新人教版九年级数学上册全册教案
人教版数学九年级上册 25、3 用频率估计概率 教案

25. 3用频率估计概率教学目标(1)知识与技能目标学会依据问题特点,用频率来估计事件发生的概率。
(2)过程与方法目标提高发现问题、提出问题、分析问题、解决问题的能力,体会概率的基本思想,感受到概率在问题决策中的重要作用,进一步树立数据的观念。
(3)情感态度价值观目标养成学数学、用数学的意识,体验数学的应用价值。
目标解析:1、能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性. 知道大量重复试验时频率可作为事件发生概率的估计值.2、结合生活实例,能进一步明晰频率与概率的区别与联系,了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.3、在经历用试验的方法探究概率的过程中,培养学生的动手能力、处理数据的能力,进一步增强统计意识、发展概率观念,同时培养学生实事求是的态度、勇于探索的精神及交流与协作精神.教学重、难点重点:了解用频率估计概率的必要性和合理性.难点:教师要注意提问的准确性,并且举恰当的例子,使学生深入理解用频率估计概率,避免出现不必要的枝节。
三、教学问题诊断分析1、由于学生初学概率,且在此之前面对求概率的随机事件都是等可能事件,对于一些结果不是等可能的随机事件(如:认为姚明一次罚篮的结果进与不进是等可能的)会依然采取列举法,这类现象产生的原因是对用列举法求概率的两个条件把握不够,对事件发生的可能性大小分析不透彻所致.2、频率在一定程度上可以反映随机事件发生的可能性大小,但频率本身是随机的,在试验前不能确定,无法从根本上刻画事件发生可能性的大小,只有在大量重复试验的条件下,可以近似地作为这个事件的概率. 概率是巨大数据统计后得出的结论,是一种大的整体趋势,是频率在理论上的期望值,它是一个确定的常数,是客观存在的,与试验次数无关. 频率与概率是从量变到质变,是对立统一的. 对于初学者,对两者关系的理解,还需要一个循序渐进的过程.3、容易忽略“大量重复试验”这个用频率估计概率前提条件. 这一问题的出现也是对概率思想的内涵把握不够所致. 概率是针对大量重复试验而言的,如果试验次数太少,试验频率可能会与理论概率值产生较大的偏差,进而不能合理的估计概率.教学流程(一)情景引入:问题1:姚明罚篮一次命中概率有多大?播放“NBA”(美国男子篮球职业联赛)火箭队VS老鹰队的比赛片段,在姚明罚篮球出手后,画面停滞,屏幕显示:问题:姚明罚进的概率有多大?学生先思考、讨论、发言后媒体出示甲、乙、丙的说法:甲:100% 姚明是世界明星嘛!乙:50% 因为只有进和不进两种结果,所以概率为50%. 丙:80% 姚明很准的,大概估计有80%的可能性.同学们,你们同意谁的观点?学生充分交流后,老师对不同说法进行适当的评价,并借机复习用列举法求概率的条件,引导学生分析进与不进的可能性不相等,不能用列举法来求概率.师:那它究竟有没有规律,或者说还有没有其它的办法探求概率呢?屏幕上闪烁显示08—09赛季姚明罚篮命中率86. 6%.师:姚明的命中率从何而来?(统计结果)怎么统计的?(罚中个数与罚球总数的比值)这个比值叫什么?(这实际上就是频率,这种方法实际上就是用频率估计概率)在此基础上,导出课题.(二)试验探究问题2:怎样用频率估计概率?1、抛掷一枚硬币正面(有数字的一面)向上的概率是二分之一,这个概率能否利用刚才计算命中率方法──通过统计很多掷硬币的结果来得到呢?2、试验一(掷硬币试验)(配合亲切童声播放)全班共分10个小组,每小组8人,共抛50次,推荐组长一名,组长不参与抛掷.表1(个人抛掷情况统计表)表2(小组抛掷情况统计表)表3(硬币抛掷统计表)问题3:分析试验结果及史上数学家大量重复试验数据,大家有何发现?3、分析数据全班填写表3得到硬币正面向上频率的同时,教师在黑板上绘制折线图,完成后教师提问:①随着抛掷次数的增加,“正面向上”的频率在哪个数字的左右摆动?②随着抛掷次数的增加,“正面向上”的频率在0. 5的左右摆动幅度有何规律?(学生从折线图1中难以发现)师:接下来,我们增加试验次数,看看有什么新的发现,历史上有许多数学家为了弄清其中的规律,曾坚持不懈的做了成千上万次的掷硬币试验.引导学生关注数学家的严谨,师:还有一位数学家,做了八万多次的试验.观察频率在0. 5附近摆动幅度有何规律?观察折线图2:③请大家分析,两个折线图反映的规律有何区别?什么原因造成了不同?学生得出:图一,试验次数少一些,“正面向上”的频率在0. 5左右摆动的幅度大一些.④你们认为出现的规律与试验次数有何关系?(试验次数越多频率越接近0. 5,即频率稳定于概率.)⑤数学家为什么要做那么多试验?⑥当“正面向上”的频率逐渐稳定到0. 5时,“反面向上”的频率呈现什么规律?概率与频率稳定值的关系是什么呢?师生共同小结:至此,我们就验证了可以用计算罚篮命中率的方法来得到硬币“正面向上”的概率.(三)揭示新知问题4:为什么可以用频率估计概率?师:其实,不仅仅是掷硬币有规律,人们在大量的生产生活中发现:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率也总在一个固定数附近摆动,显示出一定的稳定性.引出瑞士数学家雅各布·伯努利最早阐明频率具有稳定性,介绍其家族前后三代共出13位大数学家和大物理学家,进行数学史的教育.师:由于大量重复试验的频率具有稳定性,由此可根据这个稳定的频率来估计概率.归纳:一般地,在大量重复试验中,如果事件A发生的概率m/n会稳定在某个常数p附近,那么事件A发生的概率P(A)=P.教师指出这是从统计的角度给出了概率的定义,也是探求概率的一种新方法,列举法仅限于试验结果有限个和每种结果出现的可能性相等的事件求概率,而用频率估计概率的方法不仅适用于列举法求概率的随机事件,而且对于试验的所有可能结果不是有限个,或各种结果发生的可能性不相等的随机事件,我们也可以用频率来估计概率.问题5:频率与概率有什么区别与联系?学生思考、讨论后全班交流. 此处重点强调学生理解,若不能概括、归纳,则直接出示答案. (四)巩固练习牛刀小试某射击运动员在同一条件下的射击成绩记录如下:①计算表中相应的“射中9环以上”的频率(精确到0. 01);②这些频率稳定在哪一个常数附近?③根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0. 1). 伶牙俐齿(1)天气预报说下星期一降水概率为90%,下星期三降水概率为10%,于是有位同学说:下星期一肯定下雨,下星期三肯定不下雨,你认为他说的对吗?(2)小明投篮5次,命中4次,他说一次投中的概率为5分之4对吗?(3)小明的爸爸这几天迷上了体育彩票,该体育彩票每注是一个7位的数码,如能与开奖结果一致,则获特等奖;如果有相连的6位数码正确,则获一等奖;……;依次类推,小明的爸爸昨天一次买了10注这种彩票,结果中了一注一等奖,他高兴地说:“这种彩票好,中奖率高,中一等奖的概率是10%!小明爸爸的说法正确吗?”设计方案1、老王投资在鱼塘里放了一些鱼苗,秋天了,他准备出售这些鱼,但要想卖一个好价钱就必须估计鱼塘里有多少条鱼,这可难住了老王。
