一元线性回归模型案例分析
计量经济学实验一 一元回归模型

实验二一元回归模型【实验目的】掌握一元线性、非线性回归模型的建模方法【实验内容】建立我国税收预测模型【实验步骤】【例1】建立我国税收预测模型。
表1列出了我国1985-1998年间税收收入Y和国内生产总值(GDP)x的时间序列数据,请利用统计软件Eviews建立一元线性回归模型。
一、建立工作文件⒈菜单方式在录入和分析数据之前,应先创建一个工作文件(Workfile)。
启动Eviews软件之后,在主菜单上依次点击File\New\Workfile(菜单选择方式如图1所示),将弹出一个对话框(如图2所示)。
用户可以选择数据的时间频率(Frequency)、起始期和终止期。
图1 Eviews菜单方式创建工作文件示意图图2 工作文件定义对话框本例中选择时间频率为Annual(年度数据),在起始栏和终止栏分别输入相应的日期85和98。
然后点击OK,在Eviews软件的主显示窗口将显示相应的工作文件窗口(如图3所示)。
图3 Eviews工作文件窗口一个新建的工作文件窗口内只有2个对象(Object),分别为c(系数向量)和resid(残差)。
它们当前的取值分别是0和NA(空值)。
可以通过鼠标左键双击对象名打开该对象查看其数据,也可以用相同的方法查看工作文件窗口中其它对象的数值。
⒉命令方式还可以用输入命令的方式建立工作文件。
在Eviews软件的命令窗口中直接键入CREATE命令,其格式为:CREATE 时间频率类型起始期终止期本例应为:CREATE A 85 98二、输入数据在Eviews软件的命令窗口中键入数据输入/编辑命令:DA TA Y X此时将显示一个数组窗口(如图4所示),即可以输入每个变量的数值图4 Eviews数组窗口三、图形分析借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理地确定模型的数学形式。
⒈趋势图分析命令格式:PLOT 变量1 变量2 ……变量K作用:⑴分析经济变量的发展变化趋势⑵观察是否存在异常值本例为:PLOT Y X⒉相关图分析命令格式:SCAT 变量1 变量2作用:⑴观察变量之间的相关程度⑵观察变量之间的相关类型,即为线性相关还是曲线相关,曲线相关时大致是哪种类型的曲线说明:⑴SCAT命令中,第一个变量为横轴变量,一般取为解释变量;第二个变量为纵轴变量,一般取为被解释变量⑵SCAT命令每次只能显示两个变量之间的相关图,若模型中含有多个解释变量,可以逐个进行分析⑶通过改变图形的类型,可以将趋势图转变为相关图本例为:SCA T Y X图5 税收与GDP趋势图图5、图6分别是我国税收与GDP时间序列趋势图和相关图分析结果。
第三章 一元线性回归模型

第三章 一元线性回归模型一、预备知识(一)相关概念对于一个双变量总体,若由基础理论,变量和变量之间存在因果),(i i x y x y 关系,或的变异可用来解释的变异。
为检验两变量间因果关系是否存在、x y 度量自变量对因变量影响的强弱与显著性以及利用解释变量去预测因变量x y x ,引入一元回归分析这一工具。
y 将给定条件下的均值i x i yi i i x x y E 10)|(ββ+=(3.1)定义为总体回归函数(PopulationRegressionFunction,PRF )。
定义为误差项(errorterm ),记为,即,这样)|(i i i x y E y -i μ)|(i i i i x y E y -=μ,或i i i i x y E y μ+=)|(i i i x y μββ++=10(3.2)(3.2)式称为总体回归模型或者随机总体回归函数。
其中,称为解释变量x (explanatory variable )或自变量(independent variable );称为被解释y 变量(explained variable )或因变量(dependent variable );误差项解释μ了因变量的变动中不能完全被自变量所解释的部分。
误差项的构成包括以下四个部分:(1)未纳入模型变量的影响(2)数据的测量误差(3)基础理论方程具有与回归方程不同的函数形式,比如自变量与因变量之间可能是非线性关系(4)纯随机和不可预料的事件。
在总体回归模型(3.2)中参数是未知的,是不可观察的,统计计10,ββi μ量分析的目标之一就是估计模型的未知参数。
