两角和与差的三角函数教案
第3课时 两角和与差的三角函数教案

第3课时 两角和与差的三角函数基础过关题1.两角和的余弦公式的推导方法:2.基本公式sin(α±β)=sinα cosβ±cosα sinβcos(α±β)= ;tan(α±β)= .3.公式的变式tan α+tan β=tan (α+β)(1-tan α tan β)1-tan α tan β=)tan(tan tan βαβα++ 4.常见的角的变换:2α=(α+β)+(α-β);α=2βα++2βα- α=(α+β)-β =(α-β)+β2βα+=(α-2β)-(2α-β); )4()4(x x ++-ππ=2π典型例题例1.求[2sin50°+sin10°(1+3tan10°)]· 80sin 22的值.解:原式=︒⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛︒︒+⨯︒+︒80sin 210cos 10sin 3110sin 50sin 2 =︒⋅︒︒+︒⨯︒+︒80sin 2)10cos 10sin 310cos 10sin 50sin 2( =︒⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡︒︒+︒⨯︒+︒10cos 210cos 10sin 2310cos 2110sin 250sin 2 =︒⋅⎪⎭⎫ ⎝⎛︒︒︒+︒10cos 210cos 40sin 10sin 250sin 2 =︒=︒⋅︒︒60sin 2210cos 210cos 60sin 2 =.62322=⨯变式训练1:(1)已知α∈(2π,π),sin α=53,则tan(4πα+)等于( ) A.71 B.7 C.- 71 D.-7 (2) sin163°sin223°+sin253°sin313°等于 ( )A.-21 B.21 C.-23 D.23 解:(1)A (2)B 例2. 已知α∈(4π,43π),β∈(0,4π),cos (α-4π)=53,sin(43π+β)=135,求sin(α+β)的值. 解:∵α-4π+43π+β=α+β+2π α∈(43,4ππ) β∈(0,1sin 311≤-≤-x )∴α-4π∈(0,2π) β+43π∈(43π,π) ∴sin(α-4π)=54 cos(βπ+43)=-1312 ∴sin(α+β)=-cos[2π+(α+β)] =-cos[(α-4π)+(βπ+43)]=6556 变式训练2:设cos (α-2β)=-91,sin (2α-β)=32,且2π<α<π,0<β<2π, 求cos (α+β).解:∵2π<α<π,0<β<2π,∴4π<α-2β<π,-4π<2α-β<2π. 故由cos (α-2β)=-91,得sin (α-2β)=954. 由sin (2α-β)=32,得cos (2α-β)=35.∴cos 2βα+=cos [(α-2β)-(2α-β)]=cos ()cos()sin ()sin()2222βαβααβαβ--+--=152459339-⨯+⨯ 7527=∴cos (α+β)=2cos 22βα+-1=275227⎛⎫⨯ ⎪ ⎪⎝⎭-1=-729239. 例3. 若sinA=55,sinB=1010,且A,B 均为钝角,求A+B 的值. 解 ∵A 、B 均为钝角且sinA=55,sinB=1010,∴cosA=-A 2sin 1-=-52=-552, cosB=-B 2sin 1-=-103=-10103, ∴cos(A+B)=cosAcosB-sinAsinB =⎪⎪⎭⎫ ⎝⎛-552×⎪⎪⎭⎫ ⎝⎛-10103-55×1010=22 ① 又∵2π<A <π, 2π<B <π, ∴π<A+B <2π②由①②知,A+B=47π. 变式训练3:在△ABC 中,角A 、B 、C 满足4sin 22C A +-cos2B=27,求角B 的度数. 解 在△ABC 中,A+B+C=180°,由4sin 22C A +-cos2B=27, 得4·2)cos(1C A +--2cos 2B+1=27, 所以4cos 2B-4cosB+1=0.于是cosB=21,B=60°.例4.化简sin 2α·sin 2β+cos 2αcos 2β-21cos2α·cos2β. 解 方法一 (复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-21·(2cos 2α-1)·(2cos 2β-1) =sin 2α·sin 2β+cos 2α·cos 2β-21(4cos 2α·cos 2β-2cos 2α-2cos 2β+1) =sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-21 =sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-21 =sin 2β+cos 2β-21=1-21=21. 方法二 (从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-21cos2α·cos2β =cos 2β-sin 2α (cos 2β-sin 2β)-21cos2α·cos2β=cos 2β-sin 2α·cos2β-21cos2α·cos2β =cos 2β-cos2β·⎪⎭⎫ ⎝⎛+αα2cos 21sin 2 =22cos 1β+-cos2β·⎥⎦⎤⎢⎣⎡-+)sin 21(21sin 22αα =22cos 1β+-21cos2β=21. 方法三 (从“幂”入手,利用降幂公式先降次)原式=22cos 1α-·22cos 1β-+22cos 1α+·22cos 1β+-21cos2α·cos2β =41(1+cos2α·cos2β-cos2α-cos2β)+41(1+cos2α·cos2β+cos2α+cos2β)-21·cos2α·cos2β=21. 