21.3 实际问题与一元二次方程 教案 【新人教版九年级上册数学】

21.3 实际问题与一元二次方程教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1. 掌握用“倍数关系”、“面积法”等建立数学模型,并利用它解决实际问题.2. 掌握建立数学模型以解决增长率与降低率问题.3. 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.教学难点根据“倍数关系”、“面积法”等之间的等量关系建立一元二次方程的数学模型.课时安排3课时.1教案A第1课时教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1.掌握用“倍数关系”建立数学模型,并利用它解决实际问题.2.经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点用“倍数关系”建立数学模型.教学难点用“倍数关系”建立数学模型.教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、新课教学探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?教师引导学生审题,让学生思考怎样设未知数,找等量关系列出方程.分析:设每轮传染中平均一个人传染了x个人.开始有一个人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有个人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有个人患了流感.列方程1+x+x(x+1)=121,整理,得x2+2x-120=0.解方程,得x1=10,x2=-12(不合题意,舍去)2答:每轮传染中平均一个人传染了10个人.思考:按照这样的传染速度,经过三轮传染后共有多少人患流感?121+121×10=1331(人)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?后一轮被传染的人数是前一轮患病人数的x倍.三、巩固练习某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.四、课堂小结本节课应掌握:1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.2.解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答.五、布置作业习题21.3 第6题.第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标掌握建立数学模型以解决增长率与降低率问题.教学重点如何解决增长率与降低率问题.教学难点解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x是增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.教学过程一、导入新课同学们好,我们上节课学习了探究1关于“倍数”的问题,知道了解一元二次方程的一般步骤.今天,我们就学习如何解决“增长率”与“降低率”的问题.二、新课教学探究2:两年前生产1 t甲种药品的成本是5 000元,生产1 t乙种药品的成本是6 0003元,随着生产技术的进步,现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析:根据题意,很容易知道甲种药品成本的年平均下降额为(5 000-3 000)÷2=1 000(元);乙种药品成本的年平均下降额为(6 000-3 600)÷2=1 200(元).显然,乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数).解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元,于是有5 000(1-x)2=3 000.解方程,得x1≈0.225,x2≈1.775.根据药品的实际意义,甲种药品成本的年平均下降率约为22.5%.答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?试比较这两种药品成本的年平均下降率.解:设乙种药品成本的年平均下降率为x,则一年后乙种药品成本为6 000(1-x)元,两年后甲种药品成本为6 000(1-x)2元,于是有6 000(1-x)2=3 600.解方程,得x1≈0.225,x2≈1.775.同理,乙种药品成本的年平均下降率约为22.5%.甲、乙两种药品成本的年平均下降率相同,均约为22.5%.思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(增长取+,降低取-).三、巩固练习某人将2 000元人民币按一年定期存入银行,到期后支取1 000元用于购物,剩下的1 000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1 320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x,第一次存2 000元取1 000元,剩下的本金和利息是1 000+2 000x×80%;第二次存,本金就变为1 000+2000x×80%,其它依此类推.解:设这种存款方式的年利率为x,则1 000+2 000x×80%+(1 000+2 000x×8%)x×80%=1 320.整理,得1 280x2+800x+1 600x=320,即8x2+15x-2=0.解得4。