给定一组随机样本,对(3.1)式进行估计,若的估计量分别记n i y x i i ,,2,1),,( =10,),|(ββi i x y E 为,则定义3.3式为样本回归函数^1^0^,,ββi y ()i i x y ^1^0^ββ+=n i ,,2,1 =(3.3)注意,样本回归函数随着样本的不同而不同,也就是说是随机变量,^1^0,ββ它们的随机性是由于的随机性(同一个可能对应不同的)与的变异共i y i x i y x 同引起的。
2一元线性回归模型

E( y | x) 0 1x
总体回归函数(population regression function PRF)E( y | x) 0 1x ,是x的一个线性函数。
这样y就分成两部分, 0 1x 称为的系统部分;u称为非 系统部分。
样本回归函数
样本回归函数(sample regression function, SRF)
同方差性和异方差性
同方差性和异方差性
正(负)序列相关及零相关
最小二乘法的基本假定
假定6:ui和Xi的协方差为零。 cov(ui , Xi ) E[ui Eui ][ Xi EXi ] E[ui (Xi EXi )] E(ui Xi ) 0
假定7:观测次数n必须大于待估计的参数个数。 假定8:X值要有变异性。 假定9:正确地设定了回归模型。
可得 Y ˆ0 ˆ1X 。
(2)估计的Y(= Yˆi )均值等于实测的Y的均值,因为 Yˆi ˆ0 ˆ1Xi (Y ˆ1X ) ˆ1Xi Y ˆ1(Xi X )
等式两边对样本值求和再除以样本容量n得:Yˆ Y
(3)残差 uˆi 的均值为零。因为由最小二乘法得
2 (Yi ˆ0 ˆ1Xi ) 0
不会!
其均值的变异,称为解释平方和(Explained Sum of
Squares, ESS )。
uˆi2 (Yi Yˆi )2 为残差或未被解释的围绕回归线的Y值的
变异,称为残差平方和(Residual Sum of Squares,
RSS ).
TSS=ESS+RSS 这说明总变异由两部分组成:
定义 r2 ESS (Yˆi Y )2
TSS
(Yi Y )2
于是
r2
一元线性回归

由此可推测:当火灾发生地离最近的消 防 站 为 10km 时 , 火 灾 损 失 大 致 在
ˆ y 10.279 49.19 59.369(千元) 当火 ;
灾发生地离最近的消防站为 2km 时,火灾损 失大致在 20.117(千元)
三、0,1的性质
1, 线性
1
(x x ) y
为 y 关于 x 的一元线性经验回归方程 (简称为回归直
ˆ 线方程) 0 为截距, 1 为经验回归直线的斜率。 , ˆ
引进矩阵的形式:
y1 1 x1 1 0 y2 1 x2 2 设 y , X , , 1 y 1 x n n n
变量之间具有密切关联 而又不能由一个或某一些变 量唯一确定另外一个变量的 关系称为变量之间的相关关 系.
y
y f ( x)
y
Y f (X )
0
(a) 函数关系
x
0
(b) 统计关系
x
种类
正相关 负相关
一元相关 多元相关
线性相关 曲线相关
y
y
y
y
正相关
x
负相关
x
曲线相关
x
不相关
x
例 2 城镇居民的收入与消费支出之间有很大的关 联,居民的收入提高了,消费也随之潇洒,但居民的 收入不能完全确定消费,人们的消费支出受到不同年 龄段的消费习惯的影响,也受到不同消费理念的影响。 因此居民的收入 x 与消费支出 y 就呈现出某种不确定 性。 我们将上海市城镇居民可支配收入与支出的数据 (1985 年~2002 年)用散点图表示,可以发现居民的 收入 x 与消费支出 y 基本上呈现线性关系,但并不完 全在一条直线上。 附数据与图形。
8.2 一元线性回归模型及其应用教案