方法四 (从“形”入手,利用配方法,先对二次项配方)原式=(sin α·sin β-cos α·cos β)2+2sin α·sin β·cos α·cos β-21cos2α·cos2β =cos 2(α+β)+21sin2α·sin2β-21cos2α·cos2β =cos 2(α+β)-21·cos(2α+2β) =cos 2(α+β)- 21·[2cos 2(α+β)-1]=21. 变式训练4:化简:(1)2sin ⎪⎭⎫ ⎝⎛-x 4π+6cos ⎪⎭⎫ ⎝⎛-x 4π;(2)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--απαπα4sin 4tan 21cos 222. 解 (1)原式=22⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅+⎪⎭⎫ ⎝⎛-x x 4cos 234sin 21ππ =22⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x 4cos 6cos 4sin 6sin ππππ =22cos ⎪⎭⎫ ⎝⎛+-x 46ππ=22cos(x-12π).(2)原式=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+-απααα22cos 1tan 1tan 12cos =)2sin 1(2sin 12cos 2cos αααα++=1.。
两角和与差的正弦、余弦公式教学设计(第一课))

两角和与差的正弦、余弦公式的教学设计(第一课时)1 内容分析1.1课标要求《普通高中数学课程标准》(2017年版)“内容要求”部分对两角和与差的正弦、余弦和正切公式要求是经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。
1.2教材分析本节是人教A版(2019年)高中数学必修第一册第五章第五节第一部分的内容,主要是两角和与差的正弦、余弦和正切公式。
此前已学习了诱导公式,利用它们对三角函数式进行恒等变形,可以达到化简、求值或证明的目的。
1.3学情分析学生已经学习了诱导公式,可以对三角函数式进行恒等变形,但这只是针对特殊角,但是由于学生对这部分内容接收起来比较困难,所以要争取对已学过的内容循序渐进,比较自然地得到所要研究的新知识。
通过类比让学生进行模仿,引导利用单位圆,推导出两角差的余弦公式。
1.4核心素养及蕴含的数学思想方法数学抽象:主要是两角差的余弦公式的推导。
逻辑推理:两角差的余弦公式与两角和的余弦公式之间的联系。
数学运算:在推导出公式之后,运用公式进行解题。
1.5教学目标(1)了解两角差的余弦公式的推导过程.(2)掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.(3)熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.(4)通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。
1.6教学重点与难点教学重点:掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式 教学难点:两角和与差的正弦、余弦、正切公式的灵活运用。
2.教学过程重合.根据圆的旋转对称性可知, (或说明AOP ∆≌11OP A ∆)。
两角和与差的三角函数教案

两角和与差的三角函数教案教案标题:两角和与差的三角函数教案教案目标:1. 了解两角和与差的三角函数公式;2. 掌握两角和与差的三角函数的计算方法;3. 能够应用两角和与差的三角函数解决实际问题。
教案步骤:引入:1. 引入两角和与差的概念,与学生一起回顾正弦、余弦、正切的定义;2. 引导学生思考如何计算两个角的和与差。
探究:1. 将两角和与差的三角函数公式列出,并解释每个公式的含义;2. 通过示例演示如何使用公式计算两角和与差的值;3. 让学生自主尝试计算其他两角和与差的值,并与同学分享解题思路。
拓展:1. 引导学生思考如何应用两角和与差的三角函数解决实际问题;2. 提供相关实际问题,让学生运用所学知识解决;3. 学生之间互相交流解题思路和答案。
巩固:1. 提供练习题,让学生巩固两角和与差的三角函数的计算方法;2. 检查学生的练习题答案并进行讲解。
总结:1. 总结两角和与差的三角函数的计算方法;2. 强调学生在实际问题中应用两角和与差的三角函数的能力。
教案评估:1. 在课堂上观察学生的参与度和理解程度;2. 检查学生在练习题中的答案;3. 收集学生的反馈和问题,以便调整教学方法。
教案扩展:1. 引入倍角与半角的概念,与学生一起探究其计算方法;2. 提供更复杂的实际问题,让学生进一步应用两角和与差的三角函数解决。
教案注意事项:1. 确保学生已经掌握正弦、余弦、正切的定义和计算方法;2. 通过图形或实物等形象化的方式辅助教学,提高学生的理解能力;3. 鼓励学生互相合作,共同解决问题,促进学生的交流与合作能力。
4-3两角和与差的三角函数

例7.(1)已知θ为钝角,且coscos=,求tanθ的值
(2)若tanθ=,则cos2θ+sin2θ=________.
题型四:方程思想
例8:(1)已知cos(α+β)=,cos(α-β)=,则tanαtanβ的值为________.
(2)已知cosx+cosy=,sinx-siny=,则cos(x+y)=________.
【典例分析】
题型一:化简求值
例1.cos75°cos15°-sin435°sin15°的值是()
A.0B.C.D.-
例2:计算tan75°-tan15°-tan 15°·tan75°的结果等于()
A.B.-C.D.-
例3.化简(1) ;(2)化简[2sin50°+sin10°(1+tan10°)]·.
主备人:郭佳佳审核人:吴哲使用时间:
课题:4-3两角和与差的三角函数
【考纲要求】
1.会用向量的数量积推导出两角差的余弦公式.
