奥氏体不锈钢产品固溶处理工艺(1)(1)

奥氏体不锈钢产品固溶处理工艺(1)(1)
奥氏体不锈钢产品固溶处理工艺(1)(1)

江苏新中信电器设备有限公司

ZX/YGY-03-2012 奥氏体不锈钢锻件固溶处理工艺

奥氏体不锈钢产品经热加工后,还存在少量的碳化物。为获得单相奥氏体,提高材料的耐腐蚀性。需进行固溶处理,使所有的碳化物都融入奥氏体组织中。

固溶处理的热处理规范见图。升温速度要尽可能快,如果条件许可,先将空炉炉温加热到1050℃,然后将产品放入炉内,保温后再冷却。保温时间一般按板厚1m m/2m i n来控制,最少时间为30m i n,最长不超过60mi n。第二炉必须在炉内再次升温到1050℃,并保温不少于相应的时间。

出炉后快速放入<25m g/L 的冷水中快速冷却之室温。

固溶处理过程中,产品每次/每框不超过150Kg,确保框体安全和产品固溶的质量。

固溶处理加热曲线图由操作工签字,车间主任确认,检验科审核存档。

江苏新中信电器设备有限公司

热处理(固溶)工艺规程

ZX/JS-007-04

产品型号 零件图号 产品名称

零件名称

设备:

RJ2-30-11井式炉 制造厂:江苏高皓工业炉公司 材料牌号:F304; 标准号:A182/;毛坯种类:锻件(棒料) 化学成份:

C:≤0.08;Si:≤1.00;Mn:≤2.00;P:≤0.040;S:≤0.030;Ni:8.0-11.0;Cr18.0-20.0 热处理后性能要求:

机械性能:Rm ≥515MPa ; R p0.2≥205MPa ; A ≥30%; Z b ≥50%。 硬度:

工艺参数

序号

工序内容

设 备

装炉温度 (℃)

加热温度 (℃)

保温时间 (min )

出炉温度 (℃)

冷却

介质

温度(℃)

1 淬火加热 井式炉 ≥600 1050±14 1mm/2min(30-60min) 1050±14 水冷 室温

2

检查硬度

硬度计

注:1、保温时间一般按板厚1m m /2m i n 来控制,最少时间为30m i n ,最长不超过60m i n 。

2、固溶处理过程中,产品每次/每框不超过150K g ,确保框体安全和产品固溶的质量。

热处理工艺曲线

编制

审核

日期

不锈钢管固溶处理退火处理的作用

不锈钢管固溶处理退火处 理的作用 The latest revision on November 22, 2020

不锈钢管固溶处理退火处理的作用奥氏体不锈钢通过固溶处理来软化,一般将不锈钢管加热到950~1150℃左右,保温一段时间,使碳化物和各种合金元素充分均匀地溶解于奥氏体中,然后快速淬水冷却,碳及其它合金元素来不及析出,获得纯奥氏体组织,称之为固溶处理。固溶处理的作用有3点。⑴使钢管组织和成分均匀一致,这对原料尤其重要,因为热轧线材各段的轧制温度和冷却速度不一样,造成组织结构不一致。在高温下原子活动加剧,σ相溶解,化学成分趋于均匀,快速冷却后就获得均匀的单相组织。 ⑵消除加工硬化,以利于继续冷加工。通过固溶处理,歪扭的晶格恢复,伸长和破碎的晶粒重新结晶,内应力消除,钢管抗拉强度下降,伸长率上升。 ⑶恢复不锈钢固有的耐蚀性能。由于冷加工造成碳化物析出,晶格缺陷,使不锈钢耐蚀性能下降。固溶处理后钢管耐蚀性能恢复到最佳状态。对于不锈钢而言,固溶处理的3个要素是温度、保温时间和冷却速度。固溶温度主要根据化学成分确定。一般说来,合金元素种类多、含量高的牌号,固溶温度要相应提高。特别是锰、钼、镍、硅含量高的钢,只有提高固溶温度,使其充分溶解,才能达到软化效果。但稳定化钢,如1Cr18Ni9Ti,固溶温度高时稳定化元素的碳化物充分溶解于奥氏体中,在随后的冷却中会以Cr23C6的形态在晶界析出,造成晶间腐蚀。为使稳定化元素的碳化物(TiC和NbC)不分解、不固溶,一般采用下限固溶温度。不锈钢俗话说就是不容易生锈的钢,实际上有一部分的不锈钢,既含有不锈性,又含有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是因为它表面上富铬氧化膜(钝化膜)的形成。其中不锈性和耐蚀性是相对的。实验证明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性就会随钢中铬含水量的增加而提高,则是成正比例的.当铬含量达到一定的百分比时,钢的耐蚀性就发生突变,即从易生锈到不易生锈,

