集合及其运算

合集下载

高中数学 集合的概念及其基本运算PPT课件

高中数学 集合的概念及其基本运算PPT课件

1
(3)集合的表示法:列__举__法___、描__述__法___、图__示__法___、 _区__间__法__.
(4)常用数集:自然数集N;正整数集N*(或N+);整 数集Z;有理数集Q;实数集R. (5)集合的分类:按集合中元素个数划分,集合可以 分为_有__限__集___、__无__限__集___、_空__集___. 2.集合间的基本关系 (1)子集、真子集及其性质 对任意的x∈A,都有x∈B,则 AB.(或 BA. 若A B,且在B中至少有一个元素x∈B,但x A, 则_______(或______).
(2)当a=0时,显然B A;
当a<0时,若B A,如图,
[6分]
精选PPT课件
15
则a41a212,aa812.12a0; 当a>0时,若B A,如图,
则a4a1212,aa22.0a2.
综上知,当B A时, 1 a 2
[10分]
2
(3)当且仅当A、B两个集合互相包含时,A=B.
由(1)、(2)知,a=2.
A∪B=A B A. 交集的性质:
A∩= ;A∩A=A;A∩B=B∩A;A∩B=A A B.
补集的性质:
.
精选PPT课件
4
基础自测
1.(2008·四川理,1)设集合U={1,2,3,4,5},
A={1,2,3},B={2,3,4},则 U(A∩B)等于 ( B)
A.{2,3}
B.{1,4,5}
C.{4,5}
并集:A∪B={x|x∈A或x∈B}; 交集:A∩B=_{_x_|_x_∈_A__且__x_∈__B_}_; 补集: UA=__{_x_|_x_ __U _且 __x__ _A _} __. U为全集, UA表示A相对于全集U的补集.

集合的概念及其运算

集合的概念及其运算

集合的概念及其运算1、集合中元素的性质:确定性,互异性,无序性2、有n个元素的集合的子集的个数是2n,真子集的个数是2n-13、自然数集N 正整数集N* 整数集Z 有理数集Q 实数集R 复数C4、交集:由所有属于集合A且属于集合B的元素所组成的集合叫做集合A与B的交集,记为A∩B,即A∩B={x|x∈A,且x∈B}并集:由所有属于集合A或属于集合B的元素所组成的集合叫做集合A与B的并集,记为A∪B,即A∪B={x|x∈A,或x∈B}补集:一般地设S是一个集合,A是S的一个子集(即A S),由S中所有不属于A的元素组成的集合,叫做集合A在全集S中的补集(或余集).5、真子集关系对于集合A、B,如果A ⊆ B,并且A≠B,我们就说集合A是集合B的真子集 显然,空集是任何非空集合的真子集1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.82.若集合A={x|x2-4x<0},则集合A∩Z中元素的个数为( )A.3B.4C.5D.23.已知集合A={a-2,2a2+5a,12},且-3∈A,则a= .4、已知集合A={1,3,5},B={2,4,6}.定义集合A+B={a+b|a∈A,b∈B},则A+B中元素的个数是( )A.9B.6C.5D.45、满足Φ A⊆{1,2,3}的集合A的个数是( )A.7B.8C.6D.42>0},N={x|x>a}.若M⊆N,求实数a的取值范围6、 已知集合M={x|3+2x-x7、已知集合M={x|x2+x-6=0},N={x|ax-1=0},且M∩N=N,求实数a的值.8、集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为( )A.0B.1C.2D.49、若A、B、C为三个集合,A∪B=B∩C,则一定有A. A⊆CB.C⊆AC.A≠CD.A=∅10、已知集合A={y|y=log2x,x>1},B={y|y=(1/2)x,x>1},则A∩B等于A. ∅B.{y|0<y<1}C.{y|1/2<y<1}D.{y|0<y<1/211、.设全集U是实数集R,M={x|x2>4},N={x|≥1},则下图中阴影部分所表示的集合是A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}12、.设集合A={5,log2(a2-3a+6)},集合B={1,a,b},若A∩B ={2},则集合A∪B的真子集的个数是A.3个B.7个C.12个D.15个13、.设全集U=R,A={x|x<-3或x≥2},B={x|-1<x<5},则集合{x|-1<x<2}是A. (UA)∪(UB)B. U(A∪B)C. (UA)∩BD.A∩B14、定义集合A*B={x|x∈A,且xB},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为10、A.1 B.2 C.3 D.415、.设集合M={x|x≤m},N={y|y=2-x,x∈R},若M∩N≠,则实数m 的取值范围是A.m≥0B.m>0C.m≤0D.m<016、.已知集合A={x∈R|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来;命题及其关系充要条件1、2. 用命题的等价性判断:判断p是q的什么条件,其实质是判断“若p,则q”及其逆命题“若q,则p”是真还是假,原命题为真而逆命题为假,p是q的充分不必要条件;原命题为假而逆命题为真,则p是q的必要不充分条件;原命题为真,逆命题为真,则p是q的充要条件;原命题为假,逆命题为假,则p是q的既不充分也不必要条件.3. 原命题为“若P则q,则它的逆命题为若q则p;否命题为若非p则非q,逆否命题为若非q则非p 原命题与它的逆否命题等价,逆命题与它的否命题等价1、写出“面积相等的两个三角形是全等三角形”的逆命题、否命题、逆否命题2、写出“若a>b且c>d,则a+c>b+d”的逆命题、否命题、逆否命题3、设原命题”若p则q”假,而逆命题真,则p是q的()A、充分不必要条件B、必要不充分条件C、充要条件 D既不充分也不必要条件3、0<x<5是不等式lx-2l<4成立的()A、充分不必要条件B、必要不充分条件C、充要条件 D既不充分也不必要条件4、1命题:“若x2<1,则-1<x<1”的逆否命题是 ( )A.若x2≥1,则x≥1或x≤-1 B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1 D.若x≥1或x≤-1,则x2≥12.已知集合M={x|0<x<1},集合N={x|-2<x<1},那么“a∈N”是“a∈M”的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件。

