北京市朝阳区2018届高三上-期中统一考试数学(理)试卷(含答案)
2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。
2018年北京市朝阳区高三上学期期中数学试卷含解析答案(文科)

2017-2018学年北京市朝阳区高三(上)期中数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x>1},B={x|log2x>1},则A∩B=()A.{x|x>2}B.{x|1<x<2}C.{x|x>1}D.{x|x>0}2.(5分)执行如图所示程序框图,则输出i的值为()A.3 B.4 C.5 D.63.(5分)已知m,n表示两条不同的直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m⊥n,则n⊥αC.若m⊥α,m⊥n,则n∥αD.若m⊥α,m∥n,则n⊥α4.(5分)要想得到函数的图象,只需将函数y=sinx的图象上所有的点()A.先向右平移个单位长度,再将横坐标伸长为原来的2倍,纵坐标不变B.先向右平移个单位长度,横坐标缩短为原来的倍,纵坐标不变C.横坐标缩短为原来的倍,纵坐标不变,再向右平移个单位长度D.横坐标变伸长原来的2倍,纵坐标不变,再向右平移个单位长度5.(5分)已知非零平面向量,,则“||=||+||”是“存在非零实数λ,使=λ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.5 B.6 C.7 D.87.(5分)函数f(x)在其定义域内满足xf'(x)+f(x)=e x,(其中f'(x)为函数f(x)的导函数),f(1)=e,则函数f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值又无极小值8.(5分)袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球.教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.甲说:“我无法确定.”乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.”根据以上信息,你可以推断出抽取的两球中()A.一定有3号球B.一定没有3号球C.可能有5号球D.可能有6号球二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.(5分)已知数列{a n}为等比数列,a1=1,a4=8,则{a n}的前5项和S5=.10.(5分)在平面直角坐标系xOy中,已知点A(0,1),将线段OA绕原点O 按逆时针方向旋转60°,得到线段OB ,则向量的坐标为.11.(5分)已知函数,若方程f(x)=m有2个不相等的实数根,则实数m的取值范围是.12.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为;表面积为.13.(5分)某品牌连锁便利店有n个分店,A,B,C三种商品在各分店均有销售,这三种商品的单价和重量如表1所示:表1某日总店向各分店分配的商品A,B,C的数量如表2所示:表2表3表示该日分配到各分店去的商品A,B,C的总价和总重量:表3则a=;b=.14.(5分)已知函数f(x)同时满足以下条件:①定义域为R;②值域为[0,2];③f(x)﹣f(﹣x)=0.试写出一个函数解析式f(x)=.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的取值范围.16.(13分)已知数列{a n}的前n项和为,满足S n=2a n﹣1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{a n}的前n项积为T n,求T n.17.(13分)已知△ABC中,,a=.(Ⅰ)若b=,求A;(Ⅱ)若△ABC的面积为,求b的值.18.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PA⊥平面ABCD,E是棱PA上的一个动点.(Ⅰ)若E为PA的中点,求证:PC∥平面BDE;(Ⅱ)求证:平面PAC⊥平面BDE;(Ⅲ)若三棱锥P﹣BDE的体积是四棱锥P﹣ABCD体积的,求的值.19.(13分)已知函数f(x)=kx﹣﹣(k+1)lnx,k∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当k>0时,若函数f(x)在区间(1,2)内单调递减,求k的取值范围.20.(14分)已知函数.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:;(Ⅲ)判断曲线y=f(x)是否位于x轴下方,并说明理由.2017-2018学年北京市朝阳区高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x>1},B={x|log2x>1},则A∩B=()A.{x|x>2}B.{x|1<x<2}C.{x|x>1}D.{x|x>0}【解答】解:集合A={x|x>1},B={x|log2x>1}={x|log2x>log22}={x|x>2},则A∩B={x|x>1}∩{x|x>2}={x|x>2},故选:A.2.(5分)执行如图所示程序框图,则输出i的值为()A.3 B.4 C.5 D.6【解答】解:第1次执行循环体后,S=4,i=2,不满足退出循环的条件;第2次执行循环体后,S=8,i=3,不满足退出循环的条件;第3次执行循环体后,S=14,i=4,不满足退出循环的条件;第4次执行循环体后,S=22,i=5,满足退出循环的条件;故输出的i值为5,故选:C.3.