8.2 一元线性回归模型及其应用一、教学目标知识与技能从相关指数和残差分析角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤.过程与方法在发现直接求回归直线方程存在缺陷的基础上,引导学生去发现解决问题的新思路——进行回归分析,进而介绍残差分析的方法和利用R2来表示解释变量对于预报变量变化的贡献率.情感、态度与价值观通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,掌握处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神.培养学生运用所学知识解决实际问题的能力.教学中适当地利用学生的合作与交流,使学生在学习的同时,体会与他人合作的重要性.二、教学重难点教学重点:从残差分析、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;教学难点:了解评价回归效果的两个统计量:相关指数、残差和残差平方和.三、教学过程(一)新课导入(幻灯片)上表是上一节课我们从某大学选取8名女大学生其身高和体重数据组成的数据表,在上一节课中我们通过数据建立了回归直线方程,并根据方程预测了身高为172 cm的女大学生的体重.当时,我们提到根据回归直线方程求得的体重数据,仅是一个估计值,其与真实值之间存在着误差,为了综合分析身高和体重的关系,我们引入了线性回归模型y=bx+a+e 来表示两变量之间的关系,其中e为随机变量,又称随机误差.线性回归模型y=bx+a+e 增加了随机误差项e,因变量y的值由自变量x和随机误差e共同确定.假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上.但是,在图中,数据点并没有完全落在回归直线上.这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推”开了,即自变量x 只能解释部分y 的变化. 同学们考虑一下,随机变量e 的均值是多少?方差又是多少? 活动设计:学生思考回答问题.设计意图:说明研究随机误差e 的必要性,通过研究随机误差e 可以分析预报值的可信度. 提出问题:既然可以用随机变量e 的方差来衡量随机误差的大小,即通过方差σ2来刻画预报变量(体重)的变化在多大程度上与随机误差有关,那么如何获得方差σ2呢? 活动结果:可以采用抽样统计的思想,通过随机变量e 的样本来估计σ2的大小. 设计目的:复习抽样统计思想,以便通过随机变量e 的样本来估计总体.探究新知提出问题:既然e 表示了除解释变量以外其他各种影响预报值的因素带来的误差,那么如何获得e 的样本来计算σ2呢? 学生活动:分组合作讨论交流.学情预测:由函数模型y ^=b ^x +a ^和回归模型y =bx +a +e 可知e =y -y ^,这样根据图表中女大学生的身高求出预报值,再与真实值作差,即可求得e 的一个估计值.教师:由于在计算回归直线方程时,利用公式求得的b ^和a ^为斜率和截距的估计值,它们与真实值a 和b 之间存在误差,因此y ^是估计值,所以e ^=y -y ^也是一个估计值. 由上可知,对于样本点(x 1,y 1),(x 2,y 2),…,(x n ,y n )而言,它们的随机误差为e i =y i -bx i -a ,i =1,2,…n ,称其估计值e ^i =y i -y ^i 为相应于点(x i ,y i )的残差.将所有残差的平方加起来,这个和称作残差平方和. 类比样本方差估计总体方差的思想,可以用 作为σ2的估计量,通常,σ^2越小,预报精度越高.这样,当我们求得回归直线方程后,可以通过残差来判断模型拟合程度的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析. 设计目的:通过问题诱思,引入残差概念.(二)探索新知提出问题:对照女大学生的身高和体重的原始数据,结合求出的回归直线方程,求出相应的残差数据. 活动结果:提出问题:根据表格中的数据,以样本编号为横坐标,残差值为纵坐标,做出散点图(这样的散点图称作残差图).学生活动:分组合作,共同完成. 活动结果:残差图提出问题:观察上面的残差图,你认为哪几个样本点在采集时可能存在人为的错误?为什么?学生活动:分组讨论.活动结果:第一个和第六个样本点在采集过程中可能存在错误,因为其他的样本点基本都集中在一个区域内,只有这两个样本点的残差比较大,相对其他样本点来说,分布得较为分散. 提出问题:如何从残差图来判断模型的拟合程度? 学生活动:独立思考也可相互讨论. 活动结果:因为σ^2越小,预报精度越高,即模型的拟合程度越高,而σ^ 2越小,e ^的取值越集中,故若残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,且带状区域的宽度越窄,说明拟合精度越高,回归直线的预报精度越高.