的数字特征、概率、分布列等出一道大题,属于中档题目,12分左右备考指津对于统计图表的题目,求解时,最重要的就是认真观察图表,从中发现有用的信息和数据5.(2012年陕西卷,理6,5分)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为,,中位数分别为m甲,m 乙,则( )(A)<,m甲>m乙(B)<,m甲<m乙(C)>,m甲>m乙(D)>,m甲<x乙解析:由茎叶图中数据分布情况知:甲数据分散些,乙数据集中一些,且数据偏大,故<,排除C、D答案;观察排序后m甲==20,m乙==29,∴m甲<m乙,故<,m甲<m乙.答案:B.6.(2010年北京卷,理11)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a= .若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.解析:各组的频率之和为0.05+0.1+0.2+10a+0.35=1,a=0.030,所选三组的频数之比为3∶2∶1,所以身高在[140,150]内的学生中选取的人数应为18×=3.答案:0.030 37.(2010年江苏卷,4)某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间[5,40]中,其频率分布直方图如图所示,则其抽测的100根中,有根棉花纤维的长度小于20 mm.解析:∵小于20 mm的频率是(5+5)×0.01+5×0.04=0.3,∴100×0.3=30.答案:308.(2010年天津卷,理11)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数.则这10天甲、乙两人日加工零件的平均数分别为和.甲乙9 8 1 9 7 10 1 3 2 0 2 1 4 2 41 1 5 3 02 0解析:=.∴=24,同理可求=23.答案:24 239.(2010年陕西卷,理19)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm之间的概率;(3)从样本中身高在165~180 cm之间的女生中任选2人,求至少有1人身高在170~180 cm 之间的概率.解:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170~185 cm之间的学生有14+13+4+3+1=35人,样本容量为70,所以样本中学生身高在170~185 cm之间的频率f==0.5,故估计该校学生身高在170~185 cm之间的概率P=0.5.(3)样本中女生身高在165~180 cm之间的人数为10,身高在170~180 cm之间的人数为4. 设A表示事件“从样本中身高在165~180 cm之间的女生中任选2人,至少有1人身高在170~180 cm之间”,则P(A)=1-=(或P(A)==).本题综合考查了分层抽样、频数分布直方图、频率、概率等统计知识,要求有较强的读图识图能力及综合运用所学知识的能力.样本的数字特征考向聚焦从近三年的高考试题可以看出,样本的数字特征(众数、中位数、平均数、方差、标准差)也是高考对统计考查的重要内容,也几乎每年必考,也可单独命题,一般为一道选择、填空题,难度中档以下,5分左右;也可与统计图表、概率、分布列等知识综合在一起出一道应用大题,属中档题,12分左右备考指津计算平均数与方差或标准差时,要明确所有数据的个数,防止计算错误10.(2012年安徽卷,理5,5分)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )(A)甲的成绩的平均数小于乙的成绩的平均数(B)甲的成绩的中位数等于乙的成绩的中位数(C)甲的成绩的方差小于乙的成绩的方差(D)甲的成绩的极差小于乙的成绩的极差解析:本题考查统计图表及数据的数字特征,考查数据的处理及运算.甲射击比赛中靶4,5,6,7,8环各1次,则甲成绩的中位数为6环,平均数为6环,极差为4环,方差为2平方环;乙射击比赛中靶5环3次,6环1次,9环1次,则乙成绩的中位数为5环,平均数为6环,极差为4环,方差为2.4平方环.所以甲成绩的方差比乙成绩的方差小.故选C.答案:C.本题是统计知识的综合,读懂图,根据图中的数据提炼出所需要的数据,然后根据数据的各个数字特征进行运算即可得出结论.11.(2012年江西卷,理9,5分)样本(x1,x2,…,x n)的平均数为,样本(y1,y2,…,y m)的平均数为(≠).若样本(x1,x2,…,x n,y1,y2,…,y m)的平均数=α+(1-α),其中0<α<,则n,m的大小关系为( )(A)n<m (B)n>m(C)n=m (D)不能确定解析:本题考查统计中的平均数,作差法比较大小以及整体思想.依题意得x1+x2+…+x n=n,y1+y2+…+y m=m,x1+x2+…+x n+y1+y2+…+y m=(m+n)=(m+n)α+(m+n)(1-α),所以n+m=(m+n)α+(m+n)(1-α),所以,于是有n-m=(m+n)[α-(1-α)]=(m+n)(2α-1).因为0<α<,所以2α-1<0.所以n-m<0.即n<m.故选A.答案:A.比较两个实数的大小一般用作差或作商比较法.12.(2010年山东卷,理6)样本中共有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为( )(A)(B)(C)(D)2解析:由题意知(a+0+1+2+3)=1,解得a=-1,∴样本方差为s2=[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.答案:D.13.(2011年江苏卷,6)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s2= .