集合的关系及其基本运算

集合的关系及其基本运算

集合的关系及其基本运算知识精要1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。

记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A 注:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合。

(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。

(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。

记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。

注:空集是任何集合的子集。

Φ⊆A空集是任何非空集合的真子集。

Φ A若A ≠Φ,则Φ A任何一个集合是它本身的子集。

A A ⊆易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。

如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。

如Φ⊆{0}。

不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。

3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。

记作A B (读作“A 交B ”),即A B ={x|x ∈A ,且x ∈B }。

集合的基本概念与运算方法

集合的基本概念与运算方法

集合的基本概念与运算方法在数学中,集合是由一组独立的元素组成的。

理解集合的基本概念和运算方法对于解决各种数学问题至关重要。

本文将介绍集合的基本概念以及常用的运算方法。

一、集合的基本概念1. 集合的定义:集合通常用大写字母表示,集合内的元素用逗号分隔,并放在大括号中。

例如,集合A可以表示为:A = {1, 2, 3, 4}。

2. 元素:一个集合由若干个元素组成,元素是集合的基本单位。

例如,集合A中的元素1、2、3、4便是集合A的元素。

3. 子集:若一个集合A的所有元素都属于另一个集合B,则称集合A为集合B的子集。

用符号表示为A ⊆ B。

例如,集合A = {1, 2}是集合B = {1, 2, 3}的子集。

4. 相等集合:若两个集合A和B拥有相同的元素,则称集合A和集合B相等。

用符号表示为A = B。

二、集合的运算方法1. 并集:若A和B为两个集合,他们的并集就是包含两个集合中所有元素的集合。

用符号表示为A ∪ B。

例如,集合A = {1, 2}和集合B = {2, 3}的并集为A ∪ B = {1, 2, 3}。

2. 交集:若A和B为两个集合,他们的交集就是属于A且属于B的所有元素的集合。

用符号表示为A ∩ B。

例如,集合A = {1, 2}和集合B = {2, 3}的交集为A ∩ B = {2}。

3. 补集:设U为全集,若A为一个集合,则相对于全集U,A的补集为U中不属于A的所有元素组成的集合。

用符号表示为A'。

例如,集合A = {1, 2, 3, 4}相对于全集U = {1, 2, 3, 4, 5, 6}的补集为A' = {5, 6}。

4. 差集:若A和B为两个集合,他们的差集就是属于A但不属于B的所有元素的集合。

用符号表示为A - B。

例如,集合A = {1, 2, 3, 4}和集合B = {2, 3}的差集为A - B = {1, 4}。

5. 互斥集:若两个集合A和B的交集为空集,则称它们为互斥集。