教师:在统计学上,人们经常用相关指数R 2来刻画回归的效果,其计算公式是:相关指数提出问题:分析上面计算相关指数R 2的公式,如何根据R 2来判断模型的拟合效果?22121()1()nii i n ii yy R yy ==-=--∑∑学生活动:独立思考也可相互讨论,教师加以适当的引导提示.活动结果:R2取值越大,意味着残差平方和越小,也就是说模型的拟合效果越好.提出问题:在线性回归模型中,R2表示解释变量对于预报变量变化的贡献率,R2越接近1,表示回归的效果越好,即解释变量和预报变量的线性相关性越强,试计算关于女大学生身高与体重问题中的相关指数R2.提出问题:结合我们刚学习的概念,现在能否将建立回归模型的步骤补充完整?学生活动:讨论交流,合作完成.活动结果:一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量.(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等).(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程).(4)按一定规则(如最小二乘法)估计回归方程中的参数.(5)得出结果后分析残差图是否有异常(如个别数据对应残差过大,或残差呈现不随机的规律性,等等).若存在异常,则检查数据是否有误,或模型是否合适等.设计意图:设计问题,让学生讨论分析,得出使用回归方程进行预报需注意的问题,并让学生完善建立回归模型的步骤.在这个过程中,教师不宜做太多引导,要放手给学生,让学生讨论,充分参与进来.运用新知例1 一个车间为了规定工时定额,需确定加工零件所花费的时间,为此进行了10次试验,测得的数据如下:(1)建立零件数为解释变量,加工时间为预报变量的回归模型,并计算残差;(2)你认为这个模型能较好地刻画零件数和加工时间的关系吗?解:(1)根据表中数据作出散点图如下:散点图由散点图可知变量之间具有线性相关关系,可以通过求线性回归方程来拟合数据. 根据公式可求得加工时间对零件数的线性回归方程为y ^=0.668x +54.96. 残差数据如下表:(2)画出残差图残差图由图可知,残差点分布较均匀,即用上述回归模型拟合数据效果很好,但需注意,由残差图也可以看出,第4个样本点和第5个样本点残差较大,需要确认在采集这两个样本点的过程中是否有人为的错误.点评:由散点图判断两个变量的线性相关关系,误差较大,利用残差图可以较好地评价模型的拟合程度,并能发现样本点中的可疑数据. 变练演编例2 在一段时间内,某种商品的价格x (元)和需求量y (件)之间的一组数据为:求出y 对x 的回归方程,并说明拟合效果的好坏. 解:作出散点图:从作出的散点图可以看出,这些点在一条直线附近,可用线性回归模型来拟合数据.由数据可得x =18,y =45.4,由计算公式得b ^=-2.35,a ^=y -b ^x =87.7. 故y 对x 的回归方程为y ^=-2.35x +87.7,列表:y i -y ^i 1.2 -0.1 -2.4 0.3 1 y i -y10.64.6-2.4-4.4-8.4相关指数R 2≈0.946.因为0.964很接近1,所以该模型的拟合效果很好.变式1:若要分析是否在上述样本的采集过程中存在可疑数据,应如何分析? 活动设计:学生分组讨论,回顾课本解答问题. 活动成果:可以画出残差图来进行分析.变式2:既然利用残差图和相关指数都能够评价回归模型的拟合效果,能否总结一下两种方法各自的特点?活动成果:利用残差图可以直观展示拟合的效果,而且还可以发现样本数据中的可疑数据;而相关指数是把对拟合效果的评价转换为数值大小的判断,易于量化处理,并能在数量上表现解释变量对于预报变量变化的贡献率.设计意图:进一步熟悉判断拟合效果的方法以及各自的特点. 非线性回归分析2.现收集了一只红铃虫的产卵数y 和温度xoC 之间的7组观测数据列于下表:1)试建立产卵数y 与温度x 之间的回归方程;并预测温度为28oC 时产卵数目。
一元线性回归模型(教学设计)(人教A版2019选择性必修第三册)