解析:平均数==7,∴方差s2==3.2.答案:3.214.(2012年北京卷,理17,13分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400 100 100可回收物30 240 30其他垃圾20 20 60(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(求:s2=[(x1-)2+(x2-)2+…+(x n-)2],其中为数据x1,x2,…,x n的平均数)解:(1)由已知得厨余垃圾共有600吨,其中厨余垃圾投放正确的有400吨,∴厨余垃圾投放正确的概率为=.(2)由已知得厨余垃圾投放正确的有400吨,可回收物投放正确的有240吨,其他垃圾投放正确的有60吨,∴生活垃圾投放正确的有700吨,∴生活垃圾投放错误的有300吨,∴投放错误的概率为=.(3)当a=600,b=c=0时,s2取最大值.由已知a+b+c=600,∴a,b,c的平均数为200,∴s2==80000,∴方差s2的最大值为80000.此题的难度在第三问,其余两问题难度不大,第三问对学生有较高的能力要求.虽不要求证明,但要求学生对方差意义的理解非常深刻.15.(2011年北京卷,理17)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵数的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望.(注:方差s2=[(x1-)2+(x2-)2+…+(x n-)2],其中为x1,x2,…,x n的平均数)解:(1)当X=8时,由茎叶图可知,乙组同学的种植棵数是8、8、9、10,所以平均数为==,方差为s2=[(8-)2+(8-)2+(9-)2+(10-)2]=.(2)当X=9时,由茎叶图可知,甲组同学的植树棵数为9、9、11、11,乙组同学的植树棵数为9、8、9、10,分别从甲、乙两组中随机选取一名同学,共有4×4=16种等可能的结果,而两名同学植树总棵数Y的取值有17、18、19、20、21,其中事件“Y=17”等价于“甲组同学植树9棵,乙组同学植树8棵”,所以它包含2种基本事件,∴P(Y=17)==,同理可得P(Y=18)=,P(Y=19)=,P(Y=20)=,P(Y=21)=,所以随机变量Y的分布列为Y 17 18 19 20 21P所以其数学期望为E(Y)=17×+18×+19×+20×+21×=19.变量的相关性考向聚焦高考对变量间的相关性的考查呈逐年上升的势头,主要考查借助于散点图直观地分析两个变量间的相关关系,知道回归直线经过的样本中心,会求线性回归方程,并能利用方程对有关变量作出估计.一般以选择、填空的形式出现,属容易题,所占分值4~5分16.(2012年湖南卷,理4,5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( )(A)y与x具有正的线性相关关系(B)回归直线过样本点的中心(,)(C)若该大学某女生身高增加1 cm,则其体重约增加0.85 kg(D)若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg解析:根据线性回归方程相关知识可知A、B、C是正确的.而由回归方程得到的是预报变量的可能取值的平均值,不是预报变量的精确值,故选D.答案:D.广告费用x(万元) 4 2 3 5销售额y(万元) 49 26 39 54根据上表可得回归方程=x+中的为9.4,据此模型预报广告费用为6万元时销售额为( )(A)63.6万元(B)65.5万元(C)67.7万元(D)72.0万元解析:据表可得==,==42,因为回归直线过样本中心点(,42),且=9.4,∴=9.1.即回归方程为=9.4x+9.1,∴当x=6时,=65.5(万元),故选B.答案:B.18.(2011年江西卷,理6)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( )(A)r2<r1<0 (B)0<r2<r1(C)r2<0<r1(D)r2=r1解析:由散点图可以得出结论:变量X与Y正相关;变量U与V负相关.故r1>0,r2<0.因此选C. 答案:C.19.(2011年陕西卷,理9)设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )(A)x和y的相关系数为直线l的斜率(B)x和y的相关系数在0到1之间(C)当n为偶数时,分布在l两侧的样本点的个数一定相同(D)直线l过点(,)解析:线性回归直线必过样本点中心(,),故选D.答案:D.20.(2011年辽宁卷,理14)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加万元.解析:由回归直线方程为=0.254x+0.321知收入每增加1万元,饮食支出平均增加0.254万元.答案:0.25421.(2011年广东卷,理13)某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm、170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为 cm.由题意父亲身高x 173 170 176y 170 176 182则==173,==176,(x i-)(y i-)=(173-173)×(170-176)+(170-173)×(176-176)+(176-173)(182-176)=18, (x i-)2=(173-173)2+(170-173)2+(176-173)2=18.∴==1,∴=-=176-173=3.∴线性回归直线方程=x+=x+3.∴可估计孙子身高为182+3=185(cm).