蒸发器的设计计算

合集下载

(完整版)冷凝器 蒸发器设计计算

(完整版)冷凝器 蒸发器设计计算

壳内径Di/m 0.338573913 0.478815819 0.586427219 0.677147826
1.5传热计算及面积计算
运动粘度ν /m2/s 物性集合系数B 雷诺数Re 水侧表面传热系数awi w/(m2*k) 管排修正系数 εn 环翅高度h' /mm 增强系数ψ 冷凝温度40℃时B
0.13890575
取热流密度q0 W/m2
6000
冷凝器热负荷Qk /kW
407.212
传热面积Aof m2 应布置有效总管长L
67.86866667 488.5950846
1.3确定每流程管数Z
有效单管长l
流程数N
冷却水进口水温tw1 /℃
30
冷却水出口水温tw2 /℃
35
平均温度下水密度 ρ/㎏/m3 994.93
1冷凝器计算
1.1 管型选择
管轧低翅片管
坯管16*1.5
φ16*1.5
di / mm
10.4
dt / mm
15.1
δt / mm
0.4ห้องสมุดไป่ตู้
db / mm
12.4
Sf / mm
1.2
单位管长换热面积 m2
ad
0.015804667
af
0.09714375
ab
0.025957333
ai
0.032656
aof 1.2 估算换热管总长
3190.12θ0^(0.25)
3190.12θ0^(0.25)
1308*(7.21-θ 0)
q0 5365.117596 5762.67012 6151.275524 6189.681087 6247.141056

各种蒸发器冷凝器计算

各种蒸发器冷凝器计算

各种蒸发器冷凝器计算蒸发器和冷凝器是热力工程中常见的设备,用于蒸发和冷凝流体。

本文将介绍各种蒸发器和冷凝器的计算方法。

一、蒸发器蒸发器是将液体转化为蒸汽的设备。

根据蒸发器的类型有多种不同的计算方法。

1.蒸发器内换热面积计算蒸发器的内换热面积可以通过以下公式计算:A=Q/(U×ΔTm)其中,A为内换热面积,Q为传热量,U为换热系数,ΔTm为平均温差。

2.各种蒸发器的计算常见蒸发器种类有多效蒸发器、喷雾式蒸发器、蒸镜式蒸发器等。

这些蒸发器的计算方法略有不同。

多效蒸发器的换热器内换热面积计算可以使用以下公式:A = Q / (Ud × ΔTmd)其中,A为内换热面积,Q为传热量,Ud为蒸气侧的换热系数,ΔTmd为蒸汽的平均温差。

喷雾式蒸发器的蒸发速率计算可以使用以下公式:W = (G × H) / (λ × (hlg - hgf))量蒸发潜热,hlg为蒸汽的焓值,hgf为液体的焓值。

蒸镜式蒸发器的换热面积和蒸发速率计算方法类似多效蒸发器。

二、冷凝器冷凝器是将蒸汽或气体转变为液体的设备。

根据冷凝器的类型有多种不同的计算方法。

1.冷凝器的内换热面积计算冷凝器的内换热面积可以通过以下公式计算:A=Q/(U×ΔTm)其中,A为内换热面积,Q为传热量,U为换热系数,ΔTm为平均温差。

2.各种冷凝器的计算常见冷凝器种类有冷却管束冷凝器、冷凝器冷凝管束冷凝器等。

这些冷凝器的计算方法略有不同。

冷却管束冷凝器的换热面积计算可以使用以下公式:A = Q / (Ud × ΔTmd)其中,A为内换热面积,Q为传热量,Ud为冷却侧的换热系数,ΔTmd为冷却水的平均温差。

冷凝器冷凝管束冷凝器的冷凝速率计算可以使用以下公式:W = (G × H) / (λ × (hgf - hfg))量冷凝潜热,hgf为蒸汽的焓值,hfg为液体的焓值。