2.会用两角差的余弦公式推导出两角差的正弦、正切公式.
3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.
【自主复习】
(4)1的代换(1=sin2α+=tanα·=sinα·=cosα·=tan45°等).
(5)结构变换(如,形如asinα+bcosβ的式子都可以通过合理的变形化为只含一个角的三角函数形式sin(γ+φ),其中α、β都是γ的表达式,φ为常数).
总之,有关三角恒等变换解题时总的思路是:切化弦,消多元,角拼凑,1代换,引辅角,化一函,降高次,化特值,找差异,求联系.
基本知识点梳理
1.和、差、倍、半角公式
(1) ; ;
两角和与差的正弦、余弦、正切公式(2)教学设计

两角和与差的正弦、余弦、正切公式(2)教案教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+.β)等2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的.二、三维目标1.知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.三、重点难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.四、课时安排2课时五、教学设想(一)导入新课思路1.(复习导入)让学生回忆上节课所学的六个公式,并回忆公式的来龙去脉,然后让一个学生把公式默写在黑板上或打出幻灯.教师引导学生回顾比较各公式的结构特征,说出它们的区别和联系,以及公式的正用、逆用及变形用,以利于对公式的深刻理解.这节课我们将进一步探究两角和与差的正弦、余弦、正切公式的灵活应用.思路2.(问题导入)教师可打出幻灯,出示一组练习题让学生先根据上节课所学的公式进行解答.1.化简下列各式(1)cos (α+β)cos β+sin (α+β)sin β; (2)cos sin 1tan cos sin cos sin sin 22---+--x x x x x x x ; (3).tan tan cos sin )sin()sin(2222αββαβαβα+-+ 2.证明下列各式 (1);tan tan 1tan tan )cos()sin(βαβαβαβα++=-+ (2)tan (α+β)tan (α-β)(1-tan 2tan 2β)=tan 2α-tan 2β; (3).sin sin )cos(2sin )2sin(αββααβα=+-+ 答案:1.(1)cos α;(2)0;(3)1.2.证明略.。
《两角和与差的三角函数公式》第2课时示范教学方案北师大新课标

第四章三角恒等变换4.2两角和与差的三角函数公式第2课时两角和与差的正弦、正切公式及其应用1.能利用Cαβ±公式,诱导公式等推导两角和与差的正弦、正切公式.2.掌握两角和与差的正弦和正切公式,并能利用公式化简,求值等.3.通过本节课的学习,提升逻辑推理、数学运算的核心素养.教学重点:两角和差的正弦、正切公式的推导及其应用.教学难点:两角和差的正弦、正切公式的灵活运用.PPT课件﹒一、导入新课问题1:变脸是川剧艺术中塑造人物的一种特技,演员在熟练的动作之间,奇妙地变换着不同的脸谱,用以表现剧中人物的情绪、心理状态的突然变化,达到“相随心变”的艺术效果,那么在三角函数中,两角和与差的正弦、正切之间又有怎样的变换呢?这就是本节要学习的内容.设计意图:借助情景引入新课—两角和差的正弦、正切公式及其应用(版书).二、新知探究1.两角和差的正弦公式问题1:由公式Cα-β或Cα+β可求sin75︒的值吗?师生活动:学生独立思考,举手回答﹒预设答案:可以,因为sin 75cos15cos(4530)︒=︒=︒-︒﹒设计意图:通过正余弦之间的转化,为探究sin()αβ+的公式作铺垫. 问题2:由公式C (α±β)可以得到sin(α+β)的公式吗? 师生活动:学生独立思考,推导公式.预设答案:可以,sin(α+β)=cos[π2−(α+β)]=cos 错误!=sin αcos β+cos αsin β﹒追问1:如何由sin(α+β)的公式推出sin(α-β)的公式? 师生活动:学生独立思考,推导公式﹒预设答案:以-β代替sin(α+β)中的β,即可得sin(α-β)=sin αcos β-cos αsin β.★资源名称:【知识点解析】两角和与差的正弦、余弦、正切公式.★使用说明:本资源为《两角和与差的正弦、余弦、正切公式》的知识解析,通过知识梳理、探究思考等环节帮助学生体会知识的形成过程,并会简单应用.注:此图片为“微课”缩略图,如需使用资源,请于资源库调用. 知识点1:两角和差的正弦公式(1)sin(α+β)=sin αcos β+cos αsin β(S α+β), (2)sin(α-β)=sin αcos β-cos αsin β(S α-β). 追问2:公式S α±β的适用条件是什么? 师生活动:学生独立思考,举手回答﹒预设答案:公式中的α、β是任意角,可以是具体的角,也可以是表示角的代数式.追问3:公式S α-β,S α+β,可记为什么? 师生活动:学生独立思考,小组讨论﹒ 预设答案:“异名相乘,符号同”. 设计意图:帮助学生熟记公式. 2.两角和差的正切公式问题3:前面学习的同角三角函数关系中,tan ,sin ,cos ααα的关系怎样? 师生活动:学生回忆,举手回答﹒ 预设答案:sin tan cos ααα=﹒ 设计意图:为推导两角和差的正切公式作铺垫﹒追问1:利用该关系及两角和的正、余弦公式,能用tan α和tan β表示tan(α+β)和tan(α-β)?师生活动:学生思考、推导﹒ 预设答案:①tan(α+β)=++sin cos αβαβ()()=sin αcos β+cos αsin βcos αcos β-sin αsin β=tan α+tan β1-tan αtan β﹒②tan(α-β)=()()sin cos αβαβ--=sin αcos β-cos αsin βcos αcos β+sin αsin β=tan α-tan β1+tan αtan β.