PWM逆变电源双环控制技术研究
第五章第三节逆变器的PWM控制

SPWM波形的生成
自然采样:将三相正弦波与三角波比较,在波形相 自然采样 交点自然地确定脉冲的采样点和开关点。即采样点 和开关点重合。 缺点: 优点: 1、实时控制时难以计算脉冲宽度; 1、基波幅值与调制度M成正比,利于调压; 2、离线计算,利用查表法输出PWM波,占 2、高次谐波随着载波比N与调制度M的增大而减 有内存过大,不符合微机等采样周期的控制要 小,有利于波形正弦化。 求。
SPWM原理
SPWM的原理为在控制电路中调制,在主电路中输出。在控制 电路中,一个频率为fr幅值为Ur的参考正弦波Wsin(调制信号) 加载于频率为fc幅值为Uc的三角波WΔ(载波)后,得到一个 脉冲宽度变化的SPWM波Wspwm(已调制波),用已调制波的高 低逻辑电平经分配与放大后去驱动逆变器的主开关元件,即 可使逆变器输出与已调制波Wspwm相似的SPWM电压波形,SPWM 输入输出原理框图如下页所示:
双极性SPWM谐波分析
N = 15时双极性 SPWM 波形的基波分量及主要 高次谐波分量
双极性SPWM谐波分析
双极性SPWM谐波分析
SPWM脉宽调制方法
同步调制
基本同步调制方式,fr 变化时N不变,信号波 一周期内输出脉冲数固定; 三相电路中公用一个三角波载波,且取 N 为3 的整数倍,使三相输出对称
双极性SPWM调制方法 和单极性相同; 双极性控制时逆变器同 一桥臂上下两个器件交 替通断,处于互补的工 作方式。主电路提供± U 2 两个电位值。
d
双极性SPWM逆变器三相输出波形
双极性SPWM波形
双极性SPWM波形数学分析
双极性SPWM波形电压表达式为 U + d (ur > uc时) 2 uA = { U − d (ur < uc时) 2 写成傅立叶级数形式为
PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM逆变电路是一种将直流电能转换为交流电能的电路。
它通过以一定的频率和变化占空比的脉冲宽度调制信号,使得输入的直流电压经过逆变器变换后,输出成为一定频率和幅值可调的交流电压。
PWM逆变电路主要用于交流传动,太阳能发电系统,UPS等领域。
PWM逆变电路的基本结构包括直流输入电源、逆变器和输出滤波电路。
其中,直流输入电源将直流电压提供给逆变器,逆变器利用PWM技术将直流电压转换为交流电压,输出滤波电路对逆变器输出的脉冲波进行滤波,得到平滑的交流电压输出。
脉宽调制控制是最常用的PWM逆变电路控制方法。
它通过改变逆变器输入脉冲信号的占空比,控制逆变器输出交流电压的幅值。
具体实现方法是利用比较器将一个三角波信号与一个参考电压进行比较,产生一个PWM波形信号。
这个PWM波形信号的脉宽由比较器输出的高低电平确定,通过改变三角波信号的频率和参考电压的大小,可以改变脉冲宽度从而控制逆变器输出电压的幅值。
频率调制控制是通过改变逆变器输入脉冲信号的频率,控制逆变器输出交流电压的频率。
与脉宽调制控制不同,频率调制控制中,逆变器输出的脉冲宽度保持不变。
具体实现方法是通过改变比较器的阈值电压,或者改变三角波信号的频率,从而改变逆变器输出信号的频率。
值得注意的是,PWM逆变电路的控制方法还可以根据需要,对脉宽调制控制和频率调制控制进行组合,以实现更复杂的控制策略。
总结起来,PWM逆变电路是一种将直流电能转换为交流电能的电路,其控制方法主要有脉宽调制控制和频率调制控制两种。
通过调整脉宽和频率,可以实现对逆变器输出交流电压幅值和频率的精确控制。
PWM型光伏并网逆变器的双闭环控制系统设计及仿真研究