(贵州)RJ人教版 九年级数学 上册(教学设计 电子教案)第二十一章 一元二次方程(全单元教案 含反思)

第二十一章一元二次方程21.1一元二次方程1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次方程的感性认识.一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0C.(x-1)(x-2)=3 D.ax2+bx+c=0解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x的方程(k+1)x+kx+1=0是一元二次方程,则k的值为________.解析:由题意得⎩⎪⎨⎪⎧|k-1|=2,k+1≠0,∴⎩⎪⎨⎪⎧k=3或k=-1,k≠-1.∴k=3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x2-2=5x;(2)9x2=16;(3)2x(3x+1)=17;(4)(3x-5)(x+1)=7x-2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2.已知床单的长是2m,宽是1.4m,求花边的宽度.请根据题意列出方程.解析:设花边的宽度为x m,则由图可知剩下部分的长为(2-2x)m,剩下部分的宽为(1.4-2x)m.∵剩下部分面积为1.6m2,∴可列方程(2-2x)(1.4-2x)=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解【类型一】判断一元二次方程的解方程x-2x=0的解为( )A.x1=1,x2=2 B.x1=0,x2=1C.x1=0,x2=2 D.x1=12,x2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C中的x1=0,x2=2都能使方程x2-2x=0的左右两边相等,所以选C.方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x的一元二次方程(m-1)x+x+1=0的一个根,则m的值是( ) A.1 B.-1C.0 D.无法确定解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.21.2.1 配方法 第1课时 直接开平方法1.学会根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.运用开平方法解形如(x +m )2=n 的方程.3.体验类比、转化、降次的数学思想方法,增强学习数学的兴趣.一、情境导入一个正方形花坛的面积为10,若设其边长为x ,根据正方形的面积可列出怎样的方程?用怎样的方法可以求出所列方程的解呢?二、合作探究探究点:直接开平方法【类型一】用直接开平方法解一元二次方程运用开平方法解下列方程: (1)4x 2=9;(2)(x +3)2-2=0.解析:(1)先把方程化为x 2=a (a ≥0)的形式;(2)原方程可变形为(x +3)2=2,则x +3是2的平方根,从而可以运用开平方法求解.解:(1)由4x 2=9,得x 2=94,两边直接开平方,得x =±32,∴原方程的解是x 1=32,x 2=-32.(2)移项,得(x +3)2=2.两边直接开平方,得x +3=± 2.∴x +3=2或x +3=- 2.∴原方程的解是x 1=2-3,x 2=-2-3.方法总结:由上面的解法可以看出,一元二次方程是通过降次,把一元二次方程转化为一元一次方程求解的,这是解一元二次方程的基本思想;一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可解得x 1=a ,x 2=-a .【类型二】直接开平方法的应用(2014·山东济宁中考)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m -4,则ba=________.解析:∵ax2=b,∴x=±ba,∴方程的两个根互为相反数,∴m+1+2m-4=0,解得m=1,∴一元二次方程ax2=b(ab>0)的两个根分别是2与-2,∴ba=2,∴ba=4,故答案为4.【类型三】直接开平方法与方程的解的综合应用若一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,则a=________.解析:∵一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,∴a+2≠0且a2-4=0,∴a=2.故答案为2.【类型四】直接开平方法的实际应用有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,边长应为多少厘米?分析:要求新正方形的边长,可先求出原正方形和矩形的面积之和,然后再用开平方计算.解:设新正方形的边长为x cm,根据题意得x2=112+13×8,即x2=225,解得x=±15.因为边长为正,所以x=-15不合题意,舍去,所以只取x=15.答:新正方形的边长应为15cm.方法总结:在解决与平方根有关的实际问题时,除了根据题意解题外,有时还要结合实际,把平方根中不符合实际情况的负值舍去.三、板书设计教学过程中,强调利用开平方法解一元二次方程的本质是求一个数的平方根的过程.同时体会到解一元二次方程过程就是一个“降次”的过程.第2课时配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x2-6x-5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究探究点:配方法【类型一】配方用配方法解一元二次方程x2-4x=5时,此方程可变形为( ) A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=9解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x2+4x+y2-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式=-2-613=-813.