知识点2:两角和差的正切公式 (1)tan(α+β)=tan α+tan β1-tan αtan β,记作T α+β.(2)tan(α-β)=tan α-tan β1+tan αtan β,记作T α-β.追问2:两角和与差的正切公式对任意α,β均成立吗? 师生活动:学生观察公式,得出结论. 预设答案:不是的.①在两角和的正切公式中,使用条件是:α,β,α+β≠k π+π2,(k ∈Z );②在两角差的正切公式中,使用条件是:α,β,α-β≠k π+π2,(k ∈Z ).追问3:如何计算1-tan15°1+tan15°?师生活动:学生思考、计算,举手回答﹒预设答案:原式=tan45°-tan15°1+tan45°tan15°=tan(45°-15°)=tan30°=33.设计意图:帮助学生熟记两角和差的正切公式.★资源名称:【例题讲解】利用两角和差的正余弦公式求角.★使用说明:本资源为《利用两角和差的正余弦公式求角》的例题讲解,通过剖析典型例题,达到再次讲解知识点的目的,帮助巩固所学知识,加深学生对于知识的理解和掌握.注:此图片为“微课”缩略图,如需使用资源,请于资源库调用. 三、巩固练习 例1已知3sin 5α=-,α为第三象限角,求sin(),cos()44παπα-+的值﹒ 师生活动:学生分析解题思路,教师找学生板书解题过程.预设答案:因为3sin 5α=-,α为第三象限角,所以4cos 5α==-,43sin()sincos sin cos()()44455ααπαππ-=-=⨯---=43cos()coscos sin sin ()()44455ααπαππ+=-=---=.追问:本题中sin()cos()44ααππ-=+,这是一种巧合吗?预设答案:不是,因为()()442ππαπα-++=,所以sin()cos()44ααππ-=+﹒方法总结:这类题目要注意角的变换,观察待求角和已知角,把所求角表示为已知两角的和差,然后利用两角和、差公式求解.设计意图:巩固两角差的正弦与两角和的余弦公式的应用.例2已知1tan 2,tan ,3αβ==-其中0<α<π2<β<π﹒求:(1)tan()αβ-的值;(2)α+β﹒ 师生活动:学生分析解题思路,教师补充. 预设答案:(1)12()tan tan 3tan(===711tan tan 12()3αβαβαβ----++⨯-); (2)因为0<α<π2<β<π,所以3+22παβπ<<, 而12()tan tan 3tan(===111tan tan 12()3αβαβαβ+-++--⨯-), 故5+4παβ=. 方法总结:灵活选择适当求角的三角函数值方法.①如果角的取值范围是)20(π,,则选正弦函数、余弦函数均可;②如果角的取值范围是)22(ππ,-,则选正弦函数; ③如果角的取值范围是)0(π,,则选余弦函数. 设计意图:巩固两角和差余弦公式的逆用. 例3已知02πβαπ<<<<,且12cos 213βα⎛⎫-= ⎪⎝⎭,4sin 25αβ⎛⎫-=- ⎪⎝⎭﹒求:(1)tan 2βα⎛⎫-⎪⎝⎭的值;(2)cos 2αβ+⎛⎫⎪⎝⎭的值. 师生活动:学生分析解题思路,教师板书解题过程﹒ 预设答案: (1)因为02πβ<<,所以042πβ-<-<,所以42πβαπ<-<,故5sin 213βα⎛⎫-= ⎪⎝⎭,5tan 212βα⎛⎫-= ⎪⎝⎭.(2)cos cos 222αββααβ+⎡⎤⎛⎫⎛⎫⎛⎫=---⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ cos cos sin sin 2222βαβααβαβ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭﹒由2παπ<<得,422παπ<<,又2πβ-<-<0,则422παπβ-<-<,则3cos 25αβ⎛⎫-=⎪⎝⎭, 故1235416cos213513565αβ+⎛⎫=⨯+⨯-= ⎪⎝⎭. 方法总结:这类问题要注意拆角、拼角的技巧,将未知角用已知角表示出来,使之能直接运用公式.设计意图:巩固角的变换以及两角和差正弦、余弦、正切公式的运用. 【板书设计】四、归纳小结问题5:回归本节的学习,你有什么收获?可以从以下几个问题归纳. (1)利用两角和差的正弦、余弦、公式的求值中,要注意什么? (2)给值求值问题的解题方法是什么?常用的角的变换技巧有哪些? 师生活动:学生尝试总结,老师适当补充. 预设答案:(1)化简求值中要注意“特殊值”的代换和应用:当所要化简(求值)的式子中出现特殊的数值“1”,“3”时,要考虑用这些特殊值所对应的特殊角的正切值去代换,如“1=tan π4”,“3=tan π3”,这样可以构造出利用公式的条件,从而可以进行化简和求值. (2)在解决此类题目时,一定要注意已知角与所求角之间的关系,恰当地运用拆角、拼角技巧,同时分析角之间的关系,利用角的代换化异角为同角.具体做法是:①当条件中有两角时,一般把“所求角”表示为已知两角的和或差.②当已知角有一个时,可利用诱导公式把所求角转化为已知角.设计意图:通过梳理本节课的内容,能让学生掌握利用两角和差公式解决求值问题的方法技巧.布置作业:教科书第P147练习第6,7,8题;P152习题A 组第4,5,6题. 五、目标检测设计1﹒已知tan α+tan β=2,tan(α+β)=4,则tanαtanβ等于( ) A .2 B .1 C ﹒12D .4设计意图:检查学生对两角和的正切公式掌握情况. 2﹒已知α∈)(ππ,2,)4sin(πα+=35,则sin α等于( )A ﹒210 B ﹒7210 C ﹒-210或7210 D ﹒-7210设计意图:检查学生对两角和差公式的综合应用的掌握情况. 3﹒设θ为第二象限角,若1tan()42πθ+=,则cos θ=______;sin()4πθ+=______﹒ 设计意图:检查学生对两角和的余弦及两角和的正切公式的掌握情况.4﹒如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为210,255﹒ (1)求tan(α+β)的值;(2)求α+2β的值.