课题6 两角和与差的三角函数

合集下载

高一数学两角和与差的三角函数试题答案及解析

高一数学两角和与差的三角函数试题答案及解析

高一数学两角和与差的三角函数试题答案及解析1.若,则 .【答案】2【解析】由,得,即,整理得,即.【考点】两角和的正切公式及三角函数式的恒等变形.2.若为锐角,且sin=,则sin的值为________.【答案】【解析】 sin=,为锐角,故,cos=,,故答案为:.【考点】两角和的正弦公式;三角函数求值.3.已知,,分别为三个内角,,的对边, =sin cos.(1)求;(2)若=,的面积为,求,.【答案】(1) ;(2)【解析】(1) 根据正弦定理可将变形为。

因为角三角形的内角,所以,可将上式变形为。

用化一公式即两角和差公式的逆用将上式左边化简可得,根据整体角的范围可得的值,即可得角的值。

(2)由三角形面积可得。

再结合余弦定理可得的值,解方程组可得的值。

解 (1)由=sin cos及正弦定理得sin sin+cos sin-sin=0,由sin≠0,所以sin(+)=,又0<<π,+故=.(2)△ABC的面积=sin=,故=4.由余弦定理知2=2+2-2cos,得代入=,=4解得,故【考点】1正弦定理;2三角形面积公式;3余弦定理。

4.在中,角的对边分别为,(1)若,求的值;(2)设,当取最大值时求的值。

【答案】(1);(2).【解析】(1)利用二倍角公式,化简方程,可得B,利用余弦定理,可求c的值;(2)利用二倍角、辅助角公式,化简函数,结合A的范围,即可得t取最大值时求A的值.试题解析:解:∵∴∴,即B= (3分)(1)由即∴(5分)当时,<<,C<A<B=与三角形内角和定理矛盾,应舍去,∴(7分)(2)(10分)∵A∈(0,),∴∈,)即∈,1]当=,即A=时,(12分)【考点】1.二倍角的余弦;2.两角和与差的正弦函数;3.余弦定理.5.为第二象限角,且,求的值.【答案】.【解析】先利用两角和与差的正弦函数和二倍角公式将待求式子化成只含有角的三角函数,再由三角函数的同角公式求出角余弦值,从而求出结果即可.试题解析:为第二象限角,且,.====.【考点】1、两角和与差的正弦函数; 2、二倍角公式;3、同角三角函数基本关系.6.已知,,求的值.【答案】【解析】将视为整体将已知条件用余弦的两角和公式变形可得的值,根据角的范围可得的值,再用二倍角公式分别求的值,最后用正弦两角和公式将展开计算即可。

两角和与差的余弦、正弦、正切公式

两角和与差的余弦、正弦、正切公式
由β=α- ,得cosβ=cos =cosαcos +sinαsin
= × + × = = .∵0<β< ,所以β= .
变式3.(1)已知tanα=2,tanβ=3,且α,β都是锐角,求α+β;
(2)已知α,β均为锐角,sinα= ,cosβ= ,求α-β.
解析:(1)tan = = =-1.
∵α,β都是锐角,∴0<α+β<π,由上式知α+β= .
课堂练习:
练习1:cos(450+300)=
练习2:cos200cos700-sin200sin700=
练习3: 练习4:
1.下列式子中,正确的个数为()
①sin =sinα-sinβ;②cos =cosα-cosβ;
③sin =sinαcosβ-cosαsinβ;④cos =cosαcosβ+sinαsinβ.
解析:(1)原式=sin 14°cos 16°+cos 14°sin 16°=sin =sin 30°= .
(2)原式=sinxcos +cosxsin +2sinxcos -2cosxsin - cos cosx- sin sinx=3sinxcos -cosxsin - cos cosx- sin sinx= sinx- cosx
=- × + × =- ,故得-sin =- ,即sin = .
变式2.化简求值:
(1)sin 75°;(2)sin 15°;
(3)若α,β均为锐角,sinα= ,sin(α+β)= ,求cosβ.
解析:(1)原式=sin =sin 45°cos 30°+cos 45°sin 30°= × + × = .
课题
两角和与差的余弦、正弦、正切公式
1.注意到 ,由公式C(α+β).,可以推出:

两角和与差及二倍角三角函数公式

两角和与差及二倍角三角函数公式
解。
05 公式的应用举例
在三角形中的应用
已知两边及夹角求第三边
求三角形的面积
利用两角和与差的余弦公式,结合三 角形的边长和角度关系,可以求出第 三边的长度。
在已知三角形的三边长度时,可以利 用海伦公式结合两角和与差的三角函 数公式求出三角形的面积。
判断三角形的形状
通过比较三角形的三个内角的余弦值, 可以判断三角形的形状(锐角、直角 或钝角^circ - 45^circ) = cos30^circcos45^circ + sin30^circsin45^circ = frac{sqrt{3}}{2} times frac{sqrt{2}}{2} + frac{1}{2} times frac{sqrt{2}}{2} = frac{sqrt{6} + sqrt{2}}{4}$。
二倍角公式允许我们将一个 角的二倍角的三角函数表达 式化简为单角的三角函数表 达式,这在解决一些特定问 题时非常有用,如求某些特 殊角的三角函数值或证明某 些恒等式。
公式在三角恒等 式证明中的应用
两角和与差及二倍角公式在 三角恒等式的证明中扮演着 重要角色。通过使用这些公 式,我们可以将复杂的三角 函数表达式化简为更简单的 形式,从而更容易地证明恒 等式。
04 公式推导与证明
两角和与差公式的推导
利用三角函数的和差化积公式, 将两角和与差的三角函数表达式 转化为单个角的三角函数表达式。
通过三角函数的加减变换,得到 两角和与差的正弦、余弦公式。
结合三角函数的周期性,将公式 扩展到任意角。
二倍角公式的推导
利用三角函数的倍角公式,将 二倍角的三角函数表达式转化 为单个角的三角函数表达式。
三角函数的性质

高考数学两角和与差及二倍角的三角函数公式课件

高考数学两角和与差及二倍角的三角函数公式课件

-23×12+ 35× 23=
15-2 6.
故选 D. 答案:D
(2)4sin 80°-csoins 1100°°=(
A. 3
B.- 3
) C. 2
D.2 3-3
解析:因
4sin
80°-csoins
1100°°=4sin
80°sin10 °-cos sin 10°
10°=
2sin
20°-cos sin 10°
10°=2sin30°-sin101°0°-cos
【规律方法】三角函数的给角求值,关键是把待求角用已 知角表示:
①已知角为两个时,待求角一般表示为已知角的和或差; ②已知角为一个时,待求角一般与已知角成“倍的关系” 或“互余、互补”的关系.
考点 2 给值求值问题 例 2:(1)(2016 年新课标Ⅰ)已知 θ 是第四象限角,且 sinθ+π4=35,则 tanθ-π4=________.
1.两角和与差的三角函数
三角函数
两角和
正弦
sin(α+β)=sin αcos β+cos αsin β
余弦
cos(α+β)=_c_o_s_α__co_s__β_-__s_in__α_si_n__β_
正切
tan(α+β)=1t-antαan+αttaannββ
简写形式 Sα+β Cα+β
Tα+β
(续表) 三角函数 正弦 余弦
考点 3 给值求角问题
例 3:已知 A,B 均为钝角,且 sin A= 55,sin B= 1100,求 A+B 的值.
解:∵A,B 均为钝角,且 sin A= 55,sin B= 1100,
∴cos A=-
1-sin2A=-
2 =-2 5

两角和与差的正弦、余弦、正切公式 教案

两角和与差的正弦、余弦、正切公式 教案

两角和与差的正弦、余弦、正切公式教案
三维教学目标
1.知识与技能
能从两角差的余弦公式导出两角和的余弦公式,以及两角和与差的正弦、正切公式,了解公式间的内在联系. 能应用公式解决比较简单的有关应用的问题.
2.过程与方法
通过层层探究体会数学思维的形成特点.
3.情感目标与价值观
通过公式变形体会转化与化归的思想方法.
教学重点:推导两角和的余弦公式及两角和与差的正弦、正切公式,并能区别两角和与差的正弦、余弦、正切公式.
教学难点:两角和与差的正弦、余弦、正切公式的理解和灵活运用.
突破措施:学生在前面诱导公式及两角差的余弦公式的基础上,比较自然的推出
两角和的余弦公式,以及两角和与差的正弦、正切公式.
学情分析:三角函数是高考的重点内容,本节主要是公式的推导和应用,难度不大,要让学生加强记忆,且熟练应用.
教学设计:
=
cos15_____
情景导入
有了两角差的余弦公式,我们能解决一些问题,但范围有
限,因此自然想得到两角差的正弦、正切公式,以及两角和的
72cos 42cos72sin 42
-20cos70sin 20sin 70-;(3).1tan15
1tan15
+-
练习:求下列各式的值:
72
cos18cos72sin18
tan12tan 33tan12tan 33
++
34sin 26cos34cos 2620cos 40cos 20cos50
-+
)
131cos sin 22
x x - (2)cos x -
板书设计:。