以上就是各种蒸发器和冷凝器的计算方法。

汽化蒸发器蒸发计算方式

汽化蒸发器蒸发计算方式

汽化蒸发器蒸发计算方式
本文档介绍了汽化蒸发器蒸发计算的方法。

汽化蒸发器是一种
用于汽化液体的热传递设备,通常用于工业生产过程中的蒸发操作。

蒸发计算方法
蒸发计算方法通常基于质量平衡和能量平衡原理。

下面是一种
常用的蒸发计算方法:
1. 计算输入参数:首先,确定蒸发操作的输入参数。

这些参数
包括初始液体的质量和温度,加热介质的温度和流量,以及蒸发器
的几何参数等。

2. 计算蒸发量:根据质量平衡原理,计算蒸发器中液体的蒸发量。

蒸发量可以根据以下公式计算:
蒸发量 = 初始液体质量 - 终止液体质量
其中,初始液体质量是指进入蒸发器的液体的质量,终止液体
质量是指从蒸发器中排出的液体的质量。

这两个参数可以通过实际
测量或估算获得。

3. 计算热量传递:根据能量平衡原理,计算蒸发器中的热量传递。

热量传递可以根据以下公式计算:
热量传递 = 质量流量 * 热容 * 温度差
其中,质量流量是指加热介质的质量流量,热容是指液体的比
热容,温度差是指蒸发器中液体的平均温度和加热介质的温度之差。

4. 计算蒸发率:最后,根据蒸发量和热量传递,计算蒸发器的
蒸发率。

蒸发率可以根据以下公式计算:
蒸发率 = 蒸发量 / 热量传递
蒸发率可以用来评估蒸发器的性能和效率。

总结
本文介绍了一种常用的汽化蒸发器蒸发计算方法。

使用质量平衡和能量平衡原理,可以计算出蒸发器中液体的蒸发量、热量传递和蒸发率,从而评估蒸发器的性能。

这种计算方法可以帮助工程师和研究人员优化蒸发器的设计和运行。

蒸发器的设计计算

蒸发器的设计计算

挥收器安排估计之阳早格格创做已知条件:工量为R22相对(1)挥收器结构参数采用(2)估计几许参数翅片为笔曲套片,思量套片后的管中径为沿气流目标的管间距为沿气流目标套片的少度为每米管少翅片表面积:每米管少翅片间管子表面积:每米管少总中表面积:每米管少管内里积:每米管少的中表面积:肋化系数:每米管少仄衡曲径的表面积:(3)估计气氛侧的搞表面传热系数①气氛的物性气氛的仄衡温度为②最窄截里处气氛流速③搞表面传热系数搞表面传热系数用小型造热拆置安排指挥式(4-8)估计(4)决定气氛正在挥收器内的变更历程根据给定的出进心温度由干气氛的焓干图可得正在气氛的焓干图上对接气氛的出进心状态面1战面2,并延少与鼓战睦线相接于面w,该面的参数是正在挥收器中气氛的仄衡比焓值析干系数(5)循环气氛量的估计进心状态下搞气氛的比体积循环气氛的体积流量(6)气氛侧当量表面传热系数的估计拆置安排指挥式(4-13)估计,叉排时翅片可视为六角形,且此时翅片的少对付边距离战短对付边距离之比肋合合下度为凝露工况下翅片效用为当量表面传热系数(7)管内R22挥收时的表面传热系数R22R22正在管内挥收的表面传热系数由小型造热拆置安排与指挥式(4-5)估计.估计查的R22则R22的总品量流量为R22正在管内的品量则总流利里积为每根管子的灵验流利截里积挥收器的分路数分离分液器的本量产品现状,与分路数为Z=2每一分路中R22的品量流量为每一分路中R22正在管内的本量品量流速为于是(8)传热温好的收端估计(9)传热系数的估计(10近,故假设灵验,可用(11)挥收器结构尺寸的决定挥收器所需的表面传热里积挥收器所需传热管总少本量迎风里积为目标的每排管子数为深度目标为4排,同安插48根传热管,故传热管的本量总少为传热管的本量内表面传热里积为底下估计挥收器的本量中表面积48U由于管径很小,伸出部分换热不妨忽略没有计.1为141片翅片的总中表面积套片管的总中表面积根据“估计单元”估计的总中表面积惟有二者有一定好异,然而是正在缺面范畴之内.综上分解安排,不妨定出翅片结构参数如下:(12)气氛侧阻力估计气氛侧阻力估计根据小型造热拆置安排与指挥式(4-10战4-12)举止.4-21)决定,。