设计意图:检查学生对两角和、差的公式的掌握情况. 【参考答案】1.答案:C ﹒解析:因为tan(α+β)=tan α+tan β1-tan αtan β=21-tan αtan β=4,所以tan αtan β=12﹒2.答案:B ﹒ 解析:由α∈)(ππ,2得,3π4<α+π4<5π4, 所以)4cos(πα+=)4(12πα+--sin =54)53(12-=--﹒ 所以sin α=]4)4([ππα-sin +=)4sin(πα+4cosπ-4s πin )4cos(πα+=22×)5453(+=7210﹒ 3.答案:,解析:1tan()tan11442tan tan()4431tan()tan 1444ππθππθθπππθ+--=+-===-+++.由22sin 1tan cos 3sin cos 1θθθθθ⎧==-⎪⎨⎪+=⎩, 结合θ为第二象限角,则cos 0θ<, 可得cos 10θ=-,sin 10θ=﹒ 所以sin()sin )425πθθθ+=+=-﹒ 4.解:由条件得cos α=210,cos β=255, ∵α,β为锐角,∴sin α=7210,sin β=55,∴tan α=7,tan β=12﹒(1)tan(α+β)=tan α+tan β1-tan αtan β=7+121-7×12=-3﹒(2)tan(α+2β)=tan[(α+β)+β]=tan(ɑ+β)+tanβ1-tan(ɑ+β)tan β=-3+121-(-3)×12=-1,∵α,β为锐角,∴0<α+2β<3π2,故可得α+2β=3π4.。
两角和与差的三角函数(高三复习教案)

人教A 版数学高三一轮复习讲义课题: 两角和与差的三角函数教案滕州二中新校:陈 博**************一、教学内容分析本节是在学习了角的概念与推广及任意角的三角函数和同角三角函数关系之后,旨在通过cos()αβ±、sin()αβ±和tan()αβ±公式的推导,使学生明白公式之间的内在联系;三角函数是高中数学的重点内容,而两角和与差的三角函数和二倍角公式,又是高考命题中的热点,作为三角函数计算必备的能力. 在2012年高考数学命题中,本节集中体现在三角函数的计算基础,二、 考纲要求① 会用向量的数量积公式推导出两角差的余弦公式.② 能利用两角差的余弦公式推导出两角和与差的正弦、正切公式,了解它们内在的练习③ 能利用两角和的公式推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.④ 能熟练应用二倍角的正弦、余弦、正切公式进行简单的恒等表换的余弦公式.三、教学重点、难点会利用两角和与差的正弦、余弦、正切公式是重点。
难点是两角和与差的正弦、余弦、正切公式的灵活运用。
四、教学流程设计知识点梳理−−→教材改编题−−→⎧⎪⎨⎪⎩给值求值给值求角−−→高考真题−−→小结五、教学过程设计 一、要点梳理1、 理解两角和与差的正弦、余弦和正切公式之间的内在联系2、 两角和与差的公式sin()____________αβ±=cos()____________αβ±=tan()____________αβ±=3、 将sin cos a x b x +转化为一个角的三角函数的形式,得sin cos _______a x b x +=二、基础自测【教材改编题】必修四教材137P(必修四137P )1、已知,αβ都是锐角,111cos(),cos(),714αβαβ+=-=-求cos β的值. (必修四146P )2、化简:tan 70cos10(3tan 201)-;3、已知,αβ都是锐角,110tan ,sin 7αβ==求tan(2)αβ+的值 【设计意图】 通过前面两角和与差的正弦、余弦和正切公式的复习和内在之间联系的梳理,让学生明白公式的来龙去脉,更好的掌握和使用,然后让学生巩固训练必修四课本的典型习题,其习题难度不大,从而引出下面在高考中对于两角和与差知识点的考查.三、典型例题【典型例题】高考总复习49P例1.(1)已知12cos(),sin(),2923βααβ-=--=且,0,22ππαπβ<<<<求cos()2αβ+的值. (2) 已知35cos(),sin ,513αββ-==-且(0,)2πα∈,(,0)2πβ∈-,求sin α的值.【学生活动】观察上述例题,从角,函数名,式子的结构和特征去找到解决它们的方法?【师生活动】解:(1) 因为22cos ()sin ()122ββαα-+-=, 所以,2280sin ()1cos ()2281ββαα-=--= 又因为,0,22ππαπβ<<<<所以:(0,)2βαπ-∈, ∴sin()29βα-=同理:cos()2αβ-=312cos()cos[()()]()222399327αββααβ+=---=-+=【小结】:常见角的变换()()222βααβαβ+---=,()()2αβαβα++-=,()()2αβαββ+--=,2()αβαβα+=++等等【学生活动】仿照例1的第一问的解决过程,能否给出第二问的思路和解题过程?学生练习教师提示:()ααββ=-+解:(2) (0,)2πα∈,(,0)2πβ∈-(0,)αβπ∴-∈即4sin()5αβ-== 同理:12cos 13β= 481533sin sin[()]656565ααββ=-+=-= 四、变式训练【高考真题】1、(2012江苏)设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为____. 【解析】∵α为锐角,即02<<πα,∴2=66263<<πππππα++. ∵4cos 65απ⎛⎫+= ⎪⎝⎭,∴3sin 65απ⎛⎫+= ⎪⎝⎭.