两角和与差的公式

两角和与差的公式

两角和与差的正弦、余弦、正切公式1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)设sin 2α=-sin α,α∈(π2,π),则tan 2α= 3.( √ )1.(2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin αcos α+4cos 2α=52.化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.2.若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34 B.34 C .-43 D.43答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34.3.(2013·课标全国Ⅱ)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13, 即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,且θ为第二象限角,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.4.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________. 答案 1解析 ∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin [(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin [(x +φ)-φ]=sin x , ∴f (x )的最大值为1.题型一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1D .3(2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)等于( )A.33B .-33 C.539D .-69答案 (1)A (2)C解析 (1)由根与系数的关系可知 tan α+tan β=3,tan αtan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.故选A. (2)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2).∵0<α<π2,则π4<π4+α<3π4, ∴sin(π4+α)=223.又-π2<β<0,则π4<π4-β2<π2, 则sin(π4-β2)=63.故cos(α+β2)=13×33+223×63=539.故选C.思维升华 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.(1)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )A.35 B.45 C .-35D .-45(2)计算:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°)=________.答案 (1)A (2)32解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)原式=2cos 210°4sin 10°cos 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 20°sin 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2sin 30°cos 10°+2cos 30°sin 10°2sin 10°=32. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为( ) A. 2 B.22 C.12D.32(2)化简:2cos 4x -2cos 2x +122tan (π4-x )sin 2(π4+x )=________.(3)求值:cos 15°+sin 15°cos 15°-sin 15°=________.答案 (1)B (2)12cos 2x (3) 3解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22.故选B. (2)原式=12(4cos 4x -4cos 2x +1)2×sin (π4-x )cos (π4-x )·cos 2(π4-x )=(2cos 2x -1)24sin (π4-x )cos (π4-x )=cos 22x 2sin (π2-2x )=cos 22x 2cos 2x =12cos 2x .(3)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.答案 (1)cos α (2) 3解析 (1)原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)4cos 2α2.因为α∈(0,π),所以cos α2>0,所以原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)2cosα2=(cos α2+sin α2)·(cos α2-sin α2)=cos 2α2-sin 2α2=cos α.(2)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C 2=π3,tanA +C2=3, 所以tan A 2+tan C 2+3tan A 2tan C2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. 题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=________,cos β=________.(2)(2013·课标全国Ⅱ)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( ) A.16 B.13 C.12 D.23 答案 (1)-1010 95010 (2)A 解析 (1)∵α,β∈(0,π2),从而-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010,cos(α-β)=31010. ∵α为锐角,sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050. (2)因为cos 2⎝⎛⎭⎫α+π4=1+cos2⎝⎛⎭⎫α+π42=1+cos ⎝⎛⎭⎫2α+π22=1-sin 2α2,所以cos 2⎝⎛⎭⎫α+π4=1-sin 2α2=1-232=16,选A.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.高考中的三角函数求值、化简问题典例:(1)若tan 2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=________.(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2(3)(2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A .-53 B .-59 C.59 D.53(4)(2012·重庆)sin 47°-sin 17°cos 30°cos 17°等于( )A .-32 B .-12 C.12 D.32思维点拨 (1)注意和差公式的逆用及变形.(2)“切化弦”,利用和差公式、诱导公式找α,β的关系. (3)可以利用sin 2α+cos 2α=1寻求sin α±cos α与sin αcos α的联系. (4)利用和角公式将已知式子中的角向特殊角转化. 解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan 2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0, 解得tan θ=-12或tan θ= 2. ∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故原式=1+121-12=3+2 2.