PWM型光伏并网逆变器的双闭环控制系统设计及仿真研究刘建;冉玘泉【摘要】设计了单相光伏并网系统中PWM型并网逆变器的双闭环控制系统,内环采用固定开关频率直接电流控制,并用典型Ⅰ型系统进行设计.同时,为了使电压型逆变器稳定运行,必须对直流电压进行闭环控制来稳定直流电压.用Matlab/Simulink 中的Power Systems Block建立PWM逆变器双闭环控制系统仿真模型,仿真结果表明,电流有较好的跟随性,直流侧电压有较好的稳定性,该控制系统其能够实现单位功率因素并网,减少谐波分量,提高电能质量.【期刊名称】《电气开关》【年(卷),期】2015(053)005【总页数】5页(P63-66,69)【关键词】光伏并网系统;PWM型逆变器;双闭环控制【作者】刘建;冉玘泉【作者单位】西南交通大学电气工程学院,四川成都610031;西南交通大学电气工程学院,四川成都610031【正文语种】中文【中图分类】TM921随着工业进程的加快,能源消耗越来越大,常规能源供给的有限性和环保压力的增大,促使人类去开发和利用新能源,太阳能具有很多常规能源所不具有的优点,被认为是21世纪最重要的新能源,因而光伏发电被认是综合缓解能源问题和环境问题的一种重要技术途径[1-2]。
逆变器作为光伏发电系统的核心,为了实现高效利用太阳能,对光伏并网发电系统中逆变器的控制方法进行研究具有实用价值。
逆变器并网发电的主要控制问题是使逆变器输出与电网电压同频、同相的正弦波电流,并能跟随并网容量给定值,而且要求电流畸变满足相关要求,控制谐波对电网的不利影响。
目前研究比较成熟的控制方法有滞环控制技术、三角波控制技术,无差拍控制技术等。
滞环控制方法硬件电路十分简单,属于实时控制方式,电流响应很快,不需要载波,输出电压中不含有特定频率的谐波分量[3]。
三角波控制方式输出含有与载波频率相同的高次谐波,且电流响应比瞬时值比较方式慢[4-5]。
无差拍控制[6]可以在有限拍的时间内跟踪到给定的状态变量,具有非常快速的动态响应能力。
新人必看的双环电流型PWM控制器原理简析

新人必看的双环电流型PWM控制器原理简析
PWM控制器对于很多工程师来说,都是在电子电路系统设计过程中不可缺少的重要配件,其中,双环电流型PWM控制器在开关电源以及LED电源设计领域的应用更是非常广泛。
本文将会就这一双环电流型PWM控制器的工作原理和运行特点进行简析,希望能够对新人工程师的日常工作提供一定帮助。
双环电流型PWM控制器工作原理
所谓的双环电流型PWM控制器,其实也是PWM控制器的一种,但这种类型的脉宽调制控制器是在普通电压反馈PWM控制环内部增加了一个电流反馈的控制环节,因此这一元件除了包含电压型PWM控制器的功能外,还能够检测开关电流或电感电流,实现电压电流的双环控制。
一个基础的双环电流型PWM控制器电路原理图如下图图1所示。
图1 双环电流型PWM控制器原理图
从图1所提供的双环电流型PWM控制器原理图中可以明显看出,这一电流型控制器有两个控制闭合环路:一个是输出电压反馈误差放大器A,用于与基准电压比较后产生误差电压。
另一个是变压器初级(电感)中电流在Rs 上产生的电压与误差电压进行比较,产生调制脉冲的脉宽,使得误差信号对峰值电感电流起着实际控制作用。
结合图1所给出的双环电流型控制器的原理图,我们可以将这一PWM控制器的工作过程总结为:假设输入电压下降,整流后的直流电压下降,经电感延迟使输出电压下降,经误差放大器延迟,Vea上升,占空比变化,从而。
转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告

转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告转速电流双闭环PWM-M可逆直流脉宽调速系统实验报告一、引言直流调速系统是现代工业中常用的电机调速方式之一,在实际应用中具有广泛的使用。
其中,转速电流双闭环PWM-M可逆直流脉宽调速系统是其中一种典型的调速控制方式。
本实验旨在通过搭建转速电流双闭环PWM-M可逆直流脉宽调速系统,研究其调速性能以及运行特点。
二、实验目的1. 理解转速电流双闭环PWM-M可逆直流脉宽调速系统的原理和结构;2. 掌握控制脉宽调制技术在直流电机调速系统中的应用;3. 通过实验验证该调速系统的性能和运行特点。
三、实验原理转速电流双闭环PWM-M可逆直流脉宽调速系统是将转速和电流两个回路分别采用闭环控制的直流调速系统。
其中,转速回路通过传感器对电机转速进行采集,与期望转速进行比较后,经过PID控制器得到转速控制信号,再经过比较器进行与PWM脉宽控制信号进行比较产生控制脉宽;电流回路通过采集直流电机的电流信号,经过PID控制器得到电流控制信号,再与PWM控制脉宽信号进行比较生成最终的输出脉宽。
四、实验步骤1. 搭建转速电流双闭环PWM-M可逆直流脉宽调速系统实验装置;2. 设置期望转速和电流参考值;3. 分别采集电机转速和电流信号;4. 利用PID控制器对转速和电流进行闭环控制;5. 通过比较器生成脉宽控制信号,控制电机转矩;6. 记录实验数据并进行分析。
五、实验结果与分析通过实验,我们可以得到实验数据并进行分析。
其中,我们可以通过比较实际转速与期望转速的差距,来评价转速闭环控制的性能。
同时,通过比较实际电流值与期望电流值之间的差距,来评价电流闭环控制的性能。
根据实验数据,我们可以得到转速与电流控制的准确性、稳定性以及响应速度等指标,评估整个调速系统的性能。
六、结论通过实验,我们成功搭建了转速电流双闭环PWM-M可逆直流脉宽调速系统实验装置,并完成了相关实验。
根据实验结果分析,我们可以评估该调速系统的性能和运行特点。
SPWM变频电源双闭环控制的设计和研究