∴3424sin 22sin cos =2=3665525αααπππ⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∴7cos 2325απ⎛⎫+= ⎪⎝⎭. ∴sin(2)=sin(2)=sin 2cos cos 2sin 12343434a a a a πππππππ⎛⎫⎛⎫++-+-+ ⎪ ⎪⎝⎭⎝⎭ 2427217==225225250-2、(2011浙江理)若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则cos()2βα+=(A )3 (B )3- (C )9 (D )9-【答案】 C【解析】:()()2442βππβαα+=+--cos()cos[()()]2442βππβαα∴+=+--cos()cos()442ππβα=+-sin()sin()442ππβα+++ 133=+==故选C例3、(1)已知11tan(),tan 27αββ-==-,且,(0,)αβπ∈,求2αβ-的值 【学生活动】观察上述例题,从角,函数名,式子的结构和特征去找到解决它们的方法?如果要求角2αβ-,必须先求出关于2αβ-的某一个三角函数值,确定好其路线图.【师生活动】解:11()127tan tan[()]1131()27ααββ+-=-+==-⨯- 即 1123tan(2)tan[()]111123αβαβα+-=-+==-⨯ ,(0,)αβπ∈ 2(,2)αβππ∴-∈-24παβ∴-=或54π或34π- (学生思考,错在哪里?) 【质疑析错】从上解中:可知1tan 33α=<,实际上角α的范围可以缩小为(0,)6π,1tan 7β=-,角β的范围可以缩小为5(,)6ππ,2(,)2παβπ∴-∈--,故324παβ∴-=- 【小结】:已知三角函数值求角,一般问题的步骤为:①求角的某一个三角函数值;②确定角的范围; ③根据角的范围写出所求的角.若涉及多解问题,一般要从题目中某些特殊函数值,求缩小其范围.一般来说:已知正、余弦函数值,选正弦或余弦函数;若角的范围是(0,)2π,选正、余弦皆可;若角的范围是(0,)π,选余弦较好;若角的范围为(,)22ππ-,选正弦较好.练习:(2)已知02παβπ<<<<,1tan 22α=,cos()10βα-=,①求sin α的值;②求β的值 【分析】由题意可知22αα=⋅,()ββαα=-+【高考真题】5(2012广东文)已知函数()cos 46x f x A π⎛⎫=+ ⎪⎝⎭,x ∈R ,且3f π⎛⎫= ⎪⎝⎭. (Ⅰ)求A 的值; (Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,4304317f απ⎛⎫+=- ⎪⎝⎭,28435f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.解析:(Ⅰ)1cos cos 34364f A A A ππππ⎛⎫⎛⎫=⨯+=== ⎪ ⎪⎝⎭⎝⎭所以2A =. (Ⅱ)4143042cos 42cos 2sin 3436217f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以15sin 17α=.212842cos 42cos 34365f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以4cos 5β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以8cos 17α=,3sin 5β, 所以()8415313cos cos cos sin sin 17517585αβαβαβ+=-=⨯-⨯=-. 五、小结与提高【方法与技巧】1.巧用公式变形:和差角公式变形:tan tan tan()(1tan tan )x y x y x y ±=±⋅;2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.3.已知和角函数值,求单角或和角的三角函数值的技巧:把已知条件的和角进行加减或二倍角后再加减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值,可使所求的复杂问题简单化!4.熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形.【失误与防范】1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,)π范围内,sin()2αβ+=所对应的角αβ+不是唯一的. 3.在三角求值时,往往要估计角的范围后再求值.六、作业布置5051:2,6,P P 随堂练习高考真题七、教后小记本节课的教学内容围绕着枣庄教研室出版的“高考总复习“,由两角差的余弦公式入手,推出其它的三角函数的公式,并以结构图呈现了他们之间的内在联系,直观简明. 通过必修四教材上了的几道课后习题并针对改变,得出三角函数在高考中的常考题型,并按题型分为:1、已知三角函数值求值;2、已知三角函数值求角. 在典型例题的教学中渗透角的变换,隐含条件的挖掘,化简中目标意识的培养,强化三角函数中“三看”的习惯. 并且通过错误的解法,让学生反思解题问题中陷阱,然后针对具体题型在高考习题中挑选出有代表性的习题变式巩固训练..最后,根据本节课的情况从方法与技巧和失误与防范两角度进行总结.本节课的不足之处对于sin cos a x b x +形式的习题涉及比较少,应在下节课中,强化化一公式的应用.。
高二数学 两角和与差的正弦、余弦和正切公式教案