马氏体不锈钢与奥氏体不锈钢的区别

马氏体不锈钢:标准马氏体钢材的改良,含有类如镍、钼、钒等的添加元 素,主要是用于将标准钢材受限的容许工作温度提升至高于1100K,当添加这些元素时,碳含量也增加,随着碳含量的增加,在焊接物的硬化热影响区中避免龟裂的问题变成更严重。 马氏体不锈钢能在退火、硬化和硬化与回火的状态下焊接,无论钢材的原先状态如何,经过焊接后都会在邻近焊道处产生一硬化的马氏体区,热影响区的硬度主要是取决于母材金属的碳含量,当硬度增加时,则韧性减少,且此区域变成较易产生龟裂、预热和控制层间温度,是避免龟裂的最有效方法,为得最佳的性质,需焊后热处理。 马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。按合金元素的差别,可分为马氏体铬不锈钢和马氏体铬镍不锈钢。 马氏体铬不锈钢的主要合金元素是铁、铬和碳。图1-4是Fe-Cr系相图富铁部分,如Cr大于13%时,不存在γ相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中加入奥氏体形成元素,以扩大γ相区,对于马氏体铬不锈钢来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。在马氏体铬不锈钢中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。当然,还有其他元素,利用这些元素,可根据Schaeffler图确定大致的组织。 马氏体不锈钢主要为铬含量在12%-18%范围内的低碳或高碳钢。各国广泛应用的马氏体不锈钢钢种有如下3类: 1.低碳及中碳13%Cr钢 2.高碳的18%Cr钢 3.低碳含镍(约2%)的17%Cr钢 马氏体不锈钢具备高强度和耐蚀性,可以用来制造机器零件如蒸汽涡轮的叶片(1Cr13)、蒸汽装备的轴和拉杆(2Cr13),以及在腐蚀介质中工作的零件如活门、螺栓等(4Cr13)。碳含量较高的钢号(4Cr13、9Cr18)则适用于制造医疗器械、餐刀、测量用具、弹簧等。 与铁素体不锈钢相似,在马氏体不锈钢中也可以加入其它合金元素来改进其他性能:1.加入0.07%S或Se改善切削加工性能,例如1Cr13S或4Cr13Se;2.加入约1%Mo及0.1% V,可以增加9Cr18钢的耐磨性及耐蚀性;3.加入约1Mo-1W-0.2V,可以提高1Cr13及2Cr13钢的热强性。 马氏体不锈钢与调制钢一样,可以使用淬火、回火及退火处理。其力学性质与调制钢也相似:当硬度升高时,抗拉强度及屈服强度升高,而伸长率、截面收缩率及冲击功则随着降低。 马氏体不锈钢的耐蚀性主要取决于铬含量,而钢中的碳由于与铬形成稳定的碳化铬,又间接的影响了钢的耐蚀性。因此在13%Cr钢中,碳含量越低,则耐蚀性越高。而在1Cr13、2Cr13、3Cr13及4Cr13四种钢中,其耐蚀性与强度的顺序恰好相反。

奥氏体不锈钢的晶间腐蚀及热处理

奥氏体不锈钢的晶间腐蚀及热处理 1. 奥氏体不锈钢晶间腐蚀原因及防止措施 奥氏体不锈钢在450~850℃保温或缓慢冷却时,会出现晶问腐蚀。合碳量越高,晶间蚀倾向性越大。此外,在焊接件的热影响区也会出现晶间腐蚀。这是由于在晶界上析出富Cr 的Cr23C6。使其周围基体产生贫铬区,从而形成腐蚀原电池而造成的。这种晶间腐蚀现象在铁素体不锈钢中也是存在的。 工程上常采用以下几种方法防止晶间腐蚀: (1)降低钢中的碳量,使钢中合碳量低于平衡状态下在奥氏体内的饱和溶解度,即从根本上解决了铬的碳化物(Cr23C6)在晶界上析出的问题。通常钢中含碳量降至0.03%以下即可满足抗晶间腐蚀性能的要求。 (2)加入Ti、Nb等能形成稳定碳化物(TiC或NbC)的元素,避免在晶界上析出Cr23C6,即可防上奥氏体不锈钢的晶间腐蚀。 (3)通过调整钢中奥氏体形成元素与铁素体形成元素的比例,使其具有奥氏体+铁素体双相组织,其中铁素体占5%一12%。这种双相组织不易产生晶间腐蚀。 (4)采用适当热处理工艺,可以防止晶间腐蚀,获得最佳的耐蚀性。 2.奥氏体不锈钢的应力腐蚀 应力(主要是拉应力)与腐蚀的综合作用所引起的开裂称为应力腐蚀开裂,简称SCC(Stress Crack Corrosion)。奥氏体不锈钢容易在含氯离子的腐蚀介质中产生应力腐蚀。当含Ni量达到8%一10%时,奥氏体不锈钢应力腐蚀倾向性最大,继续增加含Ni量至45%~50%应力腐蚀倾向逐渐减小,直至消失。防止奥氏体不锈钢应力腐蚀的最主要途径是加入Si 2%~4%并从冶炼上将N含量控制在0.04%以下。此外还应尽量减少P、Sb、Bi、As等杂质的含量。另外可选用A-F双用钢,它在Cl-和OH-介质中对应力腐蚀不敏感。当初始的微细裂纹遇到铁素体相后不再继续扩展,体素体含量应在6%左右。 3.奥氏作不锈钢的形变强化 单相的奥氏体不锈钢具有良好的冷变形性能,可以冷拔成很细的钢丝,冷轧成很薄的钢带或钢管。经过大量变形后,钢的强度大力提高,尤其是在零下温区轧制时效果更为显著。抗拉强度可达2 000 MPa以上。这是因为除了冷作硬化效果外,还叠加了形变诱发M转变。 奥氏作不锈钢经形变强化后可用来制造不锈弹簧、钟表发条、航空结构中的钢丝绳等。形变后若需焊接,则只能采用点焊工艺、形变使应力腐蚀倾向性增加。并因部分γ->M转变而产生铁磁性,在使用时(如仪表零件中)应予以考虑。再结晶温度随形变量而改变,当形变量为60%时,其再结晶温度降为650℃冷变形奥氏体不锈钢再结晶退火温度为850~1050℃,850℃则需保温3h,1050℃时透烧即可,然后水冷。 4.奥氏作不锈钢的热处理 奥氏体不锈钢常用的热处理工艺有:固溶处理、稳定化处理和去应力处理等。 (1)固溶处理。 将钢加热到1050~1150℃后水淬,主要目的是使碳化物溶于奥氏体中,并将此状态保留到室温,这样钢的耐蚀性会有很大改善。如上所述,为了防止晶问腐蚀,通常采用固溶化处理,使Cr23C6溶于奥氏体中,然后快速冷却。对于薄壁件可采用空冷,一般情况采用水冷。 (2)稳定化处理。 一般是在固溶处理后进行,常用于含Ti、Nb的18-8钢,固处理后,将钢加热到850~880℃保温后空冷,此时Cr的碳化物完全溶解,然而钛的碳化物不完全溶解,且在冷却过程中充分析出,使碳不可能再形成格的碳化物,因而有效地消除了晶间腐蚀。 (3)去应力处理。