SPWM变频电源双闭环控制的设计和研究1引言在目前逆变电源的控制技术中,滞环控制技术和SPWM 控制技术是变频电源中比较常用的两种控制方法。
滞环控制技术开关频率不固定,滤波器较难设计,且控制复杂,难以实现;SPWM 控制技术开关频率固定,滤波器设计简单,易于实现控制。
当二者采用电压电流瞬时值双闭环反馈的控制策略时,均能够输出高质量的正弦波,且系统拥有良好的动态性能。
对于SPWM 变频电源,采用电压电流瞬时值双闭环反馈的控制策略,工程中参数设计往往采用试凑法,工作繁琐,误差较大。
本文详细介绍了SPWM 变频电源主要的控制参数设计准则和方法,对于快捷、准确地选择合适的闭环参数,有很大的实践应用价值。
2系统简介图1 双闭环控制的SPWM 变频电源系统构成简化图图1 为系统构成简化图,该系统由主电路和控制电路两部分组成。
逆变电源主电路采用以IGBT 为开关器件的单相逆变电路, 采用全桥电路结构,经过LC 低通滤波器,滤去高频成分,在滤波电容两端获得相应频率的光滑的正弦波。
虚线框包括的是控制电路,电压电流瞬时值双闭环反馈控制是由输出滤波电感电流和输出滤波电容电压反馈构成的。
其外环为输出电压反馈,电压调节器一般采用PI 形式。
电压外环对输出电压的瞬时误差给出调节信号,该信号经PI 调节后作为内环给定;电感电流反馈构成内环,电流环设计为电流跟随器。
电流内环由电感电流瞬时值与电流给定比较产生误差信号,与三角形载波比较后产生SPWM 信号,通过驱动电路来控制功率器件,保证输出电压的稳定,形成典型的双环控制。
在实际应用中采用电流内环之外还设置电压外环的目的除了降低输出电压的THD 外,还在于对不同负载实现给定电流幅值的自动控制。
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
PWM逆变器的研究

目录基于HPWM技术的大功率正弦超声波逆变电源 (1)DC/AC逆变器的基本原理 (6)DC/AC逆变器的制作 (10)DC/AC三相软开关PWM逆变器的研究 (17)基于HPWM技术的大功率正弦超声波逆变电源1引言大功率超声波装置除用于工业清洗外,还在医疗、军事、石油换能器技术,以及海洋探测与开发、减噪防振系统、智能机器人、波动采油等高技术领域有着广泛的应用前景[1]。
超声波装置由超声波逆变电源和换能器组成。
近年来,由于新型稀土功能材料的开发和研制成功,使制造大功率超声波换能器成为可能,但与之配套的高频正弦逆变电源产品尚为少见。
目前,市场上的大功率正弦逆变电源均为采用IGBT制成的中低频产品[2],而高频逆变电源大多数是方波电源或占空比可调的脉冲逆变电源。
因此,高频大功率正弦逆变电源已成为超声波应用的瓶颈,使得对该电源的研制已成为急待解决的问题。
这里,应用混合脉宽调制(Hybrid Pulse Width Modulation,HPWM)控制技术,采用MOSFET并联运行方式,应用单片机组成智能控制系统,对高性能、大功率正弦超声波逆变电源的研制进行了研究。
2 系统构成用于高性能、大功率正弦超声波的逆变电源,其频率为25kHz,功率为4.5kW。
电压要求在0~200V之间可调,频率要求在 10~25kHz之间可调。
2.1 方案的设计图1示出该逆变电源的系统硬件构成框图[3]。
它由AC/DC和DC/AC两大部分组成。
包含有交-直-交主电路、驱动电路、单片机控制系统、低通滤波器、显示及保护等主要环节。
主电路由220V市电直接供电。
单相交流电压经晶闸管恒流恒压控制模块将交流转换为直流,为逆变器提供恒定的直流电压。
为了使逆变能得到性能和波形比较好的正弦输出,需要有较大的载波比。
由于其载波信号将达400~600kHz,因此只能选用MOSFET作为开关器件。
但是,MOSFET的输出功率较小,为了增大输出功率,可采用MOSFET并联运行的方式来解决高频与大功率间的矛盾。
PWM逆变器双闭环控制的仿真研究

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。