8.2.1一元线性回归模型教学设计一、课时教学内容本节的主要内容是一元线性回归模型,它是线性回归分析的核心内容,也是后续研究两变量间的相关性有关问题的基础.通过散点图直观探究分析得出的直线拟合方式不同,拟合的效果就不同,它们与实际观测值均有一定的偏差.在经历用不同估算方法描述两个变量线性相关关系的过程中,解决用数学方法刻画从整体上看各观测点到拟合直线的距离最小的问题,让学生在此基础上了解更为科学的数据处理方式——最小二乘法,有助于他们更好地理解核心概念“经验回归直线”,并最终体现回归方法的应用价值.就统计学科而言,对不同的数据处理方法进行“优劣评价”是“假设检验”的萌芽.了解最小二乘法思想,将其与各种估算方法进行比较,体会它的相对科学性,既是统计学教学发展的需要,又是在体会此思想的过程中促进学生对核心概念进一步理解的需要.最小二乘法思想作为本节课的核心思想,由此得以体现,而回归思想和贯穿统计学科的随机思想,也是本节课需要渗透的.二、课时教学目标1.结合实例,了解一元线性回归模型的含义,了解模型参数的统计意义2.了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.3.针对实际问题,会用一元线性回归模型进行预测.三、教学重点、难点1.教学重点:一元线性回归模型的基本思想,经验回归方程,最小二乘法.2.难点:回归模型与函数模型的区别,随机误差产生的原因与影响.四、教学过程设计环节一创设情境,引入课题问题1如何求经验回归方程?提示:求经验回归方程的一般步骤如下:(1)画出散点图,依据问题所给的数据在平面直角坐标系中描点,观察点的分布是否呈条状分布,即是否在一条直线附近,从而判断两变量是否具有线性相关关系;(2)当两变量具有线性相关关系时,求系数的最小二乘估计书",写出经验回归方程;(3)进行残差分析,分析模型的拟合效果,不合适时,分析错因,予以纠正.【师生互动】教师让学生举手回答问题,并及时给予纠正.【设计意图】复习上节课所学知识,为本节课解决与线性回归分析有关的实际问题做好铺垫。
一元线性回归案例教案设计人教课标版(实用教学设计)

一元线性回归案例教案设计人教课标版(实用教学设计)引言教案的目的是帮助学生理解并掌握一元线性回归的基本概念和应用。
本教案设计适用于人教课标版教材,旨在提供实用的教学设计方案。
教学目标- 让学生了解一元线性回归的定义和基本原理。
- 培养学生使用一元线性回归进行数据分析和预测的能力。
- 培养学生运用一元线性回归解决实际问题的能力。
教学内容1. 一元线性回归的概念和原理- 引导学生了解线性回归的基本概念,并重点介绍一元线性回归。
- 讲解一元线性回归的原理和数学表达式。
- 实际案例分析,让学生明确一元线性回归的实际应用。
2. 数据集收集和处理- 引导学生研究如何收集适用于一元线性回归的数据集。
- 教授数据处理和清洗的方法,确保数据的准确性和可靠性。
3. 模型建立和拟合- 讲解如何建立一元线性回归模型。
- 引导学生研究如何进行模型参数拟合,并解读拟合结果。
4. 数据分析和预测- 使用建立好的一元线性回归模型,进行数据分析和预测。
- 引导学生分析预测结果,并讨论模型的准确性和可靠性。
5. 实际问题解决- 引导学生应用一元线性回归解决实际问题。
- 带领学生思考如何调整模型参数以获得更好的结果。
教学方法与手段- 课堂讲授:通过讲解基本概念、原理和方法,帮助学生建立知识框架。
- 案例分析:通过实际案例分析,让学生了解一元线性回归的实际应用。
- 数据实践:引导学生收集数据集并进行分析和预测,让学生亲身体验一元线性回归的过程。
教学评价与反馈- 课堂小测验:通过布置小测验,检查学生对一元线性回归的理解和能力。
- 学生作业:布置作业,让学生运用一元线性回归解决实际问题,并提交报告。
- 教师评价与反馈:根据学生的表现和作业报告,评价学生的理解和能力,并提供反馈建议。
结束语通过本教学设计,学生能够全面了解一元线性回归的概念、原理和应用,并具备运用一元线性回归解决实际问题的能力。
希望本设计能为教师提供实用的教学指导,帮助学生取得良好的学习效果。
第2章 一元线性回归模型 演示文稿

般来说,在一定限度内施肥量适当增加,产量就会相应增
加 . 但即使施肥量相同 , 产量并不能由施肥量唯一确定 , 而可能有不同的值 .在该例中 , 施肥量是 自变量 ( 解释变 量),是可以控制的,是确定性变量.而产量受各种偶然因 素的影响,是 不可控制的随机变量 ,是因变量( 被解释变
量).