多效蒸发器设计计算

多效蒸发器设计计算

多效蒸发器设计计算(一) 蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。

(2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。

(3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。

(4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。

(5) 根据传热速率方程计算各效的传热面积。

若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。

(二) 蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。

1.估值各效蒸发量和完成液组成总蒸发量 (1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为(1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。

例如,三效W1:W2:W3=1:1.1:1.2 (1-5)以上各式中 W — 总蒸发量,kg/h ;W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ;x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。

2.估值各效溶液沸点及有效总温度差欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。

即(1-6) 式中— 各效加热蒸汽压强与二次蒸汽压强之差,Pa ;— 第一效加热蒸汽的压强,Pa ; )110x xF W -=(n W W i =ii W W W F Fx x ---=210np p p k '-=∆1p ∆1p— 末效冷凝器中的二次蒸汽的压强,Pa 。

多效蒸发器设计计算

多效蒸发器设计计算

多效蒸发器设计计算
多效蒸发器是一种用于蒸发液体中的溶质以实现浓缩的设备。

在多效蒸发器设计计算中,需要考虑到以下几个关键因素:蒸发程式、物料平衡、能量平衡、传热方程、精馏器和破坏机理。

1. 蒸发过程:多效蒸发器的基本原理是通过将溶液在多个蒸发室中进行连续蒸发,并利用蒸汽冷凝来提供热量。

在多效蒸发器设计中,需要确定合适的蒸发程式,例如同时蒸发或逐级蒸发。

2. 物料平衡:在多效蒸发器中,各个蒸发室之间的物料平衡是一个重要考虑因素。

物料平衡可以通过输入和输出流量的计算来确定。

3. 能量平衡:能量平衡是多效蒸发器设计的另一个关键点。

通过计算蒸汽冷凝所释放的热量和蒸发过程中所需的热量,可以确定能量平衡。

4. 传热方程:多效蒸发器中传热方程的计算是非常重要的。

传热方程通常包括表面传热系数、传热面积和温度差等参数,可以用于计算所需热量。

5. 精馏器:多效蒸发器中通常使用精馏器来分离液体中的溶质。

设计精馏器需要考虑到馏分和留渣的要求,以及精馏塔的塔盘或填料。

6. 破坏机理:在多效蒸发器设计中,需要考虑到溶质可能遭受
的破坏机理,例如结晶、析出或水解等。

这些因素可以影响到设计的操作条件和设备需求。

在多效蒸发器设计计算中,还需要考虑到其他因素,如设备材料的选择、蒸汽压力和温度、环境影响等。

以上只是多效蒸发器设计计算的一些参考内容,具体设计仍然需要根据实际情况和要求进行。

空调蒸发器设计计算方法

计算过程1)空气进出口状态:进气:干球温度t1=27℃,湿球温度t1s=19℃,h1=54 KJ/Kg.干出气:干球温度t12=14℃,湿球温度t12s=12℃,h12=35.8 KJ/Kg.干肋管外表面平均温度:tss=10.8℃,hss=31 KJ/Kg.干2)单位管长参数值管间距p1=0.0254;排间距p2=0.022;铜管外径d0=0.00952;铜管内径di=0.00882;片厚δf=0.00011;片距e1=0.0016;铝箔导热系数λ=204 w/m.k每米管长肋片外表面积:AF=(p1*p2-πd0²/4)*2*1/e1 =0.61每米管长肋片基管外表面积:AP=πd0*(e1-δf)*1/e1 =0.027每米管长内表面积:Ai = π* di * 1 =0.0276每米管长总外表面积:AFP = AF + AP =0.637肋化系数:τ=AFP / Ai =23肋通系数:a =AFP / (p1 * 1) =25净面比:ε=(p1 - d0) * (e1 -δf) / (p1 * e1) =0.582)计算干工况下空气侧换热系数α选迎面风速:Va=1.7 m/s最窄截面处流动速度:Vmax=Va/ε选取管排数:N=2沿气流方向肋片长度:L=N*p2当量直径:de= 2 * (p1 - d0) * (e1 -δf) / ((p1 - d0) + (e1 -δf)) =2.72mm雷诺数:Re = 1.2 * Vmax * de / (1.815 * 10 ^ (-5)) =525.9干工况下空气侧换热系数α= c1 * c2 * (2.568 * 10 ^ (-2) / de) * ((L / de) ^ (N)) * (Re ^ (m)) =56.7 (只适用于Re>=500)α1=1.1*α=62.4 (铜管错排)c1 = 1.36 - 0.24 * Re / 1000c2 = 0.518 - (2.315 * 10 ^ (-2) * (L / de)) + (4.25 * 10 ^ (-4) * (L / de) ^ 2) - (3 * 10 ^ (-6) * (L / de) ^ 3)3)冷却效率η= (h1 - h12) / (1.005 * (h1 - hss)) =0.7874)校核管排数η=1- Exp(-α* a* N’ / (1005 * 1.2 * Va))=0.784(N’=3)|N’-N|<0.5,调整迎风面积|N’-N|>0.5,增减排数求满足η5)计算湿工况下空气侧换热系数αe析湿系数:ξ= (h1 - h12) / (1.005 * (t1 - t12)) =1.39计算肋片效率m = (2 *ξ* α/ (204 * 0.00011)) ^ (0.5)l=(1.065*p1/2-d0/2)*(1+0.805lg((1.065*p1/2)/(d0/2))ηf=th(m*l)/(m*l)湿工况下空气侧放热系数αe=ξ*α1*((ηf*AF+AP)/AFP) =676)初估迎风面积、总传热面积空气流量Ma=Q/(h1-h12)=0.275迎风面积Fa=Ma/(1.2*Va) =0.135总传热面积Ft= Fa * a * N =6.767)制冷剂侧放热系数热流密度q0=Q/(Ft*τ) =17025制冷剂质量流速q0>10000 时Vr=210 kg/(㎡.s)确定通路数n=Mr/(Vr*πd0²/4) =3实际制冷剂质量流速Vrm= Mr/(n*πd0²/4) =184.4制冷剂管内放热系数B = 1.22 + ((1.54 - 1.22) / 20 * (10 + t0))式中:t0是蒸发温度。