第三章三角恒等变换一、课标要求:本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.1. 了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;2. 理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;3. 运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用.二、编写意图与特色1.本章的内容分为两节:“两角和与差的正弦、余弦和正切公式”,“简单的三角恒等变换”,在学习本章之前我们学习了向量的相关知识,因此作者的意图是选择两角差的余弦公式作为基础,运用向量的知识来予以证明,降低了难度,使学生容易接受;2.本章是以两角差的余弦公式作为基础来推导其它的公式;3.本章在内容的安排上有明暗两条线,明线是建立公式,学会变换,暗线是发展推理和运算的能力,因此在本章全部内容的安排上,特别注意恰时恰点的提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,强化运用数学思想方法指导设计变换思路的意识;4.本章在内容的安排上贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末叶的内容”的理念,严格控制了三角恒等变换及其应用的繁、难程度,尤其注意不以半角公式、积化和差、和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习.三、教学内容及课时安排建议本章教学时间约8课时,具体分配如下:3.1两角和与差的正弦、余弦、和正切公式约3课时3.2简单的恒等变换约3课时复习约2课时§3.1 两角和与差的正弦、余弦和正切公式一、课标要求:本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用.二、编写意图与特色本节内容可分为四个部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明及初步应用.三、教学重点与难点1.重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;2.难点:两角差的余弦公式的探索与证明.两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、学法与教学用具1. 学法:启发式教学2. 教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家可以猜想,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-=(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处. 思考:()cos ?αβ+=,()()cos cos αβαβ+=--⎡⎤⎣⎦,再利用两角差的余弦公式得出()()()()cos cos cos cos sin sin cos cos sin sin αβαβαβαβαβαβ+=--=-+-=-⎡⎤⎣⎦(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值.解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 3022224=+=-=⨯-=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯= 点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===- 所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.(四)小结:α、β的象限,也就是符号问题,学会灵活运用.(五)作业:15012.P T T -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两角和与差的三角函数班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.已知sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,则cos(α-β)的值为( ) A .1 B .-1 C.12D .-12解析:将已知两式化为sin α+sin β=-sin γ,cos α+cos β=-cos γ.两式平方相加,有cos(α-β)=-12.答案:D2.若cos α+2sin α=-5,则tan α=( ) A.12 B .2 C .-12D .-2解析:由已知得 5 sin(α+φ)=- 5 ⎝⎛⎭⎫其中tan φ=12,即有 sin(α+φ)=-1,所以α+φ=2k π-π2,α=2k π-π2-φ,所以tan α=tan(-π2-φ)=cot φ=2.答案:B 3.3- sin70°2-cos 210°=( )A.12B.22 C .2D.32解析:3- sin70°2-cos 210°=3- sin70°2-1+cos20°2=2(3-cos20°)3-cos20°=2. 答案:C4.(2011·南通)已知sin x -sin y =-23,cos x -cos y =23,且x 、y 为锐角,则tan(x -y )的值是( )A.2145B .-2145C .±2145D .±51428解析:∵sin x -sin y =-23,cos x -cos y =23,两式相加得:sin x +cos x =sin y +cos y ,∴sin2x=sin2y .又∵x 、y 均为锐角,∴2x =π-2y ,∴x +y =π2,∴由cos x -cos y =23,得sin y -cos y=23,∴2sin ⎝⎛⎭⎫y -π4=23, ∴sin ⎝⎛⎭⎫y -π4=23, ∴cos ⎝⎛⎭⎫2y -π2=cos ⎣⎡⎦⎤2⎝⎛⎭⎫y -π4=1-2sin 2⎝⎛⎭⎫y -π4 =1-2×29=59,∴sin2y =59.又∵sin y -cos y =23>0,且y 为锐角,故π4<y <π2,∴π2<2y <π, ∴cos2y =-1-sin 22y =-1-2581=-569=-2149.∴tan(x -y )=tan ⎝⎛⎭⎫π2-2y =cot2y =cos2y sin2y =-2149×95=-2145.答案:B5.(2011·西城)已知sin α=35,且α∈⎝⎛⎭⎫π2,π,那么sin2αcos 2α的值等于( ) A .-34B .-32C.34D.32解析:sin2αcos 2α=2sin αcos αcos 2α=2sin αcos α=2tan α.