【类型四】用配方解决证明问题(1)用配方法证明2x-4x+7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零.(2)x2-2x+3;2x2-2x+5;3x2+6x+8等.【类型五】配方法与不等式知识的综合应用证明关于x的方程(m-8m+17)x+2mx+1=0不论m为何值时,都是一元二次方程.解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m+17的值不等于0.证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m -4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程.三、板书设计教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式.21.2.2公式法1.知道一元二次方程根的判别式的概念.2.会用判别式判断一元二次方程的根的情况及根据一元二次方程的根的情况确定字母的取值范围.3.经历求根公式的推导过程并会用公式法解简单的一元二次方程.一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况.(1)2x2+3x-4=0;(2)x2-x+14=0;(3)x2-x+1=0.解析:根据根的判别式我们可以知道当b2-4ac≥0时,方程才有实数根,而b2-4ac<0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况.解:(1)2x2+3x-4=0,a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0.∴方程有两个不相等的实数根.(2)x2-x+14=0,a=1,b=-1,c=14.∴b2-4ac=(-1)2-4×1×14=0.∴方程有两个相等的实数根.(3)x2-x+1=0,a=1,b=-1,c=1.∴b2-4ac=(-1)2-4×1×1=-3<0.∴方程没有实数根.方法总结:给出一个一元二次方程,不解方程,可由b2-4ac的值的符号来判断方程根的情况.当b2-4ac>0时,一元二次方程有两个不相等的实数根;当b2-4ac=0时,一元二次方程有两个相等的实数根;当b2-4ac<0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x的一元二次方程(a-1)x-2x+1=0有两个不相等的实数根,则a的取值范围是( )A.a>2 B.a<2C.a<2且a≠1 D.a<-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a-1不为0.即4-4(a-1)>0且a-1≠0,解得a<2且a≠1.选C.方法总结:若方程有实数根,则b2-4ac≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】说明含有字母系数的一元二次方程根的情况已知:关于x的方程2x+kx-1=0,求证:方程有两个不相等的实数根.证明:Δ=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,所以k2+8>0,即Δ>0,∴方程2x2+kx-1=0有两个不相等的实数根.方法总结:要说明一个含字母系数的一元二次方程的根的情况,只需求出该方程根的判别式,分析其正、负情况,即可得出结论.【类型四】一元二次方程的根的情况的实际应用小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.小峰对小林说:“这两个正方形的面积之和不可能等于48cm2”,他的说法对吗?请说明理由.解:假设能围成.设其中一个正方形的边长为x,则另一个正方形的边长是(10-x),由题可得,x2+(10-x)2=48.化简得x2-10x+26=0.因为b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.探究点二:公式法解一元二次方程【类型一】用公式法解一元二次方程用公式法解下列方程:(1)2x2+x-6=0;(2)x2+4x=2;(3)5x2-4x+12=0;(4)4x2+4x+10=1-8x.解析:方程(1)(3)是一元二次方程的一般形式,可以直接确定a,b,c的值,并计算b2-4ac的值,然后代入求根公式,即可求出方程的根;方程(2)(4)则需要先化成一般形式,再求解.解:(1)这里a=2,b=1,c=-6,b2-4ac=12-4×2×(-6)=1+48=49.∴x=-b±b2-4ac2a=-1±492×2=-1±74,即原方程的解是x1=-2,x2=32.(2)将方程化为一般形式,得x2+4x-2=0.∵b2-4ac=24,∴x=-4±242=-2± 6.∴原方程的解是x1=-2+6,x2=-2- 6.(3)∵b2-4ac=-224<0,∴原方程没有实数根.(4)整理,得4x 2+12x +9=0.∵b 2-4ac =0,∴x 1=x 2=-32.方法总结:用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a ,b ,c 的值.【类型二】一元二次方程解法的综合运用三角形的两边分别为2和6,第三边是方程x 2-10x +21=0的解,则第三边的长为( )A .7B .3C .7或3D .无法确定解析:解一元二次方程x 2-10x +21=0,得x 1=3,x 2=7.根据三角形三边的关系,第三边还应满足4<x <8.所以第三边的长x =7.故选A.方法总结:解题的关键是正确求解一元二次方程,并会运用三角形三边的关系进行取舍.三、板书设计教学过程中,强调用判别式去判断方程根的情况,首先需把方程化为一般形式.同时公式法的得出是通过配方法来的,用公式法解方程∴前提是Δ≥0.21.2.3因式分解法1.认识用因式分解法解方程的依据.2.会用因式分解法解一些特殊的一元二次方程.