管式间接蒸发冷却器设计及计算

管式间接蒸发冷却器设计及计算引言管式间接蒸发冷却器是一种常用的热交换设备,广泛应用于能源领域。

本文将介绍该蒸发冷却器的设计原理和计算方法,并结合实例进行分析。

设计原理管式间接蒸发冷却器利用工作介质的蒸发和冷凝过程来实现热量的转移。

其基本原理是通过管束将冷凝介质流经管内,而被冷却的介质则通过管束外表面流过,通过管壁进行热交换。

具体来说,蒸发冷却器由冷凝段和蒸发段组成。

在冷凝段,高温的工作介质通过管内流过,与外界介质进行热交换,而被冷却的介质则流经管束外表面进行冷凝。

在蒸发段,冷却介质通过管内流过,与外界介质进行热交换,而被加热的介质则通过管束外表面进行蒸发。

设计步骤为了设计和计算蒸发冷却器,我们需要依次进行以下步骤:1.确定工作介质和冷却介质的物性参数,包括密度、比热容和粘度等。

2.根据设计要求和工作条件,确定蒸发器的换热面积和蒸发速率。

3.根据蒸发速率和物性参数,计算出蒸发器中冷却介质的流速和冷却介质侧压降。

4.根据冷却介质侧压降,选择合适的管径和管长,并计算出所需管束数。

5.根据蒸发速率和工作介质的物性参数,计算出冷凝器中工作介质的流速和工作介质侧压降。

6.根据工作介质侧压降,选择合适的管径和管长,并计算出所需管束数。

7.进行蒸发冷却器的总换热汇总计算,包括总换热面积、总换热量等。

8.进行冷却介质和工作介质的管道设计,包括管道尺寸和布局等。

9.进行蒸发冷却器的性能计算,包括热效率和压降等。

10.根据计算结果进行蒸发冷却器的优化设计。

计算示例下面我们通过一个实例来计算管式间接蒸发冷却器的设计参数。

假设我们需要设计一个管式间接蒸发冷却器,用于冷却一台功率为100 kW的发动机。

工作介质为水,冷却介质为空气。

根据设计要求,我们需要冷却介质的进口温度为25℃,出口温度为30℃,工作介质的进口温度为85℃。

首先,我们需要确定水和空气的物性参数。

根据实验数据,水的密度为1000kg/m^3,比热容为4186 J/(kg·℃),粘度为1.0 × 10^-3 kg/(m·s)。

三效并流蒸发器的设计

三效并流蒸发器的设计:处理量(㎏/h )4500,初始温度为20℃,初始浓度5%,完成液浓度为40%,加热蒸汽压强为5at(绝压),末效真空度为600mmHg(表压),试计算所需的蒸发器的传热面积。

解:1、 计算总蒸发量:W=F(1-X 0/X 3=4500(1-0.05/0.40)=3937.5㎏/h 2、 估算各效蒸发量: 假设:W 1:W 2:W 3=1:1.1:1.2 W=W 1+W 2+W 3=3.3W 1=3937.5 W 1=1193㎏/h W 2=1312㎏/h W 3=1432㎏/h3、 估算各效浓度: X 1=1W -F X F ⨯=(4500×0.05)/(4500-1193)=0.068X 2=4500×0.05/(4500-1193-1312)=0.113 X 3=0.44、 分配各效压强 假设各效间压降相等P 1=5×98.07+101.33=592KPaP K =101.33-600×133.32×10-3=21KPa ΔP=(592-21)/3=571/3=190KPa则各效蒸发室的压强(二次蒸汽压强)为: P 1/=P 1-ΔP=592-190=402KPaP 2/=P 1-2ΔP=592-2×190=212KPa P 3/=P K =21KPa由各效二次蒸汽压强查水蒸汽表可得相应的二次蒸汽温度和气化潜热如下表:5、 计算各效传热温度差损失 (一)、由于蒸汽压下降引起的温度差损失Δ/ 根据二次蒸汽温度和各效完成液的浓度,由氢氧化钠的杜林线图可查的各效溶液的沸点分别为:沸点:t a1=146℃ t a2=125℃ t a3=87℃ 由于溶液蒸汽压下降引起的温度差损失为: Δ1/=146-143.6=2.4℃ Δ2/=125-121.9=3.1℃ Δ3/=87-60.7=26.3℃∑∆/=2.4+3.1+26.3=31.8℃(二)、由于静压强引起的温度差损失P m =p /+ρg L/2取液位高度为2米(即加热蒸汽管长度)由溶液的沸点和各效完成液的浓度查表可得各效溶液的密度ρ1=991㎏/m 3ρ21056㎏/m 3ρ31366㎏/m 3P 1=402+991×9.81×2/2/1000=412KPa P 2=212+1056×9.81×2/2/1000=222kpa P 3=21+1366×9.81×2/2/1000=34kpa对应的各效溶液(水)的温度分别为:144.4℃ 123.3℃ 69.9℃∑∆//=t m /-t pΔ1///=144.4-143.6=0.8℃ Δ2///=123.3-121.9=1.4℃ Δ3///=69.9-60.7=9.2℃∑∆//=0.8+1.4+9.2=11.4℃(三)、流动阻力引起的温度差损失Δ///∑∆///=06、 计算总温度差损失∑∆=31.8+11.4=43.2℃7、 计算总传热温度差∆t=T 1-T K -∑∆=158.1-60.7-43.2=54.2℃8、 计算各效溶液的沸点及各效加热蒸汽的温度 一效:t 1=T I /+ΔI =143.6+2.4+0.8=146.8℃ : t 2=121.9+3.1+1.4=126.4℃:t 3=60.7+26.3+9.2=96.2℃T2=t 1-(△1/+△1//+△1///)=146.8-3.2=143.6 T3=△t 3+t 39、 计算加热蒸汽消耗量及各效蒸发水分量 解方程组: W 1=1428㎏/h W 2=1420㎏/h W 3=1091㎏/h D 1=1508㎏/h 10、 估算蒸发器的传热面积it ∆⨯=i ik Q SiΔt 1=T 1-t 1=158.1-146.8=11.3℃ 假设各效传热系数:K 1=1800W/(m 2k) K 2=1200 W/(m 2k) K 3=600 W/(m 2k)Q 1=D 1×R 1=15.8×2093×103/3600=8.77×105WQ 2=1428×2138×103/3600=8.48×105WQ 3=8.68×105WS 1=43.1m 2S 2=41.1m 2S 3=56.3m 211、 有效温度差再分配∑∆∆+∆+∆=tt S t S t 332211S S =48.7m 2=∆1t 43.1/48.7×11.3=10℃ =∆2t 41.1/48.7×17.2=14.5℃ =∆3t 56.3/48.7×25.7=29.7℃12、 重新计算各效浓度 X 1=0.073 X 2=0.136 X 3=0.414、 计算各效蒸发量 解方程组: W 1=1444㎏/h W 2=1393㎏/h W 3=1101㎏/h D=1523㎏/h 15、 计算各效传热面积Q 1=8.85×105 S 1=49.2m 2Q 2=8.54×105 S 2=49.1M 2Q 3=8.47×105 S 3=47.5M 2m axm inS S -1=1-47.5/49.2=0.0346<0.05 取平均面积S=(49.2+49.1+47.5)/3=48.6M 2 取S=1.1S=53.46=[54M 2]。