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.(3)方法一 ∵sin α+cos α=33,∴(sin α+cos α)2=13, ∴2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sin α+cos α=33>0, ∴2k π+π2<α<2k π+34π(k ∈Z ),∴4k π+π<2α<4k π+32π(k ∈Z ),∴2α为第三象限角, ∴cos 2α=-1-sin 22α=-53. 方法二 由sin α+cos α=33两边平方得1+2sin αcos α=13, ∴2sin αcos α=-23.∵α为第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α=(sin α-cos α)2=1-2sin αcos α=153.由⎩⎨⎧ sin α+cos α=33,sin α-cos α=153,得⎩⎪⎨⎪⎧ sin α=3+156,cos α=3-156.∴cos 2α=2cos 2α-1=-53. (4)原式=sin (30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17° =sin 30°cos 17°cos 17°=sin 30°=12. 答案 (1)3+22 (2)B (3)A (4)C温馨提醒 (1)三角函数的求值化简要结合式子特征,灵活运用或变形使用公式.(2)三角求值要注意角的变换,掌握常见的配角技巧.方法与技巧1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的.3.在三角求值时,往往要估计角的范围后再求值.A组专项基础训练(时间:30分钟)1.已知tan(α+β)=25,tan⎝⎛⎭⎫β-π4=14,那么tan⎝⎛⎭⎫α+π4等于() A.1318 B.1322 C.322 D.16答案 C解析因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以tan⎝⎛⎭⎫α+π4=tan⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=tan(α+β)-tan⎝⎛⎭⎫β-π41+tan(α+β)tan⎝⎛⎭⎫β-π4=322.2.若θ∈[π4,π2],sin 2θ=378,则sin θ等于()A.35 B.45 C.74 D.34答案 D解析由sin 2θ=387和sin2θ+cos2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.3.已知tan α=4,则1+cos 2α+8sin 2αsin 2α的值为( ) A .4 3B.654 C .4 D.233答案 B解析 1+cos 2α+8sin 2αsin 2α=2cos 2α+8sin 2α2sin αcos α, ∵tan α=4,∴cos α≠0,分子、分母都除以cos 2α得2+8tan 2α2tan α=654. 4.(2013·重庆)4cos 50°-tan 40°等于( )A. 2B.2+32 C. 3 D .22-1 答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3. 5.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是( ) A .-233B .±233C .-1D .±1 答案 C解析 cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x )=3cos(x -π6)=-1. 6. sin 250°1+sin 10°=________. 答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos(90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________. 答案 1解析根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.3tan 12°-3(4cos212°-2)sin 12°=________.答案-4 3解析原式=3sin 12°cos 12°-32(2cos212°-1)sin 12°=23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin(-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24°=-23sin 48°12sin 48°=-4 3.9.已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.解因为1+sin α1-sin α-1-sin α1+sin α=(1+sin α)2cos2α-(1-sin α)2cos2α=|1+sin α||cos α|-|1-sin α||cos α|=1+sin α-1+sin α|cos α|=2sin α|cos α|, 所以2sin α|cos α|=-2tan α=-2sin αcos α. 所以sin α=0或|cos α|=-cos α>0.故α的取值集合为{α|α=k π或2k π+π2<α<2k π+π或2k π+π<α<2k π+3π2,k ∈Z }. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310. B 组 专项能力提升(时间:25分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)等于( ) A .-255 B .-3510 C .-31010 D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.12.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于() A.22 B.33 C. 2 D. 3答案 D解析 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.13.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=________.答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45,又由θ∈(0,π4),得2θ∈(0,π2),所以cos 2θ=1-sin 22θ=35,所以sin(2θ+π4)=sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210.14.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. (1)解 ∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45, 两式相加得2cos βcos α=0,∵0<α<β≤π2,∴β=π2, ∴[f (β)]2-2=4sin 2π4-2=0. 15.已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4). (1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围. 解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x =12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin 2α+cos 2α)+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤5π4. 所以-22≤sin ⎝⎛⎭⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12.。