一、情境导入我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x-1)=0时,可转化为两个一元一次方程x+1=0或x-1=0来解,你能求出(x+3)(x-5)=0的解吗?二、合作探究探究点一:用因式分解法解一元二次方程【类型一】利用提公因式法分解因式解一元二次方程用因式分解法解下列方程:(1)x2+5x=0;(2)(x-5)(x-6)=x-5.解析:变形后方程右边是零,左边是能分解的二次三项式,可用因式分解法.解:(1)原方程转化为x(x+5)=0,∴x=0或x+5=0,∴原方程的解为x1=0,x2=-5;(2)原方程转化为(x-5)(x-6)-(x-5)=0,∴(x-5)[(x-6)-1]=0,∴(x-5)(x -7)=0,∴x-5=0或x-7=0,∴原方程的解为x1=5,x2=7.【类型二】利用公式法分解因式解一元二次方程用因式分解法解下列方程:(1)x2-6x=-9;(2)4(x-3)2-25(x-2)2=0.解:(1)原方程可变形为:x2-6x+9=0,则(x-3)2=0,∴x-3=0,因此原方程的解为:x1=x2=3.(2)[2(x-3)]2-[5(x-2)]2=0,[2(x-3)+5(x-2)][2(x-3)-5(x-2)]=0,(7x-16)(-3x+4)=0,∴7x-16=0或-3x+4=0,∴原方程的解为x1=167,x2=43.方法总结:因式分解法解一元二次方程的一般步骤是:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积;③令每一个因式分别为零,就得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.探究点二:用因式分解法解决问题若a、b、c为△ABC的三边,且a、b、c满足a2-ac-ab+bc=0,试判断△ABC 的形状.解析:先分解因式,确定a,b,c的关系,再判断三角形的形状.解:∵a2-ac-ab+bc=0,∴(a-b)(a-c)=0,∴a-b=0或a-c=0,∴a=c或a =b,∴△ABC为等腰三角形.三、板书设计利用因式分解法解一元二次方程,能否分解是关键,因此,要熟练掌握因式分解的知识,提高用分解因式法解方程的能力.在使用因式分解法时,先考虑有无公因式,如果没有再考虑公式法.*21.2.4一元二次方程的根与系数的关系1.探索一元二次方程的根与系数的关系.2.会不解方程利用一元二次方程的根与系数解决问题.一、情境导入一般地,对于关于x的方程x2+px+q=0(p,q为已知常数,p2-4q≥0),试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1·x2的值,你能得出什么结果?二、合作探究探究点:一元二次方程根与系数的关系【类型一】利用一元二次方程根与系数的关系求关于方程根的代数式的值已知m、n是方程2x2-x-2=0的两实数根,则1m+1n的值为( ) A.-1 B.12C.-12D.1解析:根据根与系数的关系,可以求出m+n和mn的值,再将原代数式变形后,整体代入计算即可.因为m、n是方程2x2-x-2=0的两实数根,所以m+n=12,mn=-1,1m+1n=n+mmn=12-1=-12.故选C.方法总结:解题时先把代数式变形成与两根和、积有关的形式,注意前提:方程有两个实数根时,判别式大于或等于0.【类型二】根据方程的根确定一元二次方程已知一元二次方程的两根分别是4和-5,则这个一元二次方程是( ) A.x2-6x+8=0 B.x2+9x-1=0C.x2-x-6=0 D.x2+x-20=0解析:∵方程的两根分别是4和-5,设两根为x1,x2,则x1+x2=-1,x1·x2=-20.如果令方程ax2+bx+c=0中,a=1,则-b=-1,c=-20.∴方程为x2+x-20=0.故选D.方法总结:先把所构造的方程的二次项系数定为1,利用一元二次方程根与系数的关系确定一元二次方程一次项系数和常数项.【类型三】根据根与系数的关系确定方程的解(2014·云南曲靖)已知=4是一元二次方程x2-3x+c=0的一个根,则另一个根为________.解析:设另一根为x1,则由根与系数的关系得x1+4=3,∴x1=-1.故答案为x=-1.方法总结:解决这类问题时,利用一元二次方程的根与系数的关系列出方程即可解决.【类型四】利用一元二次方程根与系数的关系确定字母系数5,则a的值是( )A.-1或5 B.1C.5 D.-1解析:将两根平方和转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决.设方程两根为x1,x2,由题意,得x21+x22=5.∴(x1+x2)2-2x1x2=5.∵x1+x2=a,x1x2=2a,∴a2-2×2a=5.解得a1=5,a2=-1.又∵Δ=a2-8a,当a=5时,Δ<0,此时方程无实数根,所以舍去a=5.当a=-1时,Δ>0,此时方程有两实数根.所以取a =-1.故选D.方法总结:解答此类题的关键是将与方程两根有关的式子转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决问题.注意不要忽略题目中的隐含条件Δ≥0,导致解答不全面.【类型五】一元二次方程根与系数的关系和根的情况的综合应用已知x1、x2是一元二次方程(a-6)x+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.解:(1)根据题意,得Δ=(2a)2-4×a(a-6)=24a≥0.解得a≥0.又∵a-6≠0,∴a ≠6.由根与系数关系得:x1+x2=-2aa-6,x1x2=aa-6.由-x1+x1x2=4+x2得x1+x2+4=x1x2,∴-2aa-6+4=aa-6,解得a=24.经检验a=24是方程-2aa-6+4=aa-6的解.即存在a=24,使-x1+x1x2=4+x2成立.(2)原式=x1+x2+x1x2+1=-2aa-6+aa-6+1=66-a为负整数,则6-a为-1或-2,-3,-6.解得a=7或8,9,12.三、板书设计教学过程中,强调一元二次方程的根与系数的关系是通过求根公式得到的,在利用此关系确定字母的取值时,一定要记住Δ≥0这个前提条件.21.3实际问题与一元二次方程第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.。
2024年最新人教版九年级数学上册全册课件.