低温真空热泵蒸发器设计计算

低温真空热泵蒸发器设计计算【实用版】目录一、引言二、低温真空热泵蒸发器的工作原理三、设计计算方法四、具体设计实例五、结论正文一、引言随着工业生产和科学研究的不断发展,对低温真空热泵蒸发器的需求越来越高。

低温真空热泵蒸发器是一种在真空条件下进行蒸发的设备,具有节能、高效、环保等优点。

本文将对低温真空热泵蒸发器的设计计算方法进行探讨。

二、低温真空热泵蒸发器的工作原理低温真空热泵蒸发器主要由加热器、蒸发器、冷凝器和压缩机四大部分组成。

在真空条件下,加热器将低温低压的制冷剂加热,使其蒸发。

蒸发后的制冷剂进入蒸发器,吸收热量,实现物料的蒸发。

随后,制冷剂蒸汽进入冷凝器,在高压下冷凝为液体,再通过压缩机压缩,实现制冷剂的循环。

三、设计计算方法1.蒸发器的选型:根据物料的蒸发特性、蒸发量、温度等参数选择合适的蒸发器。

2.制冷剂的选择:根据蒸发器的工作温度、压力等条件选择合适的制冷剂。

3.蒸发器的热负荷计算:根据物料的蒸发量、比热容、温度等参数计算蒸发器的热负荷。

4.制冷剂循环系统的设计:根据蒸发器的热负荷、制冷剂的物理性质等参数设计制冷剂循环系统。

5.设备结构的设计:根据蒸发器的选型、制冷剂循环系统的设计等参数进行设备结构的设计。

四、具体设计实例假设某物料在真空条件下需要蒸发,蒸发量为 100kg/h,工作温度为-20℃,需要设计一台低温真空热泵蒸发器。

1.根据物料的蒸发特性选择采用螺旋板式蒸发器。

2.根据工作温度、压力等条件选择制冷剂为 R134a。

3.计算蒸发器的热负荷:Q=m·L·ΔT=100kg/h×1.8kJ/(kg·K)×(-20℃)=3600kJ/h。

4.设计制冷剂循环系统:采用单级压缩制冷循环,压缩机功率为Pc=Q/COP=3600kJ/h/3.5=1029kW。

5.根据蒸发器、制冷剂循环系统等参数进行设备结构设计。

五、结论低温真空热泵蒸发器在工业生产和科学研究中具有广泛的应用,其设计计算方法涉及到多个环节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蒸发器设计计算已知条件:工质为R22,制冷量kW 3,蒸发温度C t ︒=70,进口空气的干球温度为C t a ︒=211,湿球温度为C t b ︒=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ︒=132,湿球温度为C t b ︒=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。

(1)蒸发器结构参数选择选用mm mm 7.010⨯φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿气流方向的管排数4=L n ,迎面风速取s m w f /3=。