不锈钢和耐热钢热处理》热处理方法选择

《JB/T 9197-2005不锈钢和耐热钢热处理》热处理方法选择 《JB/T 9197-2005不锈钢和耐热钢热处理》是机械行业于2008年6月4日发布,11月1日实施的行业标准,其中规定了不锈钢和耐热钢热处理的方法及所用的设备、工艺、工艺材料、质量检验和安全技术。其中热处理方法的选择有: 一、热处理不可强化的不锈钢和耐热钢 1.要求提高抗腐蚀性能和抗塑性、消除冷作硬化的工件,应进行固溶处理。 2.对于形状复杂不宜固溶处理的工件,可边井于去应力退火。 3.含钦或妮的不锈钢,为了获得稳定的抗腐蚀性能,可进行稳定化退火。 二、热处理可强化的不锈钢和耐热钢 1.要求提高强度、硬度和抗腐蚀性能的工件,应进行淬火加低温回火处理。 2.要求较高的强度和弹性极限、而对抗腐蚀性要求不高的工件,应进行淬火加中温回火处理。 3.要求得到良好的力学性能和一定的抗腐蚀性能的工件,应进行淬火加高温回火处理。 4.要求消除加工应力、降低硬度和提高塑性的工件,可进行退火处理。 5.要求改善原始组织的工件,可进行正火加高温回火的预备热处理。 6.要求得到良好的力学性能和抗腐蚀性能的沉淀硬化型不锈钢工件,可进行固溶加时效,固溶加深冷处理或冷变形加时效等调整处理。 三焊接组合件 1.由热处理可强化的不锈钢和耐热钢构成的焊接组合件,根据工件图样的要求,可进行淬火加回火或去应力退火。 2.由热处理不可强化的不锈钢和耐热钢构成的焊接组合件,要求改善焊缝区域组织和抗腐蚀性能以及较充分地消除应力时,可进行固溶处理。对于形状复杂不宜进行固溶处理的焊接组合件,可采用去应力退火。 3.由热处理可强化与不可强化的不锈钢和耐热钢构成的焊接组合件,当要求以抗腐蚀性能为

不锈钢管固溶处理退火处理的作用

不锈钢管固溶处理退火处理的作用 奥氏体不锈钢通过固溶处理来软化,一般将不锈钢管加热到 950~1150℃左右,保温一段时间,使碳化物和各种合金元素充分均匀地溶解于奥氏体中,然后快速淬水冷却,碳及其它合金元素来不及析出,获得纯奥氏体组织,称之为固溶处理。固溶处理的作用有3 点。⑴使钢管组织和成分均匀一致,这对原料尤其重要,因为热轧线材各段的轧制温度和冷却速度不一样,造成组织结构不一致。在高温下原子活动加剧,σ 相溶解,化学成分趋于均匀,快速冷却后就获得均匀的单相组织。 ⑵消除加工硬化,以利于继续冷加工。通过固溶处理,歪扭的晶格恢复,伸长和破碎的晶粒重新结晶,内应力消除,钢管抗拉强度下降,伸长率上升。 ⑶恢复不锈钢固有的耐蚀性能。由于冷加工造成碳化物析出,晶格缺陷,使不锈钢耐蚀性能下降。固溶处理后钢管耐蚀性能恢复到最佳状态。对于不锈钢而言,固溶处理的3 个要素是温度、保温时间和冷却速度。固溶温度主要根据化学成分确定。一般说来,合金元素种类多、含量高的牌号,固溶温度要相应提高。特别是锰、钼、镍、硅含量高的钢,只有提高固溶温度,使其充分溶解,才能达到软化效果。但稳定化钢,如1Cr18Ni9Ti,固溶温度高时稳定化元素的碳化物充分溶解于奥氏体中,在随后的冷却中会以Cr23C6 的形态在晶界析出,造成晶间腐蚀。为使稳定化元素的碳化物(TiC 和NbC)不分解、不固溶,一般采用下限固溶温度。不锈钢俗话说就是不容易生锈的钢,实际上有一部分的不锈钢,既含有不锈性,又含有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是因为它表面上富铬氧化膜(钝化膜)的形成。其中不锈性和耐蚀性是相对的。实验证明,钢在大气、水等弱介质中和硝酸等