集合论第1章集合及其运算

集合论第1章集合及其运算

集合论与图论以前学习的高等数学(数学分析)都是连续函数,而计算机是离散型结构,所以它所研究的对象应是离散型的。

因此,做为计算机理论的核心课程《离散数学》就显然非常重要,计算机专业学生必须开设此课程。

目的:培养学生抽象思维和逻辑思维的能力要求:概念第一,正确使用概念进行正确的推理。

特点:抽象,概念多;与其它课程不同,不是以计算为主,而是以推理论证为主;比较难。

内容:⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎩集合映射集合论关系无穷集合图的基本概念树和割集离散数学图 论 连通度和匹配平面图的欧拉公式和图的着色有向图近世代数数理逻辑形式语言与自动机可计算理论等等离散:不考虑实数的性质,只考虑有限或可数的整数。

因此可用归纳法。

第一篇集合论集合论是德国数学家康托(Cantor)在1874年建立的,它是现代数学的基础,在当今数学中每个对象本质上都是集合。

有时我们说:“数学能嵌套在集合论中”其含义就是指数学的一些对象如:数、函数、线、面等都可以用集合来定义。

换句话说,数学的各个分支在本质上都是研究这种或那种对象的集合。

例如:几何学——研究点、线、面的集合;数学分析——连续函数的集合;代数——研究数的集合以及在此集合上定义有关运算的集合等等。

因此,把集合论作为现代各种数学的基础是有道理的,也是合适的。

集合论的特点:(1)研究的对象十分广泛:数、图形或其它任何客体都可以作为研究的对象。

(2)因为它研究的对象是如此广泛,为了便于研究必须寻找对象的共性,而要做到这一点,就必须进行抽象。

(3)在抽象化的基础上,可用统一的方法来研究和处理集合论的各类问题。

第一章 集合及其运算§1集合的基本概念在日常生活中,经常会遇到“集合”的概念,例如:所有中国人的组成的集合;坐标面上的有点的集合,自然数集,实数集,全世界无产者等等。

集合是集合论中最基本的概念,所以很难给出精确的定义。

因此,我们把“集合”作为原始的概念给出非形式定义,只给予一种描述说明这个概念的含义。

集合的概念与运算

集合的概念与运算

分配律
定义
对于任意三个集合A、B和C,如果A∪(B∩C)=(A∪B)∩(A∪C)和 A∩(B∪C)=(A∩B)∪(A∩C),则称集合的运算满足分配律。
解释
分配律意味着并集和交集运算可以分配给括号内的并集和交集运算。 即,括号内的并集和交集运算的结果可以与外部的并集和交集运算 的结果进行交换。
伍 集合的应用
集合的元素
元素可以是具体的, 如苹果、汽车等;也 可以是抽象的,如数 字、图形等。 元素是构成集合的基 本单位,可以是任何 对象或实体。
并集
并集是将两个集合中 的所有元素合并到一 个新的集合中。 并集运算可以用符号 “∪”表示。
交集
交集运算可以用符号“∩”表示。 交集是两个集合中共有的元素组成的集合。

集合的概念与运算
目录 CONTENTS
0 1 集合的基本概念
0 4 集合的应用
0 2 集合的运算
0 5 集合运算的注意事项
0 3 集合运算的性质
贰 集合的基本概念
集的定义
集合中的元素具有确定性、 互异性和无序性。 集合是由确定的、互不相 同的元素所组成的总体。
集合的表示方法
将集合中的元素一一列举出 来,用大括号括起来。 列举法 通过描述集合中元素的共同 特征,用大括号括起来。 描述法
交集是指两个或多个集合中共有的元素的集合,即同时属于A和B的元素组成的集合。 交集的表示方法为A∩B,其中A和B为两个集合。 交集的性质包括交换律、结合律和分配律。
差集
差集是指属于A但不属于B的元素的集合,即所有属于A但不属于B的元素组成的集合。 差集的表示方法为A−B,其中A和B为两个集合。 差集的性质包括反身律、对称律和传递律。
解释