2024年最新人教版九年级数学上册全册课件.一、教学内容1. 第十三章:一元二次方程13.1 一元二次方程的概念13.2 解一元二次方程的公式法13.3 解一元二次方程的配方法13.4 解一元二次方程的因式分解法13.5 实际问题与一元二次方程2. 第十四章:不等式与不等式组14.1 一元一次不等式14.2 一元一次不等式组14.3 实际问题与一元一次不等式组二、教学目标1. 让学生掌握一元二次方程的概念,能够熟练运用公式法、配方法、因式分解法解一元二次方程。
2. 培养学生运用不等式与不等式组解决实际问题的能力。
3. 提高学生的逻辑思维能力和数学素养。
三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解法。
2. 教学重点:一元二次方程的概念、解法及其应用;不等式与不等式组的解法及其应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:学生用书、练习本、铅笔。
五、教学过程1. 引言:通过实际情景引入,让学生了解一元二次方程和不等式在实际生活中的应用。
2. 新课导入:详细讲解一元二次方程的概念、解法,结合例题进行讲解。
3. 课堂互动:引导学生参与解题过程,进行随堂练习,巩固所学知识。
5. 课堂检测:布置课堂练习,及时了解学生学习情况,进行针对性指导。
六、板书设计1. 一元二次方程的概念及解法2. 不等式与不等式组的解法3. 典型例题及解题步骤七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0(2)解不等式组:2x 3 > 5,x + 1 < 42. 答案:(1)x1 = 3,x2 = 2(2)x ∈ (2, 3)八、课后反思及拓展延伸1. 反思:本节课学生掌握了一元二次方程和不等式组的解法,但部分学生在实际应用题上还存在一定难度。
2. 拓展延伸:针对学有余力的学生,布置一些拓展性题目,如:一元二次方程与二次函数的关系、不等式的性质等,提高学生的数学素养。
人教版九年级数学上册《概率初步》全册教案

第二十五章概率初步(本章第1课时)25.1 概率(共2课时)25.1.1 随机事件(第1课时)教学内容:必然会发生、都不会发生事件和随机事件的概念;一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
教学目标:了解必然会发生、都不会发生事件和随机事件的概念;理解一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
设置问题情景,由问题抽象,归纳概念,利用概念归纳总结结论。
教学重点:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
教学难点与关键:难点:理解一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
关键:设置问题情景,概括概念。
教具、学具准备:小黑板、黑白小球若干个和骰子。
教学过程:一、回顾知识(复习引入,学生活动):请同学们完成下面各题:1.2006年8月,某书店各学科点拨书销售情况如下图:(1)这个月语文点拨与数学点拨销售量的比是多少?(2)这个月总共销售了多少本书?(3)语文书占总销售量的百分之多少?(4)四种类型的书籍中哪一种所占的百分比最大?哪一种最小呢?2.(1)你能说,进店又买点拨书,买哪一种点拨书可能性最大?买哪一种可能性最小?(2)进书店有买点拨书,有可能买数学点拨书吗?(3)进书店有可能买猪肉吗?(4)进书店又有买点拨书,就是买四种书籍(假如书店只有这四种书籍)的其中一种。
教师点评:(1)买语文点拨最大,买思品点拨最小;(2)有可能;(3)书店中没有买猪肉,因此在书店中是买不到猪肉的。
(4)进店又有买点拨书,肯定是四种中任意一种。
二、新课(探索新知):1.从回顾知识后导出今节学习的内容:(1)师生共同分析第136页“问题1”。
(2)师生共同分析第136页“问题2”。
2.引出结论:必然会发生、都不会发生事件和随机事件等概念。
三、训练(巩固练习):课本第138页练习题(抄于小黑板备用)。
九年级年级上册数学教材新人教版

九年级年级上册数学教材新人教版教材是教师为顺利而有效地拓展教学活动,依据课程准则,教学大纲和教科书需要及学生的实质状况,以课时或课题为单位,对教学内容、教学步骤、教学办法等进行的具体设计和安排的一种实用性教学文书。
教材包括教程简析和学生剖析、教学目的、重难题、教学筹备、教学过程及训练设计等。
以下是为您收拾的《九年级年级上册数学教材新人教版》,供大伙查阅。
第1章反比率函数1.1反比率函数教学目的理解反比率函数的定义,依据实质问题能列出反比率函数关系式.经历从实质问题抽象出反比率函数的探索过程,进步学生的抽象思维能力.培养观察、推理、剖析能力,领会由实质问题转化为数学模型,认识反比率函数的应用价值.理解反比率函数的定义,能依据已知条件写出函数分析式.能依据实质问题中的条件确定反比率函数的分析式,领会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比率关系,比如:当路程s肯定,时间t与速度v成反比率,即vt=s当矩形面积肯定时,长a和宽b成反比率,即ab=S2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V 时,请你用含R的代数式表示I吗?对有关常识的复习,为本节课的学习打下基础.二、考虑探究,获得新知探究1:反比率函数的定义(1)一群选手在进行全程为3000米的*比赛时,各选手的平均速度v与所用时间t之间有什么样的关系?并写出它们之间的关系式.(2)使用(1)的关系式完成下表:(3)伴随时间t的变化,平均速度v发生了什么样的变化?(4)平均速度v是所用时间t的函数吗?为何?(5)观察上述函数分析式,与前面学的一次函数有哪些不一样?这种函数有哪些特征?一般地,假如两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那样称y是x的反比率函数.其中x是自变量,常数k称为反比率函数的比率系数.先让学生进行小组合作交流,再进行全班性的问答或交流.学生用我们的语言说明两个变量间的关系为何可以看作函数,弄清楚所讨论的函数的表达形式.探究2:反比率函数的自变量的取值范围考虑:在上面的问题中,对于反比率函数v=3000/t,其中自变量t可以取哪些值呢?剖析:反比率函数的自变量的取值范围是所有非零实数,但是在实质问题中,应该依据具体状况来确定该反比率函数的自变量取值范围.因为t代表的是时间,且时间不可以为负数,所有t的取值范围为t>0.教师组织学生讨论,提问学生,师生互动.三、运用新知,深化理解1.见教程P3例题.2.下列函数关系中,哪些是反比率函数?已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;压强p肯定时,重压F与受力面积S的关系;功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.