标准的马氏体不锈钢是

标准的马氏体不锈钢是:403、410、414、416、416(Se)、420、431、440A、440B和440C型,这些钢材的耐腐蚀性来自“铬”,其范围是从11.5至18%,铬含量愈高的钢材需碳含量愈高,以确保在热处理期间马氏体的形成,上述三种440型不锈钢很少被考虑做为需要焊接的应用,且440型成份的熔填金属不易取得。 标准马氏体钢材的改良,含有类如镍、钼、钒等的添加元素,主要是用于将标准钢材受限的容许工作温度提升至高于1100K,当添加这些元素时,碳含量也增加,随着碳含量的增加,在焊接物的硬化热影响区中避免龟裂的问题变成更严重。 马氏体不锈钢能在退火、硬化和硬化与回火的状态下焊接,无论钢材的原先状态如何,经过焊接后都会在邻近焊道处产生一硬化的马氏体区,热影响区的硬度主要是取决于母材金属的碳含量,当硬度增加时,则韧性减少,且此区域变成较易产生龟裂、预热和控制层间温度,是避免龟裂的最有效方法,为得最佳的性质,需焊后热处理。 马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或 γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。按合金元素的差别,可分为马氏体铬不锈钢和马氏体铬镍不锈钢。 马氏体铬不锈钢的主要合金元素是铁、铬和碳。图1-4是Fe-Cr系相图富铁部分,如Cr大于13%时,不存在γ相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中加入奥氏体形成元素,以扩大γ相区,对于马氏体铬不锈钢来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。在马氏体铬不锈钢中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。当然,还有其他元素,利用这些元素,可根据Schaeffler图确定大致的组织。 马氏体不锈钢主要为铬含量在12%-18%范围内的低碳或高碳钢。各国广泛应用的马氏体不锈钢钢种有如下3类: 1.低碳及中碳13%Cr钢 2.高碳的18%Cr钢 3.低碳含镍(约2%)的17%Cr钢 马氏体不锈钢具备高强度和耐蚀性,可以用来制造机器零件如蒸汽涡轮的叶片(1Cr13)、蒸汽装备的轴和拉杆(2Cr13),以及在腐蚀介质中工作的零件如活门、螺栓等(4Cr13)。碳含量较高的钢号(4Cr13、9Cr18)则适用于制造医疗器械、餐刀、测量用具、弹簧等。 与铁素体不锈钢相似,在马氏体不锈钢中也可以加入其它合金元素来改进其他性能:1.加入0.07%S或Se改善切削加工性能,例如1Cr13S或4Cr13Se;2.加入约1%Mo 及0.1% V,可以增加9Cr18钢的耐磨性及耐蚀性;3.加入约1Mo-1W-0.2V,可以提高1Cr13及2Cr13钢的热强性。

sus304不锈钢固溶处理的具体工艺过程

sus304不锈钢固溶处理的具体工艺过程 标签:不锈钢处理具体工艺过程时间:2010-03-16 09:18:00 点击:回帖:0 上一篇:库存首次下滑钢材毛利见底回升下一篇:福科斯住宅小区防盗报警系统方案 18-8奥氏体不锈钢热处理工艺--- 由于含有较高的镍且在室温下呈奥氏体单相组织,所以它与Cr13不锈钢相北具有高的耐蚀性,在低温、室温及高温下均有较高的塑归和韧性,以及较好的冷作成型和焊接性。但室温下的强度较低,晶间腐蚀及应力腐蚀倾向较大,切削加工性较差。 奥氏体在加热时无相变,因此不能通过热处理强化。只能以提高钢的耐腐蚀性能进行热处理:1)固溶处理;其目的是使碳化物充分溶解并在常温下保留在奥氏体中,从而在常温下获单相奥氏体组织,使钢具有最高的耐腐蚀性能。 固溶处理的加热温度一般均较高,在1050-1100C之间,并按含碳量的高低作适当调整。由于18-8不锈钢导热性很差,不仅要通过预热后再进行淬火加热,而且在固溶处理(淬火加热)时的保温时间要长。固溶处理时,要特别注意防止增碳。因为增碳将会增加18-8钢的晶间腐蚀倾向。冷却介质,一般采用清水。固溶处理后的组织一般是单相奥氏体,但对含有钛、铌、钼的不锈钢,尤其当是铸件时,还含有少量的铁素体。固溶处理后的硬度一般在135HBS左右。 2)除应力退火;为了消除冷加工后的残余应力,处理在较低的温度下进行。一般加热至250-425C,经常采用的是300-350C。对于不含钛或铌的钢不应超过450C,以免析出碳化铬而引起晶间腐蚀。 为了消除焊接后的残余应力,消除钢对应力腐蚀的敏感性,处理一般在较高的温度下进行。加热温度一般不低于850C。冷却方式,对于含有钛或铌的钢可直接在空气中冷却;对于不含有钛或铌的钢应水冷至500C以后再在空气中冷却。 3)稳定化处理;为了防止钛和铌的奥氏体不锈钢在焊接或固溶处理时,由于TiC和NbC减少而引起耐晶间腐蚀性能降低,需将这种不锈钢加热到一定温度后(该温度使铬的碳化物完圣溶于奥氏体,而TiC和NbC只部分溶解)再缓冷。在冷却过程中,使钢中的碳充分地与钛和铌化合,析出稳定的TiC和NbC,而不析出铬的碳化物,从而消除18-8奥氏体不锈钢的晶间腐蚀倾向,这种处理过程称之为稳定化处理。 18-8不锈钢稳定化退火,一般是加热到850-880C,保温2-6h,随后进行空冷或炉冷。