(2)计算几何参数翅片为平直套片,考虑套片后的管外径为mm d d f o b 4.102.02102=⨯+=+=δ沿气流方向的管间距为mm s s 65.21866.02530cos 12=⨯=︒=沿气流方向套片的长度为mm s L 6.8665.21442=⨯==设计结果为 mm s L 95.892565.2132532=+⨯=+= 每米管长翅片表面积:fb f s d s s a 100042221⨯⎪⎭⎫ ⎝⎛-⋅=π ()5.210004.10414.365.212522⨯⎪⎭⎫ ⎝⎛⨯-⨯⨯= m 23651.0=每米管长翅片间管子表面积:ff f b b s s d a )(δπ-=()5.210002.05.24.1014.3⨯-⨯⨯= m m 203.0=每米管长总外表面积:m m a a a b f of 23951.003.03651.0=+=+=每米管长管面积:m m d a i i 2027.0)20007.001.0(14.3=⨯-⨯==π每米管长的外表面积:m m d a b b 2003267.00104.014.3=⨯==π肋化系数:63.14027.03951.0===iof a a β每米管长平均直径的表面积:m m d a m m 202983.020086.00104.014.3=⎪⎭⎫⎝⎛+⨯==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为C t t t a a f ︒=+=+=1721321221 空气在下C ︒17的物性参数3215.1m kg f =ρ()K kg kJ c pf ⋅=1005704.0=rf Ps m v f 61048.14-⨯=②最窄截面处空气流速()()()()s m s s s s w w f f f d fb 58.52.05.25.24.102525311max =--⨯=--=δ③干表面传热系数干表面传热系数用小型制冷装置设计指导式(4-8)计算15.04.00max 42618.00014.0--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛+=bo of f a a v d w α15.04.0603267.03951.01048.140104.058.52168.00014.0---⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛⨯⨯+=00792.0=()()()km W P c w r pff ⋅=⨯⨯⨯==23232max 402.68704.0100558.5215.100792.0ραα(4)确定空气在蒸发器的变化过程根据给定的进出口温度由湿空气的焓湿图可得kg g d kg g d kg kJ h kg kJ h 443.7,723.8,924.31,364.432121====。

在空气的焓湿图上连接空气的进出口状态点1和点2,并延长与饱和气线()0.1=ϕ相交于点w ,该点的参数是C t kg g d kg kJ h w w w ︒===8,6.6,25。

在蒸发器中空气的平均比焓值kg kJ n h h h h nh h h h ww w m /73.3625924.3125364.431924.31364.432512121=---+=---+=由焓湿图查得kg g d C t m m 8,2.16=︒=析湿系数42.182.166.6846.2146.21=--+=--+=w m w m t t d d ξ(5)循环空气量的计算h kg h h Q q da m 06.944924.31364.4336003210,=-⨯=-=进口状态下干空气的比体积()ba P d T R v 1110016.01+=()()101325723.80016.012115.2734.287⨯++⨯=kg m 3846.0= 循环空气的体积流量h m v q q da m a v /67.798846.006.94431,,=⨯==(6)空气侧当量表面传热系数的计算⎪⎪⎭⎫⎝⎛++=b fbf f j aa a a ηξαα0 对于正三角形排列的平直套片管束,翅片效率f η小型制冷装置设计指导式(4-13)计算,叉排时翅片可视为六角形,且此时翅片的长对边距离和短对边距离之比4.24.1025d B ,1b m ===ρ且B A 3.027.1-='BAmρρ 3.014.227.1-⨯⨯= 55.2= 肋折合高度为()()()()mm d h b7.1055.2ln 35.01155.224.10ln 35.0112=⨯+-='+-'='ρρ mm ff 106.643102.023642.12.68220=-⨯⨯⨯⨯==δλξα凝露工况下翅片效率为()8683.0107.1006.64107.1006.64)(33=⨯⨯⨯⨯=''=--th h m h m th f η当量表面传热系数⎪⎪⎭⎫⎝⎛++=b fbf f j aa a a ηξαα0 ⎪⎭⎫⎝⎛+⨯⨯⨯=3951.003.0365.08683.02.6842.1)/(06.852K m W ⋅= (7)管R22蒸发时的表面传热系数 R22在C t ︒=70时的物性参数为: 饱和液体密度 33.1257m kg l =ρ 饱和蒸气密度 343.26m kg g =ρ 液体粘度 s Pa l ⋅⨯=-6102.202μ 气体粘度 s Pa g ⋅⨯=-610815.11μ 汽化热 kg kJ 56.1990=γ 液体热导率 K m W l ⋅⨯=-/102.133λ 蒸气热导率 K m W g ⋅⨯=-/1093.93λ 液体普朗特数 62.2=rl P 蒸气普朗特数 92.0=rg PR22在管蒸发的表面传热系数由小型制冷装置设计与指导式(4-5)计算。