某乡粮食总产量为m吨,那样该乡每个人平均拥有粮食y与该乡人口数x的函数关系式.剖析:确定函数是不是为反比率函数,就是看它们的分析式经过整理后是不是符合y=.所以此题需要先写出函数分析式,后解答.解:a=12/h,是反比率函数;F=pS,是正比率函数;F=W/s,是反比率函数;y=m/x,是反比率函数.3.当m为什么值时,函数y=是反比率函数,并求出其函数分析式.剖析:由反比率函数的概念易求出m的值.解:由反比率函数的概念可知:2m-2=1,m=3/2.所以反比率函数的分析式为y=.4.当水平肯定时,二氧化碳的体积V与密度ρ成反比率.且V=5m3时,ρ=1.98kg/m3(1)求p与V的函数关系式,并指源于变量的取值范围.(2)求V=9m3时,二氧化碳的密度.解:略5.已知y=y1+y2,y1与x成正比率,y2与x2成反比率,且x =2与x=3时,y的值都等于19.求y与x间的函数关系式.剖析:y1与x成正比率,则y1=k1x,y2与x2成反比率,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只须求出k1和k2即可求出y与x间的函数关系式.解:由于y1与x成正比率,所以y1=k1x;由于y2与x2成反比率,所以y2=,而y=y1+y2,所以y=k1x+,当x=2与x=3时,y的值都等于19.加深对反比率函数定义的理解,及学会怎么样求反比率函数的分析式.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行概括.教师作以补充.课后作业布置作业:教程“习题1.1”中第1、3、5题.教学深思学生对于反比率函数的定义理解的都非常不错,但在求函数分析式时,解题不够灵活,如解答第5题时,不知怎么样设未知数.在这方面应多加训练.1.2反比率函数的图象与性质第1课时反比率函数的图象与性质(1)教学目的1.会用描点法画反比率函数图象;2.理解反比率函数的性质.观察、比较、合作、交流、探索.通过对反比率函数的图象的剖析,探索并学会反比率函数的图象的性质.画反比率函数的图象,理解反比率函数的性质.理解反比率函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象如何画呢?一次函数有哪些性质呢?反比率函数的图象又会是什么样子呢?在回忆与交流中,进一步认识函数,图象的直观能够帮助理解函数的性质.二、考虑探究,获得新知探究1:反比率函数图象的画法画出反比率函数y=的图象.剖析∶画出函数图象一般分为列表、描点、连线三个步骤.列表:取自变量x的哪些值?x是不为零的任何实数,所以不可以取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点、、等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比率函数的图象.考虑:(1)观察上图,y轴右侧的各点,当横坐标x渐渐增大时,纵坐标y怎么样变化?y轴左侧的各点是不是也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为何?探究2:反比率函数所在的象限画出函数y=的图形,并考虑下列问题:(1)函数图形的两个分支分别坐落于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是怎么样变化的?一般地,当k>0时,反比率函数y=的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每一个象限内,函数值y随自变量x的增大而减小.探究3:反比率函数y=-的图象.可以引导学生使用多种方法进行自主探索活动:可以用画反比率函数y=-的图象的方法与步骤进行自主探索其图象;可以通过探索函数y=与y=-之间的关系,画出y=-的图象.一般地,当k 探究4:反比率函数的性质反比率函数y=-与y=的图象有哪些一同特点?引导学生从通过与一次函数的图象的对比感受反比率函数图象“曲线”及“两支”的特点.反比率函数y=的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k 学生动手画反比函数图象,进一步学会画函数图象的步骤.观察函数图象,学会反比率函数的性质.第2课时反比率函数的图象与性质(2)教学目的1.会求反比率函数的分析式;2.巩固反比率函数图象和性质,通过对图象的剖析,进一步探究反比率函数的增减性.经历观察、剖析、交流的过程,逐步提升运用常识的能力.提升学生的观察、剖析能力和对图形的感知水平.会求反比率函数的分析式.反比率函数图象和性质的运用.教学过程一、情景导入,初步认知1.反比率函数有什么性质?2.大家掌握了依据函数分析式画函数图象,那样你能依据一些条件求反比率函数的分析式吗?复习上节课的内容,同时引入新课.二、考虑探究,获得新知1.考虑:已知反比率函数y=的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B是不是在这个函数的图象上;(3)这个函数的图象坐落于哪些象限?在每一个象限内,函数值y随自变量x的增大怎么样变化?剖析:题中已知图象经过点P(2,4),即表明把P点坐标代入分析式成立,如此能求出k,分析式也就确定了.要判断A、B是不是在这条函数图象上,就是把A、B的坐标代入函数分析式中,如能使分析式成立,则这个点就在函数图象上.不然不在.依据k的正负性,使用反比率函数的性质来判定函数图象所在的象限、y随x的值的变化状况.这种求分析式的办法叫做待定系数法求分析式.2.下图是反比率函数y=的图象,依据图象,回答下列问题:(1)k的取值范围是k>0还是k (2)假如点A,B是该函数图象上的两点,试比较y1,y2的大小.剖析:(1)由图象可知,反比率函数y=kx的图象的两支曲线分别坐落于第一、三象限内,在每一个象限内,函数值y随自变量x的增大而减小,因此,k>0.由于点A,B是该函数图象上的两点且-3y2.通过观察图象,使学生学会使用函数图象比较函数值大小的办法.。
人教版九年级数学上册教案5篇

人教版九年级数学上册教案5篇人教版九年级数学上册教案1一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点:理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.人教版九年级数学上册教案2一、创设情境导入新课1、介绍七巧板师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?一千多年前,中国人发明了七巧板。
人教版数学九年级上册24.2.2切线的性质与判定(教案)

一、教学内容
人教版数学九年级上册24.2.2切线的性质与判定:
1.理解并掌握切线的定义;
2.掌握切线的判定定理:经过半径外端且垂直于半径的直线为圆的切线;
3.掌握切线的性质:圆的切线垂直于过切点的半径;
4.学会运用切线的性质解决有关切线长度、角度等问题;
五、教学反思