答案:185独立性检验考向聚焦对独立性检验的考查是高考一个方向,有时以一道选择题的形式出现,属容易题,4~5分;也有时以一道解答题的形式出现,12分左右,属于中档偏下题目备考指津通过独立性检验判断两个变量是否相关,列出列联表是关键.利用列联表进行独立性检验,不但能考查两个变量是否相关,而且能较准确地计算出这种判断的可靠程度22.(2011年湖南卷,理4)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如男女总计爱好40 20 60不爱好20 30 50总计60 50 110由K2=算得,K2==7.8.P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828参照附表,得到的正确结论是( )(A)在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”(B)在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”(C)有99%以上的把握认为“爱好该项运动与性别有关”(D)有99%以上的把握认为“爱好该项运动与性别无关”解析:∵K2=7.8>6.635,∴有99%以上把握认为“爱好该项运动与性别有关”,∴选C.答案:C.23.(2010年新课标全国卷,理19)为调查某地区老年人是否需要志愿者提供帮助,用简单随性别男女是否需要志愿者需要40 30不需要160 270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828K2=.解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为×100%=14%.(2)K2=≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考真题分类汇编:统计
1.【2020高考真题上海理17】设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值
54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )
A .21ξξD D >
B .21ξξD D =
C .21ξξ
D D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关
【答案】A
2.【2020高考真题陕西理6】从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )
A. x x <甲乙,m 甲>m 乙
B. x x <甲乙,m 甲<m 乙
C. x x >甲乙,m 甲>m 乙
D. x x >甲乙,m 甲<m 乙
【答案】B.
3.【2020高考真题山东理4】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为
(A )7 (B ) 9 (C ) 10 (D )15
【答案】C
4.【2020高考真题江西理9】样本(12,,
,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z ax a y =+-,其中
102
α<<
,则n,m 的大小关系为 A .n m < B .n m > C .n m = D .不能确定 【答案】A
5.【2020高考真题湖南理4】设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是
A.y 与x 具有正的线性相关关系
B.回归直线过样本点的中心(x,y)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg
【答案】D
6.【2020高考真题安徽理5】甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则
()A甲的成绩的平均数小于乙的成绩的平均数
()B甲的成绩的中位数等于乙的成绩的中位数
C甲的成绩的方差小于乙的成绩的方差
()
D甲的成绩的极差小于乙的成绩的极差
()
【答案】C
【命题立意】本题考查统计学中的数字特征与统计图。
7.【2020高考真题天津理9】某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取________所学校.
【答案】18,9
::,现用分层8.【2020高考江苏2】(5分)某学校高一、高二、高三年级的学生人数之比为334
抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取▲ 名学生.
【答案】15。
9.【2020高考真题辽宁理19】(本小题满分12分)
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。
下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。
(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别 有关?
(Ⅱ)将上述调查所得到的频率视为概率。
现在从该地区大量电视观众中,采用随机抽 样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X 。
若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X 。
附:2
2112212211212(),n n n n n n n n n χ++++-=
【答案】
【点评】本题主要考查统计中的频率分布直方图、独立性检验、离散型随机变量的分布列,期望()E X 和方差()D X ,考查分析解决问题的能力、运算求解能力,难度适中。
准确读取频率分布直方图中的数据是解题的关键。