不锈钢的热处理

不锈钢的热处理 304是奥氏体型不锈钢,想通过热处理来改变切削加工性能是不现实的。其他钢种可以通过退火或正火来改变组织,从而改变切削加工性能,是因为其他钢在加热和冷却过程中发生组织转变,因为组织决定了性能,因此改变了切削加工性能,而奥氏体不锈钢,室温是奥氏体,加热到高温也是奥氏体,不发生组织转变,所以热处理不能够改变其切削加工性能的,奥氏体不锈钢的热处理通常只有固溶处理、再结晶退火和去应力退火之类的,固溶处理是改变耐蚀性的,再结晶退火是消除加工硬化恢复塑性的,去应力退火是消除加工过程中产生的应力的,所以,期望通过热处理改变奥氏体不锈钢的切削加工性是不现实的。每种材料有各自的特点,热处理工艺也不一定通用,玉米面包饺子肯定不行,虽然也是面粉。奥氏体不锈钢的切削加工,只能够通过改变刀具、切削加工工艺参数来解决。 铸钢件铸造成型后,通常都是要进行热处理的。因为热处理前铸件晶粒较粗大、组织方向性明显、力学性能较低,根据铸件的不同要求制定热处理工艺。 普通要求铸钢件,采用退火处理,软化易于加工;要求强度的要正火处理,要求硬度的要淬火处理;固溶处理,提高耐腐蚀性能。 铸造不锈钢一般为奥氏体.在加热时无相变,因此不能通过热处理强化。只能以提高钢的耐腐蚀性能进行热处理: 固溶处理:其目的是使碳化物充分溶解并在常温下保留在奥氏体中,从而在常温下获单相奥氏体组织,使钢具有最高的耐腐蚀性能。 固溶处理的加热温度一般均较高,在1050-1100℃之间,并按含碳量的高低作适当调整。由于18-8不锈钢导热性很差,不仅要通过预热后再进行淬火加热,而且在固溶处理(淬火加热)时的保温时间要长。固溶处理时,要特别注意防止增碳。因为增碳将会增加18-8钢的晶间腐蚀倾向。冷却介质,一般采用清水。固溶处理后的组织一般是单相奥氏体,但对含有钛、铌、钼的不锈钢,尤其当是铸件时,还含有少量的铁素体。固溶处理后的硬度一般在135HBS左右 回火又称配火。金属热处理工艺的一种。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。根据不同的要求可采用低温回火、中温回火或高温回火。通常随着回火温度的升高,硬度和强度降低,延性或韧性逐渐增高。钢铁工件在淬火后具有以下特点:①得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。②存在较大内应力。③力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。 回火的作用在于:①提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。②消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。③调整钢铁的力学性能以满足使用要求。 调质即淬火和高温回火的综合热处理工艺。不锈钢做不了调质热处理,因为达不到硬度。 高碳铬不锈钢中的铬含量很高,导热性差,锻后应及时退火,以免发生裂纹。 比如95cr18钢球化退火工艺

不锈钢热处理知识

敏化处理:18-8钢系列的奥氏体不锈钢在450C?850 C (此区间常称为敏化温度)短时间加热,使其具有晶间腐蚀倾向。这是因为碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400C?850C的温度范围内(敏化温度区域)时,会有高铭碳化物 (Cr23C6)析出,当铭含量降至耐腐蚀性界限之下,此时存在晶界贫铭,会产生晶间腐蚀,严重时材料能变成粉末。该方法一般只在不锈钢晶间腐蚀试验时采用。 (2)固溶热处理:将奥氏体不锈钢加热到1100C左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铭形成高铭碳化物)。 不同的不锈钢固溶化的温度烧有不同,304,316等奥氏体不锈钢一般是1050 C,奥氏体-铁素体双相不锈钢要高一点,可到1150 C . 固溶热处理:将奥氏体不锈钢加热到1100 C左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铭形成高铭碳化物)。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的淬火'与普通钢的淬火是不同的,前者是软化处理,后者是淬硬(形成马氏体)。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100 C。 我是搞火电的,回答可能不太全面,谁知道的可以继续补充

在电厂中,奥氏体不锈钢管进行冷弯加工,容易产生形变诱发马氏体相变(很拗口,其实就是产生了马氏体),容易引起耐蚀性的下降。ASME标准规定,当加工量超过一定量时就必须进行固溶处理 (3)稳定化处理:为避免碳与铭形成高铭碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875C以上温度时,能形成稳定的碳化物。这是因为Ti (或Nb)能优先与碳结合,形成TiC (或NbC),从而大大降低了奥氏体中固溶碳的浓度(含量),起到了牺牲Ti (或Nb)保护Cr的目的。含Ti (或Nb)的奥氏体不锈钢(如:1Cr18Ni9Ti , 1Cr18Ni9Nb)经稳定化处理后比进行固溶热处理更具有良好的综合机械性能。 稳定化处理:为避免碳与铭形成高铭碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875 C以上温度时,能形成稳定的碳化物(由于Ti和Nb能优先与碳结合,形成TiC或NbC),大大降低了奥氏体中固溶碳的浓度(含量),从而起到了牺Ti和Nb保Cr 的目的。 经稳定化处理比进行固溶热处理的奥氏体不锈钢,具有更好的综合机 械性能。 (4)所以,有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳 定化处理

马氏体不锈钢简介

马氏体不锈钢 1、什么是不锈钢 不锈钢(Stainless Steel)是不锈耐酸钢的简称,耐空气、蒸汽、水等弱腐蚀介质或具有不锈性的钢种称为不锈钢;而将耐化学介质腐蚀(酸、碱、盐等化学浸蚀)的钢种称为耐酸钢。由于两者在化学成分上的差异而使他们的耐蚀性不同,普通不锈钢一般不耐化学介质腐蚀,而耐酸钢则一般均具有不锈性。 2、分类 不锈钢常按组织状态分为:马氏体钢、铁素体钢、奥氏体钢、奥氏体-铁素体(双相)不锈钢及沉淀硬化不锈钢等。另外,可按成分分为:铬不锈钢、铬镍不锈钢和铬锰氮不锈钢等。 1、铁素体不锈钢:含铬12%~30%。其耐蚀性、韧性和可焊性随含铬量的增加而提高,耐氯化物应力腐蚀性能优于其他种类不锈钢。属于这一类的有Crl7、Cr17Mo2Ti、Cr25,Cr25Mo3Ti、Cr28等。铁素体不锈钢因为含铬量高,耐腐蚀性能与抗氧化性能均比较好,但机械性能与工艺性能较差,多用于受力不大的耐酸结构及作抗氧化钢使用。这类钢能抵抗大气、硝酸及盐水溶液的腐蚀,并具有高温抗氧化性能好、热膨胀系数小等特点,用于硝酸及食品工厂设备,也可制作在高温下工作的零件,如燃气轮机零件等。 2、奥氏体不锈钢:含铬大于18%,还含有8%左右的镍及少量钼、钛、氮等元素。综合性能好,可耐多种介质腐蚀。奥氏体不锈钢的常用牌号有1Cr18Ni9、0Cr19Ni9等。0Cr19Ni9钢的Wc<0.08%,