在今天的教学过程中,我发现同学们对切线的性质与判定这一章节的内容兴趣浓厚,这让我感到很欣慰。在导入新课环节,通过提出与日常生活相关的问题,成功吸引了学生的注意力,激发了他们的学习兴趣。但在后续的教学中,我也注意到一些需要改进的地方。
在理论介绍环节,我发现部分学生对切线定义的理解还不够深入,对切线判定定理的掌握也不够牢固。在接下来的教学中,我需要更加注重对基础概念的讲解,通过生动的例子和实际操作,帮助学生更好地理解切线的定义和判定定理。
-切线的性质:理解并掌握圆的切线垂直于过切点的半径,以及切线与圆的相切关系。
-实际问题中的应用:学会将切线的性质和判定定理应用于解决直线与圆的位置关系问题。
举例解释:
(1)通过图形演示和实际操作,让学生理解切线的定义,强调切线与圆只有一个交点。
(2)通过具体例题,如给定一个圆和一点,让学生画出经过该点且为圆的切线,从而加深对切线判定定理的理解。
(3)通过分析切线与过切点的半径的垂直关系,让学生明白切线的性质,并能够应用这一性质解决相关问题。
2.教学难点
-切线判定定理的理解:学生可能难以理解为什么经过半径外端且垂直于半径的直线是圆的切线。
-切线性质的应用:学生在应用切线性质解决实际问题时,可能不知道如何建立数学模型和运用相关定理。
-解决实际问题时图形分析能力:学生在面对复杂的图形时,可能难以识别切线与圆的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复习引入
同学活动:列方程.
问题(1)古算趣题:“执竿进屋”
笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪慧者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
假如假设门的高为x 尺, 那么, 这个门的宽为_______ 尺,长为_______ 尺,
第2课时 21.1一元二次方程
教学内容
1.一元二次方程根的概念;
2. 依据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.
教学目标
了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.
提出问题,依据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个学问点解决一些具体问题.
例2.(同学活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)= 1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:略
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17 ≠0即可.
证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
•练习:1.方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必需运用整式运算进行整理,包括去括号、移项等.
解:略
留意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.
重难点关键
1.重点:判定一个数是否是方程的根;
2. 难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.
教学过程
一、复习引入
同学活动:请同学独立完成下列问题.
问题1.前面有关“执竿进屋”的问题中,我们列得方程x2-8x+20=0
列表:
x
1
2
3
10
11
…
x2-8x+20
…
问题2.前面有关长方形的面积的问题中,我们列得方程x2+7x-44=0即x2+7x=44
x
1
2
3
4
5
6
…
x2+7x
…
列表:
老师点评(略)
二、探究新知
提问:(1)问题1中一元二次方程的解是多少?问题2 中一元二次方程的解是多少?
(2)假如抛开实际问题,问题2中还有其它解吗?
老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)假如抛开实际问题,问题2中还有x=-11的解.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程, 经过整理, 都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
依据题意, 得________.
整理、化简,得:__________.
二、探究新知
同学活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)依据整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?还是与多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3) 都有等号,是方程.
三、巩固练习
教材练习1、2
补充练习:推断下列方程是否为一元二次方程?
(1)3x+2=5y-3 (2)x2=4 (3) 3x2-=0 (4)x2-4=(x+2)2(5)ax2+bx+c=0
四、应用拓展
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
-4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.
一元二次方程的解也叫做一元二次方程的根.
回过头来看:x2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不确定是实际问题的根,还要考虑这些根是否的确是实际问题的解.
例1.下面哪些数是方程2x2+10x+12=0的根?
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.通过生活学习数学,并用数学解决生活中的问题来激发同学的学习热忱.
重难点关键
1. 重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型, 再由一元一次方程的概念迁移到一元二次方程的概念.
2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程
五、归纳小结(同学总结,老师点评)
本节课要把握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0) 和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
九班级数学上册教学设计
二十一章一元二次方程
第1课时 21.1 一元二次方程
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念; 应用一元二次方程概念解决一些简洁题目.
1.通过设置问题,建立数学模型, 仿照一元一次方程概念给一元二次方程下定义.