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算一、并集(1)文字语言:由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集.(2)符号语言:A∪B={x|x∈A,或x∈B}.(3)图形语言;如图所示.二、交集交集的三种语言表示:(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B 的交集.(2)符号语言:A∩B={x|x∈A,且x∈B}.(3)图形语言:如图所示.三、并集与交集的运算性质题型一 并集及其运算例1 (1)设集合M ={4,5,6,8},集合N ={3,5,7,8},那么M ∪N 等于( ) A.{3,4,5,6,7,8} B.{5,8} C.{3,5,7,8} D.{4,5,6,8}(2)已知集合P ={x |x <3},Q ={x |-1≤x ≤4},那么P ∪Q 等于( ) A.{x |-1≤x <3} B.{x |-1≤x ≤4} C.{x |x ≤4}D.{x |x ≥-1} (3).已知集合=A {}31<≤-x x ,=B {}52≤<x x ,则B A ⋃=( )A .{}32<<x xB .{}51≤≤-x xC .{}51<<-x xD .{}51≤<-x x变式练习1 已知集合A ={x |(x -1)(x +2)=0};B ={x |(x +2)(x -3)=0},则集合A ∪B 是( ) A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}2.若集合=A {}x ,3,1,=B {}2,1x ,B A ⋃={}x ,3,1,则满足条件的实数x 有( )A .1个B .2个C .3个D .4个题型二 交集及其运算例2 (1)设集合M ={m ∈Z |-3<m <2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2}D.{-1,0,1,2}(2)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A.{x |2<x ≤3} B.{x |x ≥1} C.{x |2≤x <3} D.{x |x >2}变式练习2(1)设集合A ={x |x ∈N ,x ≤4},B ={x |x ∈N ,x >1},则A ∩B =________. (2)集合A ={x |x ≥2或-2<x ≤0},B ={x |0<x ≤2或x ≥5},则A ∩B =________.(3).设集合=M {}23<<-∈m Z m ,{}31≤≤-∈=n Z n N ,则N M ⋂=( ) A .{}1,0 B .{}1,0,1- C .{}2,1,0 D .{}2,1,0,1-(4).集合=A {}121+<<-a x a x ,=B {}10<<x x ,若=⋂B A ∅,求实数a 的取值范围.题型三已知集合的交集、并集求参数例3已知集合A={x|2a≤x≤a+3},B={x|x<-1,或x>5},若A∩B=∅,求实数a的取值范围变式练习3设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则实数k的取值范围为________.例4设集合A={x|x2-x-2=0},B={x|x2+x+a=0},若A∪B=A,求实数a 的取值范围.变式练习4设集合A={x|x2-3x+2=0},集合B={x|2x2-ax+2=0},若A∪B =A,求实数a的取值范围.例5 (1)设集合A={(x,y)|x-2y=1},集合B={(x,y)|x+y=2},则A∩B 等于( )A.∅B.{53,13}C.{(53,13)} D.{x=53,y=13}(2)已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R},求A∩B.变式练习5(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∪B;(2)设集合A ={(x ,y )|y =x +1,x ∈R },集合B ={(x ,y )|y =-x 2+2x +34,x ∈R },求A ∩B .6.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}. (1)若A ∩B =B ,求a 的取值范围; (2)若A ∪B =B ,求a 的值.课后练习 一、选择题1.设集合A ={-1,0,-2},B ={x |x 2-x -6=0},则A ∪B 等于( ) A.{-2} B.{-2,3} C.{-1,0,-2}D.{-1,0,-2,3}2.已知集合M ={x |-1≤x ≤1,x ∈Z },N ={x |x 2=x },则M ∩N 等于( ) A.{1} B.{-1,1} C.{0,1}D.{-1,0,1}3.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A.2个B.4个C.6个D.8个4.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于( )A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}三、解答题5.