7
2.1.1 回归分析的内涵
第2章 一元(两变量)线性回归分析
2.1 一元线性回归模型 2.2 一元线性回归模型的参数估计 2.3 古典假设的内涵与参数估计量的性质
!
2.4 拟合优度评价 、回归显著性检验(F检验)
2.5 一元线性回归系数的检验(t检验)
2.6 预测
##
#
1
2.1 一元线性回归模型
2.1.1 回归分析的内涵 2.1.2 一元线性回归模型的有关概念 2.1.3 有关随机扰动项μi 的古典模型假设
27
2.1.3 有关随机扰动项μi 的古典模型假设
数据是世界运动变化留下的轨迹,是客
体间错综复杂关系的表征。因此,数据背后
存在着某种规律。
由于随机性的存在,事物间的本质联系
(必然性、规律)往往被偶然性所遮蔽,有
待人们用特殊方法去认识与探索。
28
2.1.3 有关随机扰动项μi 的古典模型假设
数据的集合称为变量(变数),这些数据是
155
165 175 189 - 966
175
178 180 185 191
1211
10
散点图
11
2.1.2 一元线性回归模型
一些基本概念 条件分布:以X取定值为条件的Y的条件分布 条件概率:给定X的Y的概率,记为P(Y|X)。 例如,P(Y=55|X=80)=1/5;P(Y=150|X=260)=1/7。 条件期望(conditional Expectation):给定X的Y的期望值, 记为E(Y|X)。 例如,E(Y|X=80)=55×1/5+60×1/5+65×1/5+70×1/5+ 75×1/5=65 总体回归曲线(Popular Regression Curve)(总体回归曲 线的几何意义):当解释变量给定值时因变量的条件期望 值的轨迹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元线性回归模型案例分析一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。
为了研究全国居民消费水平及其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。
因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。
为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。
从2002年《中国统计年鉴》中得到表2.5的数据:表2.52002年中国各地区城市居民人均年消费支出和可支配收入如图2.12:图2.12从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:12i i i Y X u ββ=++ 三、估计参数假定所建模型及随机扰动项i u 满足古典假定,可以用OLS 法估计其参数。
运用计算机软件EViews 作计量经济分析十分方便。
利用EViews 作简单线性回归分析的步骤如下: 1、建立工作文件首先,双击EViews 图标,进入EViews 主页。
在菜单一次点击File\New\Workfile ,出现对话框“Workfile Range ”。
在“Workfile frequency ”中选择数据频率:Annual (年度) Weekly ( 周数据 )Quartrly (季度) Daily (5 day week ) ( 每周5天日数据 ) Semi Annual (半年) Daily (7 day week ) ( 每周7天日数据 ) Monthly (月度) Undated or irreqular (未注明日期或不规则的) 在本例中是截面数据,选择“Undated or irreqular ”。
并在“Start date ”中输入开始时间或顺序号,如“1”在“end date ”中输入最后时间或顺序号,如“31”点击“ok ”出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。
若要将工作文件存盘,点击窗口上方“Save ”,在“SaveAs ”对话框中给定路径和文件名,再点击“ok ”,文件即被保存。
4000600080001000012000400060008000100001200014000XY2、输入数据在数据编辑窗口中,首先按上行键“↑”,这时对应的“obs”字样的空格会自动上跳,在对应列的第二个“obs”有边框的空格键入变量名,如“Y ”,再按下行键“↓”,对因变量名下的列出现“NA ”字样,即可依顺序输入响应的数据。
其他变量的数据也可用类似方法输入。
也可以在EViews 命令框直接键入“data X Y ”(一元时) 或 “data Y 1X 2X … ”(多元时),回车出现“Group”窗口数据编辑框,在对应的Y 、X 下输入数据。
若要对数据存盘,点击 “fire/Save As”,出现“Save As ”对话框,在“Drives ”点所要存的盘,在“Directories ”点存入的路径(文件名),在“Fire Name ”对所存文件命名,或点已存的文件名,再点“ok ”。
若要读取已存盘数据,点击“fire/Open”,在对话框的“Drives”点所存的磁盘名,在“Directories”点文件路径,在“Fire Name”点文件名,点击“ok”即可。