钢号中标记为“0”。这类钢中含有大量的Ni和Cr,使钢在室温下呈奥氏体状态。这类钢具有良好的塑性、韧性、焊接性和耐蚀性能,在氧化性和还原性介质中耐蚀性均较好,用来制作耐酸设备,如耐蚀容器及设备衬里、输送管道、耐硝酸的设备零件等。奥氏体不锈钢一般采用固溶处理,即将钢加热至1050~1150℃,然后水冷,以获得单相奥氏体组织。 3、奥氏体- 铁素体双相不锈钢:兼有奥氏体和铁素体不锈钢的优点,并具有超塑性。奥氏体和铁素体组织各约占一半的不锈钢。在含C较低的情况下,Cr含量在18%~28%,Ni含量在3%~10%。有些钢还含有Mo、Cu、Si、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间腐蚀和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。 4、马氏体不锈钢:强度高,但塑性和可焊性较差。马氏体不锈钢的常用牌号有1Cr13、3Cr13等,因含碳较高,故具有较高的强度、硬度和耐磨性,但耐蚀性稍差,用于力学性能要求较高、耐蚀性能要求一般的一些零件上,如弹簧、汽轮机叶片、水压机阀等。这类钢是在淬火、回火处理后使用的。 5、沉淀硬化不锈钢:基体为奥氏体或马氏体组织,沉淀硬化不锈钢的常用牌号有04Cr13Ni8Mo2Al等。其能通过沉淀硬化(又称

不锈钢热处理知识

敏化处理:18-8钢系列的奥氏体不锈钢在450℃~850℃(此区间常称为敏化温度)短时间加热,使其具有晶间腐蚀倾向。这是因为碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内(敏化温度区域)时,会有高铬碳化物(Cr23C6)析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时材料能变成粉末。该方法一般只在不锈钢晶间腐蚀试验时采用。 (2)固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铬形成高铬碳化物)。 不同的不锈钢固溶化的温度烧有不同, 304,316等奥氏体不锈钢一般是1050℃,奥氏体-铁素体双相不锈钢要高一点,可到1150℃. 固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铬形成高铬碳化物)。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬(形成马氏体)。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。我是搞火电的,回答可能不太全面,谁知道的可以继续补充。

在电厂中,奥氏体不锈钢管进行冷弯加工,容易产生形变诱发马氏体相变(很拗口,其实就是产生了马氏体),容易引起耐蚀性的下降。ASME标准规定,当加工量超过一定量时就必须进行固溶处理 (3)稳定化处理:为避免碳与铬形成高铬碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875℃以上温度时,能形成稳定的碳化物。这是因为Ti(或Nb)能优先与碳结合,形成TiC(或NbC),从而大大降低了奥氏体中固溶碳的浓度(含量),起到了牺牲Ti(或Nb)保护Cr的目的。含Ti(或Nb)的奥氏体不锈钢(如:1Cr18Ni9Ti,1Cr18Ni9Nb)经稳定化处理后比进行固溶热处理更具有良好的综合机械性能。 稳定化处理:为避免碳与铬形成高铬碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875℃以上温度时,能形成稳定的碳化物(由于Ti和Nb能优先与碳结合,形成TiC或NbC),大大降低了奥氏体中固溶碳的浓度(含量),从而起到了牺Ti和Nb保Cr 的目的。 经稳定化处理比进行固溶热处理的奥氏体不锈钢,具有更好的综合机械性能。 (4)所以,有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理

固溶处理

固溶处理(solution treatment):指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。 solution treatment 1. 目的 编辑 主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。 使合金中各种相充分溶解,强化固溶体,并提高韧性及抗蚀性能,消除应力与软化,以便继续加工或成型。 适用 多种特殊钢,高温合金,特殊性能合金,有色金属。 尤其适用:1.热处理后须要再加工的零件。 2.消除成形工序间的冷作硬化。 3.焊接后工件。 原理 序言 固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。 固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。 不锈钢固溶热处理 碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。 固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎像普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。

304不锈钢可以热处理加硬吗

304不锈钢可以热处理加硬吗 304不锈钢,是美国的标准叫法。SUS304则是日本的叫法。也就是我国的0Cr18Ni9 ,常温下为奥氏体,淬火工艺无法实现硬化,可采用渗氮处理表面强硬化,但深度是很有限的。 304一类的奥氏体不锈钢,不能通过高温热处理提高硬度,一般采用固溶处理,提高耐蚀性与降低硬度。 奥氏体提高硬度有以下方法: 一、QPQ处理,硬度高,但表面呈黑色,无本色,耐蚀性较好 二、对于变形大的产品,可以采用时效处理,基本上在基体的基础上提高200(Hv)视变形程度而定 三、形变硬化 410一类的马氏体不锈钢: 采用高温热处理可以提高硬度,也可采用退火工艺降低硬度 17-4一类的沉淀硬化型不锈钢 先固溶,再时效可提高硬度 316不锈钢可以热处理调质吗?要求抗拉强度大于800N/mm2。 不锈钢热处理知识 淬火 (C) 将金属或其制品加热到给定温度,并保温一定时间,然后快速冷却(常在水、油中冷却),称为淬火。一般经淬火处理后硬度大大增加,但塑性降低。 回火 将经过淬火的金属重新加热到给定温度,并保温一定时间后进行冷却的工艺叫回火。其目的是消除淬火所产生的内应力,降低硬度和脆性,获得所需要的机械性能(高温回火也叫调质)。 正火 将金属加热到一定的温度,并保温一定时间,然后在空气中冷却,这种工艺叫正火。正火可以细化组织,消除内应力,改善机械性能和切削加工性能。 退火 (M) 将金属加热到一定的温度,并保温一定时间,然后缓慢冷却,这种工艺叫退火。退火可消除内应力,降低硬度和脆性,增加塑性,改善切削加工性能。 时效 金属或其制品在热处理或铸造、锻造等加工后,在室温下(自然时效)或较高温度(人工时效)下搁置较长时间的一种热处理。其作用是消除内应力,稳定组织、强化机械性能。 渗碳 将碳渗入金属件表面层,以增加其淬火后硬度的化学热处理工艺叫渗碳。经渗碳及淬火处理