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.6.已知集合A={x|x2-px+15=0}和B={x|x2-ax-b=0},若A∪B={2,3,5},A∩B={3},分别求实数p,a,b的值.7.(1)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值;(2)若P={1,2,3,m},Q={m2,3},且满足P∩Q=Q,求m的值.四、全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.五、补集对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言为∁U A={x|x∈U,且x∉A}图形语言为六、补集的性质①A∪(∁U A)=U;②A∩(∁U A)=∅;③∁U U=∅,∁U∅=U,∁U(∁U A)=A;④(∁U A)∩(∁U B)=∁U(A∪B);⑤(∁U A )∪(∁U B )=∁U (A ∩B ).题型一 补集运算例1 (1)设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A 等于( ) A.{1,2} B.{3,4,5} C.{1,2,3,4,5}D.∅(2)若全集U =R ,集合A ={x |x ≥1},则∁U A =________.变式练习 1 已知全集U ={x |x ≥-3},集合A ={x |-3<x ≤4},则A C U =________.2.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.题型二 补集的应用例2 设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.变式练习2若全集U={2,4,a2-a+1},A={a+4,4},∁U A={7},则实数a=________.题型三并集、交集、补集的综合运算例3 已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁U A,∁U B,(∁U A)∩(∁U B).变式练习3设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.题型四利用Venn图解题例4 设全集U={不大于20的质数},A∩∁U B={3,5},(∁U A)∩B={7,11},(∁U A)∩(∁UB)={2,17},求集合A,B.变式练习4全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},求集合A,B.变式练习5已知集合A={x|x2-4ax+2a+6=0},B={x|x<0},若A∩B≠∅,求a的取值范围.课后作业一、选择题1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于( )A.{1,3,4}B.{3,4}C.{3}D.{4}2.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(∁U B)等于( )A.{4,5}B.{2,4,5,7}C.{1,6}D.{3}3.设全集U={a,b,c,d,e},集合M={a,c,d},N={b,d,e},那么(∁U M)∩(∁N)等于( )UA.∅B.{d }C.{a ,c }D.{b ,e }4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )A.{a |a ≤1}B.{a |a <1}C.{a |a ≥2}D.{a |a >2}5.设全集是实数集R ,M ={x |-2≤x ≤2},N ={x |x <1},则(∁R M )∩N 等于( )A.{x |x <-2}B.{x |-2<x <1}C.{x |x <1}D.{x |-2≤x <1}6.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0},若全集U =R ,且A ⊆∁U B ,则a 的取值范围为________.7.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.8.已知全集U =R ,A ={x ||3x -1|≤3},B ={x |⎩⎨⎧ 3x +2>0,x -2<0},求∁U (A ∩B ).9.已知集合A ={x |3≤x <6},B ={x |2<x <9}.(1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.10.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.11.已知集合{}31<≤-=x x A ;{}242-≥-=x x x B .(1)求B A ⋂;(2)若集合{}02>+=a x x C ,满足C C B =⋃,求实数a 的取值范围.12.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}.(1)若A ∩B =B ,求a 的取值范围;(2)若A ∪B =B ,求a 的值.。