两角和与差的正弦、余弦


=- 2.
考点二 两角和与差的正弦公式及其应用
例 2 已知 sinα=13,cosβ=-23,且 α,β 均在第二象限,求 sin(α+β) 和 sin(α-β)的值.
分析:先利用平方关系,求出 cosα 与 sinβ 的值,再代入两角
和与差的正弦公式求值.
解析:因 sinα=13,cosβ=-23,且 α,β 均在第二象限,
α+β cos 2 .
分析:由α+2 β=α-β2-α2-β,只要求出 sinα-β2,cosα2-β 的值,利用差角的余弦公式可求值.
解析:因为π2<α<π,所以π4<α2<2π, 因为 0<β<π2, 所以-2π<-β<0, 所以-4π<-β2<0, 所以π4<α-β2<π,-π4<α2-β<2π.
1- 3tan75° (2) 3+tan75°.
解析:(1)原式=tan(45°+30°)+tan(45°-30°) =11+-ttaann3300°°+11-+ttaann3300°° =1+tan310-°2t+an213-0°tan30°2 =21+-2ttaann223300°°=21+-2331=4.
3 2.
4 新思维·随堂自测
1.cos57°cos12°+sin57°sin12°的值是( )
A.0
1 B.2
3
2
C. 2 D. 2
解析:原式=cos(57°-12°)=cos45°=
2 2.
答案:D
两角和与差的正弦、余弦
2.已知 0<α<π2<β<π,且 sinα=35,cos(α+β)=-45,则 sinβ=(
又 cosα-β2=-19<0,
sinα2-β=23>0, 所以π2<α-β2<π,0<α2-β<π2.

两角和与差的正弦、余弦、正切公式教学设计与反思

两角和与差的正弦、余弦、正切公式教学设计与反思教材分析本节教材在高中三角函数中占有很重要的地位,因为它与前面所学习的两角差的余弦公式有着密切的联系,是在两角差的余弦公式的基础上推导出来的结果,而且与更早之前学习的诱导公式、同角三角函数关系有着密切的联系;同时又是后面将要学习二倍角公式的基础,因此学好本节内容知识,不仅可对以前所学的相关知识进行加深理解和巩固,而且为后面将要学习的知识作了很好的铺垫作用。

教学目标(1)知识与技能使学生能由两角差的余弦公式推导出两角和的余弦,并进而推得两角和与差的正弦公式、正切公式;使学生能进行简单的三角函数式的化简、求值和恒等变形;培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力。

(2)过程与方法通过教学活动,使学生理解两角和与差正弦、余弦、正切公式的形成过程;探究推导两角和与差正弦、余弦、正切公式的方法。

(3)情感态度与价值观通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质。

教学重点、难点:重点:两角和与差正弦、余弦、正切公式的推导及记忆;难点:灵活运用所学公式进行求值、化简及证明。

教学方法本节教学采用启发式教学,辅以观察法、发现法、讲练结合法。

采用这种方法的原因是本校高一学生的领会思想的能力比较差,回顾旧知的能力不足,通过师生的配合,共同进行探究活动,使其理解并掌握本节知识。

教学过程(一)课堂引入首先引导学生回顾一下两角差的余弦公式:cos(α-β)=cosαcosβ+sinαsinβ问题1:计算:(1)cos105。

cos15。

+ sin105。

sin15。

(2)-cos(θ+21。

)cos(θ-24。

)-sin(θ+21。

)sin(θ-24。

)思考:如果此处是求"cosαcosβ-sinαsinβ"的值呢?如何处理(引导学生去猜想可能就是"cos(α+β)")?教师指出这便是本节所要探讨的内容之一,由此引入新课。

两角和差的正弦、余弦、正切公式应用

2
π π π π ∴ sin α = sin[(α + 6 ) - 6 ] = sin(α + 6 )cos 6 - cos(α + π π 4 3+3 4 3 3 1 6 )sin 6 =(-5) 2 -5·2=- 10 .
4 3+3 【答案】 - 10
π 3π 3 12 (2)已知 2 <β <α < 4 ,sin(α+β)=-5,cos(α-β)=13,求 cos2α 的值.
【思路】 比较给出的角与待求式中的角的关系,不难发现 3π π π π ( 4 +β)-( 4 -α)= 2 +(α+β),或者是先将 cos( 4 -α)变化为 π π 3 sin( +α),再考虑( +α)+( π+β)=π+(α+β),再利用诱导 4 4 4 公式即可出现 α+β,故只需求出相应角的正、余弦值,利用两角 和与差的三角公式即可.
π + )等于________. 4
π π 【解析】 tan(α+ )=tan[(α+β)-(β- )] 4 4 π 2 1 tan(α+β)-tan(β- 4 ) 5-4 3 = = 2 1=22. π 1+tan(α+β)· tan(β- 4 ) 1+5×4 3 【答案】 22
π π 3π 3 3 5 (2)已知 0<β< 4 <α<4π , cos( 4 -α)=5, sin( 4 +β)=13, 求 sin(α+β)的值.
(2)(2013· 重庆理)4cos50°-tan40°=________.
【解析】
4sin40°cos40°-sin40° 4cos50°-tan40°= cos40°
2sin80°-sin40° 2sin100°-sin40° = = cos40° cos40° 2sin(60°+40°)-sin40° = cos40° 3 1 2× cos40°+2× sin40°-sin40° 2 2 = = 3. cos40° 【答案】 3