304不锈钢的固溶热处理工艺之令狐文艳创作

304不锈钢的固溶处理热处理工艺 令狐文艳 摘要 研究了不同热处理工艺对304奥氏体不锈钢组织和性能的影响。304奥氏体不锈钢试块进行1050℃保温30min固溶处理,分别在水中和在空气中冷却。结果发现得出组织均为单相奥氏体,水中冷却不锈钢硬度更高,说明水冷后获得更大的内应力。原材料进行650℃保温60min敏化处理和800℃保温60min敏化处理,对比得出在800℃保温60min时更容易发生晶间腐蚀。因此,304不锈钢热处理时应避免在敏化温度区间内较高温度停留较长的时间。 奥氏体不锈钢是指在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、含Ni8%—10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化。如加入S,Ca,Se,等元素,则具有良好的易切削性。此类钢除耐氧化性、酸介质腐蚀外,如果含有Mo、Cu等元素还能耐硫酸、磷酸以及甲酸、醋酸等的腐蚀。此类钢中的含碳量若低于0.03%或含Ti、N,就可显著提高其耐晶间腐蚀性能。由于奥氏体不锈钢具有全面的和良好的综合性能,在各行各业中获得了广泛的应用[1—5]。 304奥氏体不锈钢作为一种用途广泛的钢,具有良好的腐蚀

性、耐热性、低温强度和机械性能;冲压、弯曲等热加工性好,无热处理硬化现象,无磁性。用于家庭用品(餐具、橱柜、锅炉、热水器),汽车配件,医疗器具,建材,化学,食品工业,船舶部件。根据不同的要求,其常用的热处理工艺主要有:固溶处理、稳定化处理和去应力处理等[6,7],由其应用的广泛性,其热处理工艺的研究对生产有很好的指导意义。1实验方法实验原材料为304奥氏体不锈钢(国内牌号为0Cr18Ni9)化学成分为碳≤0.08%,硅≤1.00%,锰≤2.00%,磷≤0.045%,硫0.03%,镍8.0%—10.5%,铬18%—20%。原材料通过热轧而成,切割成直径20mm,高20mm 的圆柱体试样。对试样分别在1050℃,保温30min空冷和水冷进行固溶处理,在650℃并保温1h段后空冷和800℃并保温1h空冷至室温,进行敏化处理。对原材料和热处理试样采用洛氏硬度计和金相显微镜进行硬度和金相组织分析。 2实验结果与讨论 2.1原材料夹杂物的测定结果 按照国标《GB/T10561—2005钢中非金属夹杂物含量的测定》实验方法,对原材料非金属夹杂物如图1所示,在100倍下与标准图对比,可以得出原材料含有两类夹杂物。沿轧制方向排成一列为氧化铝类(B类),从粒度粗细和长度可以判断是细系,1.5级。形态比小,成黑色无规则分布的颗粒为球状氧化物类(D类),从粒度和数量可以判断是细系,1.5

固溶热处理工艺

固溶热处理工艺:(1)加热及冷却制度: 钢号壁厚mm 在制品成品 式冷却方温度℃转速r/min 温度℃转速r/min 0Cr18Ni9 1Cr18Ni9 0Cr18Ni9Ti 1Cr18Ni9Ti 1Cr19Ni9 0Cr18Ni10Ti TP304 TP321 1~2 1050~1100 800~900 1020~1050 700~800 喷淋 薄壁管可 以风冷或 空冷 2~3 1050~1100 700~800 1020~1050 600~700 3~4 1050~1100 700~800 1020~1050 600~700 4~5 1080~1120 700~800 1020~1050 550~650 5~6 1080~1120 600~700 1020~1050 500~600 6~7 1080~1120 550~650 1020~1050 500~600 7~8 1080~1120 450~550 1020~1050 400~500 8~9 1080~1120 400~500 1020~1050 400~500 9~10 1080~1120 400~500 1020~1050 300~400 10~11 1080~1120 400~500 1020~1050 300~400 11~12 1080~1120 350~450 1020~1050 200~300 12~13 1080~1120 300~400 1020~1050 200~300 13~14 1080~1120 250~400 1020~1050 150~300 14~15 1080~1120 200~350 1020~1050 100~250 16~17 1080~1120 150~300 1020~1050 50~150 >17 1080~1120 100~250 1020~1050 50~150 00Cr19Ni10 1Cr18Ni12Mo2Ti 0Cr18Ni12Mo2Ti 0Cr17Ni12Mo2 00Cr17Ni14Mo2 TP304L TP316 TP316L TP316Ti 1~2 1050~1100 800~900 1040~1080 700~800 2~3 1050~1100 700~800 1040~1080 600~700 3~4 1050~1100 700~800 1040~1080 600~700 4~5 1080~1120 700~800 1040~1080 550~650 5~6 1080~1120 600~700 1040~1080 500~600 6~7 1080~1120 550~650 1040~1080 500~600 7~8 1080~1120 450~550 1040~1080 400~500 8~9 1080~1120 400~500 1040~1080 400~500 9~10 1100~1130 400~500 1040~1080 300~400 10~11 1100~1130 400~500 1040~1080 300~400 11~12 1100~1130 350~450 1040~1100 200~300 12~13 1100~1130 300~400 1040~1100 200~300 13~14 1100~1130 250~400 1040~1100 150~300 14~15 1100~1130 200~350 1040~1100 100~250 16~17 1100~1130 150~300 1040~1100 50~150 >17 1100~1130 100~250 1040~1100 50~150 注:¢∠133 时;时间为15~35 分钟¢≥133 时;时间为20~40 分钟 注:炉辊线速度约为0.15m / 100转/分 (1)必须经常用红外测温仪和自动记录仪表显示的温度进行校对,发现异常必须及时向有关人员汇报,并得到有关人员书面指示后方可继续生产操作。 (2)喷淋装置的上下喷淋冷却水量要足够大,而且要有适当的配比以保证快速冷却和最小的弯曲度。(3)成品热处理后,各项性能指标应符合的技术标准(常见钢种的强度指标和延伸指标见上表)。