集合的全部知识点总结

集合的全部知识点总结在数学中,集合是一种用来描述事物的概念。

它由一组称为元素的对象组成,没有重复的元素,并且元素之间没有明确的顺序。

集合的概念在数学中非常重要,它被广泛应用于各个领域。

本文将对集合的基本概念、运算、性质以及常见的应用进行总结和探讨。

一、集合的基本概念:1. 元素:集合中的对象称为元素。

用小写字母表示,例如集合A={a,b,c},a,b,c就是A的元素。

2. 空集:不包含任何元素的集合称为空集,用符号∅表示。

3. 相等关系:两个集合A和B相等,当且仅当A中的所有元素都属于B,且B中的所有元素都属于A。

4. 子集:若A的所有元素都属于集合B,则称A是B的子集,用符号A⊆B表示。

5. 真子集:若A是B的子集且A≠B,则称A是B的真子集,用符号A⊂B表示。

二、集合的运算:1. 并集:将两个集合中的所有元素进行合并得到的新集合,用符号∪表示。

例如A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。

2. 交集:两个集合中共有的元素构成的新集合,用符号∩表示。

例如A={1,2,3},B={3,4,5},则A∩B={3}。

3. 差集:从一个集合中减去另一个集合中相同的元素所得到的新集合,用符号-表示。

例如A={1,2,3},B={3,4,5},则A-B={1,2}。

4. 补集:对于给定的全集U,集合A相对于全集U中的元素不在集合A中的元素所构成的新集合,用符号A'表示。

三、集合的性质:1. 交换律:对于任意两个集合A和B,A∪B=B∪A;A∩B=B∩A。

2. 结合律:对于任意三个集合A、B和C,(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C)。

3. 分配律:对于任意三个集合A、B和C,A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C)。

4. 同一律:对于任意集合A,A∪∅=A;A∩U=A(其中U为全集)。

5. 非空律:任何一个集合与非空集合的并集等于非空集合本身。

集合的基本概念与运算

集合的基本概念与运算集合是数学中一个基本的概念,它描述了一组对象构成的整体。

在集合论中,集合是由元素组成的,而元素可以是任何事物,可以是数值、符号、人、动物等。

本文将介绍集合的基本概念以及常见的运算。

一、集合的基本概念集合可以用大括号{}来表示,元素在大括号内用逗号分隔。

例如,集合A可以表示为A={1,2,3},其中的元素为1,2和3。

一个集合中的元素是无序的,表示一个集合的方式只是列出其中的元素,并不考虑元素的先后顺序。

在集合中,元素的个数称为集合的基数。

例如,集合A={1,2,3}的基数为3。

当一个集合中的元素个数为有限个时,该集合称为有限集;当一个集合中的元素个数为无限个时,该集合称为无限集。

二、集合的关系1. 相等关系当两个集合的所有元素完全相同时,它们是相等的。

例如,考虑集合A={1,2,3}和B={2,3,1},虽然它们的元素顺序不同,但它们包含的元素是相同的,因此A和B是相等的。

2. 包含关系当一个集合的所有元素都是另一个集合的元素时,该集合被称为另一个集合的子集。

例如,考虑集合A={1,2,3}和B={1,2,3,4},所有A 中的元素也都属于B,因此A是B的子集。

3. 空集一个没有任何元素的集合被称为空集,用符号∅表示。

三、集合的运算1. 并集运算给定两个集合A和B,它们的并集表示为A∪B,包含了A和B中所有的元素。

例如,若A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。

2. 交集运算给定两个集合A和B,它们的交集表示为A∩B,包含了同时属于A和B的元素。

例如,若A={1,2,3},B={3,4,5},则A∩B={3}。

3. 差集运算给定两个集合A和B,它们的差集表示为A-B,包含了属于A但不属于B的元素。

例如,若A={1,2,3},B={3,4,5},则A-B={1,2}。

4. 补集运算给定一个集合U作为全集,集合A的补集表示为A',包含了属于全集U但不属于A的元素。

2.3模糊集合及其运算

2.3 模糊集合及其运算2.3.1 模糊子集的定义及表示模糊子集的定义:设给定论域U ,U 到[0,1]闭区间的任一映射A μ→U A :μ[0,1])(u u A μ→ (2-3-1)都确定U 的一个模糊子集A ,A μ称为模糊子集的隶属函数,)(u A μ称为u 对于A 的隶属度。

隶属度也可记为)(u A 。

在不混淆的情况下,模糊子集也称模糊集合。

上述定义表明,论域U 上的模糊子集A 由隶属函数A μ来表征。

)(u A μ取值范围为闭区间[0,1],)(u A μ的大小反映了u 对于模糊子集的从属程度。

)(u A μ的值接近于l ,表示u 从属于A 的程度很高; )(u A μ的值接近于O ,表示u 从属A 的程度很低。

可见,模糊子集完全由隶属函数所描述。

当)(u A μ的值域={0,1}时,)(u A μ蜕化成一个经典子集的特征函数,模糊子集A 便蜕化成一个经典子集。

由此不难看出,经典集合是模糊集合的特殊形态,模糊集合是经典集合概念的推广。

模糊集合的表达方式有以下几种:1.当U 为有限集{}n u u u ,,21 时,通常有如下三种方式。

(1)Zadeh 表示法nn A A A u u u u u u A )()()(2211μμμ+++=其中ii A u u )(μ并不表示“分数”,而是表示论域中的元素i u 与其隶属度)(i A u μ之间的对应关系。

“+”也不表示“求和”,而是表示模糊集合在论域U 上的整体。

在论域U 中,)(u A μ的元素集称为A 的台,又称为模糊集合A 的支集。

实际上若某元素的隶属函数值为零。

即它不属于这个集合,则用台来表示一个模糊集合,可使表达式简单明了。

以下采用台的方式给出模糊集合,例如模糊集合“几个”可表示为83.077.0615147.033.0+++++=A 若对于模糊集合A 有一个有限的台,{}n u u u ,,21,则可表示为如下一般形式 nn A A A u u u u u u A )()()(2211μμμ+++=∑==ni ii A u u 1)(μ (2-3-3)(2)序偶表示法将论域中的元素i u 与其隶属度)(i A u μ构成序偶来表示A ,则))}(,(,)),(,()),(,{(2211n A n A A u u u u u u A μμμ⋅⋅⋅= (2-3-4)采用序偶表示法,例1中的A 可写为(){})3.0,8(),7.0,7)(1,6(),1,5(),7.0,4(,3.0,3=A此种方法隶属度为0的项可不写入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档