3、估计参数方法一:在EViews 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation specification ”对话框,选OLS 估计,即选击“Least Squares”,键入“Y C X ”,点“ok ”或按回车,即出现如表2.6那样的回归结果。
表2.6在本例中,参数估计的结果为:^282.24340.758511i i Y X =+ (287.2649) (0.036928) t=(0.982520) (20.54026)20.935685r = F=421.9023 df=29方法二:在EViews 命令框中直接键入“LS Y C X ”,按回车,即出现回归结果。
若要显示回归结果的图形,在“Equation ”框中,点击“Resids ”,即出现剩余项(Residual )、实际值(Actual )、拟合值(Fitted )的图形,如图2.13所示。
图2.13四、模型检验1、经济意义检验所估计的参数^20.758511β=,说明城市居民人均年可支配收入每相差1元,可导致居民消费支出相差0.758511元。
这与经济学中边际消费倾向的意义相符。
2、拟合优度和统计检验用EViews 得出回归模型参数估计结果的同时,已经给出了用于模型检验的相关数据。
拟合优度的度量:由表2.6中可以看出,本例中可决系数为0.935685,说明所建模型整体上对样本数据拟合较好,即解释变量“城市居民人均年可支配收入”对被解释变量“城市居民人均年消费支出”的绝大部分差异作出了解释。
对回归系数的t 检验:针对01:0H β=和02:0H β=,由表2.6中还可以看出,估计的回归系数^1β的标准误差和t 值分别为:^1()287.2649SE β=,^1()0.982520t β=;^2β的标准误差和t 值分别为:^2()0.036928SE β=,^2()20.54026t β=。
取0.05α=,查t 分布表得自由度为231229n -=-=的临界值0.025(29) 2.045t =。
因为^10.025()0.982520(29) 2.045t t β=<=,所以不能拒绝01:0H β=;因为^20.025()20.54026(29) 2.045t t β=>=,所以应拒绝02:0H β=。
这表明,城市人均年可支配收入对人均年消费支出有显著影响。
五、回归预测由表2.5中可看出,2002年中国西部地区城市居民人均年可支配收入除了西藏外均在8000以下,人均消费支出也都在7000元以下。
在西部大开发的推动下,如果西部地区的城市居民人均年可支配收入第一步争取达到1000美元(按现有汇率即人民币8270元),第二步再争取达到1500美元(即人民币12405元),利用所估计的模型可预测这时城市居民可能达到的人均年消费支出水平。
可以注意到,这里的预测是利用截面数据模型对被解释变量在不同空间状况的空间预测。
用EViews 作回归预测,首先在“Workfile ”窗口点击“Range ”,出现“Change Workfile Range ”窗口,将“End data”由“31”改为“33”,点“OK ”,将“Workfile ”中的“Range ”扩展为1—33。
在“Workfile ”窗口点击“sampl”,将“sampl”窗口中的“1 31”改为“1 33”,点“OK ”,将样本区也改为1—33。
为了输入18270f X =,212405f X =在EViews 命令框键入data x /回车, 在X 数据表中的“32”位置输入“8270”,在“33”的位置输入“12405”,将数据表最小化。
然后在“E quation ”框中,点击“Forecast ”,得对话框。
在对话框中的“Forecast name ”(预测值序列名)键入“fY ”, 回车即得到模型估计值及标准误差的图形。
双击“Workfile ”窗口中出现的“Yf ”,在“Yf ”数据表中的“32”位置出现预测值16555.132f Y =,在“33”位置出现29691.577f Y =。
这是当18270f X =和212405f X =时人均消费支出的点预测值。
为了作区间预测,在X 和Y 的数据表中,点击“View”选“Descriptive Stats\Cmmon Sample”,则得到X 和Y 的描述统计结果,见表2.7: 表2.7根据表2.7的数据可计算:2221()(1)2042.68230125176492.59niX i XX n σ=-=-=⨯=∑221()(82707515.026)569985.74f X X -=-=222()(124057515.026)23911845.72f X X -=-=fY 置信度95%的预测区间为:2221()11()f fni i X X Y t nX X ασ=-++-∑ 18270f X =时1569985.746555.13 2.045413.1593131125176492.59⨯⨯++6555.13860.32=212405f X =时123911845.729691.58 2.045413.1593131125176492.59⨯⨯++9691.58934.49=即是说,当第一步18270f X =时,1f Y 个别值置信度95%的预测区间为(5694.81,7415.45)元。