不锈钢及其热处理知识

不锈钢及其热处理知识 美国钢铁学会是用三位数字来标示各种标准级的可锻不锈钢的。其中: ①奥氏体型不锈钢用200和300系列的数字标示, ②铁素体和马氏体型不锈钢用400系列的数字表示。例如,某些较普通的奥氏体不锈钢是以201、 304、 316以及310为标记, ③铁素体不锈钢是以430和446为标记,马氏体不锈钢是以410、420以及440C为标记,双相(奥氏体-铁素体), ④不锈钢、沉淀硬化不锈钢以及含铁量低于50%的高合 大家知道固态金属及合金都是晶体,即在其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。而碳溶解到Υ——铁中形成的固溶体则称奥氏体,它的溶碳能力较高,最高可达2%。奥氏体是铁碳合金的高温相。 钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。 不锈钢的耐蚀性主要来源于铬。实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体组织结构,加热时不发生相变,称为铁素体型不锈钢。 当含铬量较低(但高于12%),碳含量较高,合金在从高温冷却时,极易形成马氏体,故称这类钢为马氏体型不锈钢。 镍可以扩展Υ相区,使钢材具有奥氏体组织。如果镍含量足够多,使钢在室温下也具有奥氏体组织结构,则称这种钢为奥氏体型不锈钢。 不锈钢有两种分类法:一种是按合金元素的特点,划分为铬不锈钢和铬镍不锈钢;另一种是按在正火状态下钢的组织状态,划分为M不锈钢、F不锈钢、A不锈钢和A一F双相不锈钢。 一、马氏体不锈钢典型的马氏体不锈钢钢号有1Cr13~4Cr13和9Cr18等 1Cr13钢加工工艺性能良好。可不经预热进行深冲、弯曲、卷边及焊接。2Crl3冷变形前不要求预热,但焊接前需预热,ICrl3、2Cr13主要用来制作耐蚀结构件如汽轮机叶片等,而3Cr13、4Cr13主要用来制作医疗器械外科手术刀及耐磨零件;9Cll8可做耐蚀轴承及刀具。二、铁素体不锈钢铁素作不锈钢的含Cr量一般为13%~30%合碳量低于0.25%。有时还加入其它合金元素。金相组织主要是台铁素体,加热及冷却过程中没有α<=>γ转变,不能用热处理进

不锈钢的焊后热处理规定

不锈钢的焊后热处理规定 (2012-07-19 15:59:15) 不锈钢的焊后热处理,我国没有明确规范,而美国ASME及USA标准,英国BS 标 准,联邦德国.AD、DIN及VdTuV规范等某些发达国家的标准都有相应的规定。 综合上述标准规定,对高强度Cr不锈钢,为了去氢需要预热,其温度范围为150一4 00℃。马氏体不锈钢焊后热处理温度范围为730—800℃。铁奈体不锈钢焊后热处理温度范围为730一800℃,随即快速冷却以防脆化,4)奥氏体不锈钢没有一个标准规 定必须焊后热处理,仅建议当板材很厚肘,可选择900~1100℃温度范围进行热处理,随即进行水冷或空冷(根据板厚),5)奥氏体一铁素体双相钢和镲基合金没有任何规定和建议。 不锈钢的焊后热处理可分别采用以下三种温度范围的热处理。 1.低温焊后热处理(≤500℃) Cr-Ni奥氏体不锈钢,在200 ~400℃热处理可减少峰值应力(约减少40%),但总应 力降低很少。奥氏体不锈钢偶尔也采用400一500℃热处理。低温处理不适于高强度Cr不锈钢。 2.中温焊后热处理(550一820℃) 中温热处理的目的主要是消除应力。这种热处理可用于复合钢,对基层及不锈钢复层都可消除应力。 对铁素体和马氏体不锈钢,一般都在600 ~730℃范围内进行焊后热处理,以改善缺口韧性。 奥氏体一铁索体双相钢不宜采用中温处理,因为会引起ɑ相和碳化物析出。奥氏体不锈钢用于复合钢中时,可在540~700℃处理以消除应力。奥氏体不锈钢一般不宜在550—800℃热处理,因为这个温度范围会促进晶阅腐蚀的产生(C<0.03%的超低碳不锈钢除外). 3.高温焊后热处理( >900℃)

相关文档
最新文档