高中课件-两角和与差的正弦、余弦和正切公式-(2)

3.公式都是有灵活性的,应用时不能生搬硬套,要注 意整体代换和适当变形.
课后作业
作业布置
课本:P228习题5.5 第5、6题 预习:书本P220--222 练习册:P106--108
努力就有希望!
变式训练
1.已知 cos θ=1
3
0
<
π 2
,则 sin
sin
-
π 6
的值为
2 6 1
6.
+
π 4
的为
cos(+) = coscos-sinsin
努力就有希望!
新课引入
一、知识梳理
2. 两角和的余弦公式
cos(+) = cos cos -sin sin ( C(+) )
努力就有希望!
思考:两角和与差的正弦公式是怎样的呢?
sin cos( π )
2
提示:利用诱导公
sin( ) cos[ π ( )]
4
24
4
方法二、cos( ) sin[ ( )] sin( )
4
24
4
方法三、sin( ) sin cos cos sin 2 cos 2 sin
4
4
4
2
2
cos cos sin sin cos( )
4
4
4
方法四 、cos( ) cos cos sin sin 2 cos 2 sin
3
23 2 6
努努力力就就有有希希望望!!
变式训练
2.已知α,β均为锐角,sin α= 1,cos(α+β)= 4.
3
5
(1)求 cos
-
π 3
的值;
(2)求 sin β的值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题6 两角和与差的三角函数
复习目标
掌握两角和与差的三角函数公式的灵活应用,会正用、反用、变用公式进行化简、计算及证
明.
知识梳理
1、两角和与差的三角函数公式:

(1)sin

(2)cos
(3)tan
2、变形运用
(1)tantan=
(2)xbxacossin=
3、角的变换
)(

=)(
)(2

2

基础过关
1、已知3tan,4tan,则)tan(= 。

2、167cos43sin77cos43cos= 。
3、函数xxxfcossin)(的最小值是 。
4、设)2,0(),2,0(,若97)sin(,31cos,则sin= 。
例题讲解
例1.(1)计算下列各式的值.

①cos80cos20+sin80sin20= . ②1tan151tan15= .

③tan17+tan28+ tan17 tan28= . ④sin7cos15sin8cos7sin15sin8= .
(2)ABC中,已知BABAsinsincoscos则ABC一定是 ( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定

(3)若31sinsin1,coscos22,则cos()= .
变式:若13cos(),cos()55则tantan= .
例2.已知2,223,53)sin(,54)cos(且,求

2cos

的值.

变式拓展 已知41)4tan(,52)tan(,求)4tan(的值。
例3.已知11tan,tan27,且,0,,求2的值.

例4、求函数xxxxf2sin3)4cos()4cos(2)(的值域和最小正周期。
作业(6)
1、
167cos43sin77cos43cos
的值为 。

2、若msin)cos(cos)sin(,且为第三象限角,则cos的值
为 。

3、如果21)4tan(,43)tan(,那么)4tan(的值等于 。

4、15cos15sin 。
5、
0000
tan70tan503tan70tan50

6、已知355,,sin44413,则sin=_________________.

7、21tan(),tan()544,则tan()4= .
8、已知44cos,cos,55且3,,,222,则
cos2
_____________,cos2_________________.

9、函数()(13tan)cosfxxx的最小正周期为
10、已知向量)2,(sina与)cos,1(b互相垂直,其中)2,0(
(1)求sin和cos的值
(2)若cos53)cos(5,02,求cos的值
11、已知33350,,cos,sin44445413,求sin
12、已知函数()sin3cos()fxxxxR
(1)求函数()fx的最小正周期;
(2)求函数()fx的最大值,并求此时x的值。

相关文档
最新文档