∵sin α=35,α∈⎝⎛⎭⎫π2,π, ∴cos α=-45,tan α=-34,2tan α=-32,选择B.答案:B6.(2011·合肥)已知角α在第一象限且cos α=35,则1+2cos ⎝⎛⎭⎫2α-π4sin ⎝⎛⎭⎫α+π2=( )A.25B.75C.145D .-25解析:角α是第一象限角且cos α=35,∴sin α=45,∴1+2cos ⎝⎛⎭⎫2α-π4sin ⎝⎛⎭⎫α+π2=1+cos2α+sin2αcos α=2cos 2α+2sin αcos αcos α=2cos α+2sin α=145,故正确答案是C.答案:C二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.) 7.cos π5cos 25π的值是__________.解析:原式=12sinπ5·2sin π5cos π5cos 2π5=14sin π5·2sin 2π5cos 25π=14sinπ5sin 45π=14. 答案:148.已知sin α2=513,α∈(π,2π),则tan α=__________.解析:解法一:由已知cos α2=-1-⎝⎛⎭⎫5132=-1213, ∴sin α=2sin α2cos α2=2×513×⎝⎛⎭⎫-1213=-120169, cos α=1-2sin 2α2=1-2×⎝⎛⎭⎫5132=119169, ∴tan α=sin αcos α=-120169×169119=-120119.解法二:由已知cos α2=-1-⎝⎛⎭⎫5132=-1213, ∴tan α2=sinα2cos α2=-512,∴tan α=2tanα21-tan2α2=2×⎝⎛⎭⎫-5121-⎝⎛⎭⎫-5122=-120119.答案:-1201199.cot20°cos10°+3sin10°tan70°-2cos40°=__________. 解析:原式=cot20°cos10°+3sin10°cot20°-2cos40° =cot20°(cos10°+3sin10°)-2cos40° =2cot20°⎝⎛⎭⎫12cos10°+32sin10°-2cos40°=2cot20°sin40°-2cos40°=2⎝⎛⎭⎫cos20°sin40°sin20°-cos40°=2cos20°sin40°-cos40°sin20°sin20°=2sin (40°-20°)sin20°=2.答案:210.若1+tan α1-tan α=2011,则1cos2α+tan2α=________.解析:1cos2α+tan2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2011.答案:2011三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255. (1)求cos(α-β)的值;(2)若0<α<π2,-π2<β<0,且sin β=-513,求sin α的值.解析:(1)∵a =(cos α,sin α),b =(cos β,sin β), a -b =(cos α-cos β,sin α-sin β). ∵|a -b |=255,∴(cos α-cos β)2+(sin α-sin β)2=255,即2-2cos(α-β)=45,∴cos(α-β)=35.(2)∵0<α<π2,-π2<β<0,∴0<α-β<π,∵cos(α-β)=35.∴sin(α-β)=45,∵sin β=-513,∴cos β=1213.∴sin α=sin =sin(α-β)cos β+cos(α-β)sin β =45×1213+35×⎝⎛⎭⎫-513=3365. 12.已知tan α=-13,cos β= 55,α,β∈(0,π).(1)求tan(α+β)的值;(2)求函数f (x )= 2 sin(x -α)+cos(x +β)的最大值. 解析:(1)由cos β=55,β∈(0,π), 得 sin β=2 55,tan β=2,所以tan(α+β)=tan α+tan β1-tan αtan β=1.(2)因为tan α=-13,α∈(0,π),所以 sin α=1 10,cos α=-310,f (x )=2( sin x cos α-cos x sin α)+cos x cos β-sin x sin β =-3 5 5 sin x - 5 5cos x + 5 5cos x -2 55 sin x=- 5 sin x , 又-1≤ sin x ≤1, 所以f (x )的最大值为 5.13.已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求 sin x 的值; (2)求 sin ⎝⎛⎭⎫2x +π3的值. 解析:(1)解法一:因为x ∈⎝⎛⎭⎫π2,3π4,所以x -π4∈⎝⎛⎭⎫π4,π2, 于是 sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x = sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4 = sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4 sin π4=7210×22+210×22=45. 解法二:由题设得22cos x +22 sin x =210, 即cos x +sin x =15.又 sin 2x +cos 2x =1,从而25 sin 2x -5 sin x -12=0, 解得 sin x =45或 sin x =-35.因为x ∈⎝⎛⎭⎫π2,3π4,所以 sin x =45. (2)因为x ∈⎝⎛⎭⎫π2,3π4,故cos x =- 1- sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2 sin x cos x =-2425,cos2x =2cos 2x -1=-725.所以, sin ⎝⎛⎭⎫2x +π3= sin2x cos π3+cos2x sin π3=-24+7350.。