计算查的R22进入蒸发器时的干度25.01=x ,出口干度0.12=x 。

则R22的总质量流量为()()h kg x x Q q m 16.7225.0156.1993600336001200=-⨯⨯=-⨯=γ作为迭代计算的初值,取27200m W q i =,R22在管的质量流速()s m kg g i ⋅=2'160。

则总流通面积为24'1025.1360016016.723600m q q A i m -⨯=⨯=⨯=每根管子的有效流通截面积2522108.540086.014.34m d A i i -⨯=⨯==π蒸发器的分路数16.2108.51025.154=⨯⨯==--i A A Z 结合分液器的实际产品现状,取分路数为 Z=2 每一分路中R22的质量流量为h kg Z q g m m 08.36216.72===每一分路中R22在管的实际质量流速为()s m kg A g g i m i ⋅=⨯⨯=⨯=-258.172108.5360008.363600 于是40101.256.1998.1722.7-⨯=⨯==r g q B i i 09634.03.125743.26625.0625.0115.08.05.08.00=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=lg x x C ρρ()()224.00086.08.93.12578.1722222=⨯⨯==i l i rl gd g F ρ ()()08.2756102.2020086.0625.018.1721Re 6=⨯⨯-⨯=-=-l i l d x i g μ()()ilrl l l d P λα4.08.0Re 023.0=()()0086.00932.062.208.2756023.04.08.0⨯=11.207=()()()⎥⎦⎤⎢⎣⎡+=fl c c rl cl i F B C F C C 452030125αα()()()[]2.2101.22.667224.02509634.0136.111.2077.043.09.0⨯⨯⨯+⨯⨯⨯=--)K m W ⋅=235.4050(8)传热温差的初步计算C t t t t t t a a a a m ︒=---=---=44.9713721ln 1321ln20121θ(9)传热系数的计算管污垢热阻i r 可以忽略,接触热阻以及导热热阻之和取为()K m W r ⋅=200048.0()K m W r a a k jii of⋅=++⨯=++=2006.4906.8510048.0027.035.40503951.0111αα(10)核算假设的i q 值202.46844.96.49m W k q m o =⨯==θ268512.468027.03951.0m W q a a q o iof i =⨯==计算表明,假设的27200m W q i =初值与核算的值26851m W 较接近,故假设有效,可用。

(11)蒸发器结构尺寸的确定 蒸发器所需的表面传热面积20'417.072003000m q Q A i i ===20'0408.62.4683000m q Q A o ===蒸发器所需传热管总长m a A l of t21.163951.0408.6'0'===迎风面积 2,074.03600367.798m w q A fa v f =⨯==取蒸发器的宽度mm B 350=,高mm H 300=。

实际迎风面积为2105.03.035.0m A f =⨯=。

已选定垂直于气流方向的管间距为mm s 251=,故垂直于气流方向的每排管子数为122530011===s H n 深度方向为4排,共布置48根传热管,故传热管的实际总长为m l t 8.164835.0=⨯=传热管的实际表面传热面积为2454.042.00086.014.34835.048m d A i i =⨯⨯⨯=⨯⨯=π09.1417.0454.0'==i i A A 04.121.168.16'==t t l l 下面计算蒸发器的实际外表面积48根m 35.0长的管其翅片间管子表面积2505.00002.05.235035.00104.014.348m =⎪⎭⎫⎝⎛⨯-⨯⨯⨯管子左右两边都要伸出一定距离,分别取为mm 10,mm 3;U 型管需要用弯头相接,取弯头半径为mm R 5.12=。

相关文档
最新文档