(5分)已知m,n表示两条不同的直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m⊥n,则n⊥αC.若m⊥α,m⊥n,则n∥αD.若m⊥α,m∥n,则n⊥α【解答】解:对于A,若β∥α,则β内的任意两条直线都与α平行,故A错误;对于B,若n⊂α,则结论显然不成立,故B错误;对于C,若n⊂α,则结论显然不成立,故C错误;对于D,若m⊥α,则m与α内的所有直线都垂直,又m∥n,∴n与α内的所有直线都垂直,∴n⊥α,故D正确.故选:D.4.(5分)要想得到函数的图象,只需将函数y=sinx的图象上所有的点()A.先向右平移个单位长度,再将横坐标伸长为原来的2倍,纵坐标不变B.先向右平移个单位长度,横坐标缩短为原来的倍,纵坐标不变C.横坐标缩短为原来的倍,纵坐标不变,再向右平移个单位长度D.横坐标变伸长原来的2倍,纵坐标不变,再向右平移个单位长度【解答】解:将函数y=sinx的图象上所有的点横坐标缩短为原来的倍,可得y=sin2x,纵坐标不变,再向右平移个单位长度,可得y=sin2(x﹣)=sin(2x ﹣).故选:C.5.(5分)已知非零平面向量,,则“||=||+||”是“存在非零实数λ,使=λ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:(1)若||=||+||,则方向相同,∴共线,∴存在非零实数λ,使=λ.∴“||=||+||”是“存在非零实数λ,使=λ”的充分条件;(2)若存在非零实数λ,使=λ,则共线,∴当方向相同时,||=||+||,当方向相反时,||<||+||,∴∴“||=||+||”不是“存在非零实数λ,使=λ”的必要条件.故选:A.6.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.5 B.6 C.7 D.8【解答】解:由已知中的三视图可得:该几何体是一个以侧视图为底面的柱体,底面面积S=1×1+×(1+2)×1=,高h=2,故体积V=Sh=5,故选:A.7.(5分)函数f(x)在其定义域内满足xf'(x)+f(x)=e x,(其中f'(x)为函数f(x)的导函数),f(1)=e,则函数f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值又无极小值【解答】解:由xf′(x)+f(x)=e x,得到[xf(x)﹣e x]'=0,设xf(x)﹣e x=c,因为f(1)=e,所以c=0,∴x=0不满足题意,x≠0时,f(x)=,f′(x)=,令f′(x)>0,解得:x>1,令f′(x)<0,解得:x<1,故f(x)在(﹣∞,1)递减,在(1,+∞)递增,=f(1)=e,无极大值,故f(x)极小值故选:B.8.(5分)袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球.教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.甲说:“我无法确定.”乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.”根据以上信息,你可以推断出抽取的两球中()A.一定有3号球B.一定没有3号球C.可能有5号球D.可能有6号球【解答】解:因为2+3=5,2+4=6,2+5=7,2+6=8,3+4=7,3+5=8,3+6=9,4+5=9,4+6=10,5+6=11,则甲可以得出为2,6或3,5或3,6或4,5或2,5或3,4其中的一组因为2×3=6,2×4=8,2×5=10,2×6=12,3×4=12,3×5=15,3×6=18,4×5=20,4×6=24,5×6=30,则乙可以得出为2,6,或3,4其中的一组,根据甲乙的所说的可得这个两个求球为2,6或3,4,故A,B,C错误,D正确,故选:D.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.(5分)已知数列{a n}为等比数列,a1=1,a4=8,则{a n}的前5项和S5=31.【解答】解:数列{a n}为公比为q的等比数列,a1=1,a4=8,可得a1q3=q3=8,解得q=2,则{a n}的前5项和S5===31.故答案为:31.10.(5分)在平面直角坐标系xOy中,已知点A(0,1),将线段OA绕原点O 按逆时针方向旋转60°,得到线段OB,则向量的坐标为(﹣,).【解答】解:B点坐标为(cos150°,sin150°),即(﹣,)∴=(﹣,).故答案为:(﹣).11.(5分)已知函数,若方程f(x)=m有2个不相等的实数根,则实数m的取值范围是(1,] .【解答】解:0<x<1时,x∈(0,+∞),x≥1时,2﹣x+1∈(1,],画出函数f(x)的图象,如图所示:,若方程f(x)=m有2个不相等的实数根,则y=f(x)和y=m有2个不同的交点,结合图象m∈(1,],故答案为:(1,].12.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为24;表面积为14.【解答】解:由三视图知,这是一个底面是矩形的四棱锥,矩形的长和宽分别是4,2底面上的高与底面交于底面一条边的中点,四棱锥的高是3,故底面面积为:2×4=8,高h=3,故体积V=24,侧面VAD的面积为:6,侧面VAB和VCD 的面积均为:,侧面VBC的面积为:2,故棱锥的表面积为:14故答案为:24,1413.(5分)某品牌连锁便利店有n个分店,A,B,C三种商品在各分店均有销售,这三种商品的单价和重量如表1所示:表1某日总店向各分店分配的商品A,B,C的数量如表2所示:表2表3表示该日分配到各分店去的商品A,B,C的总价和总重量:表3则a=1080;b=0.2m1+0.3m2+0.4m3.【解答】解:由已知中的表1,表2得:a=12×15+15×20+20×30=1080,b=0.2m1+0.3m2+0.4m3故答案为:1080;0.2m1+0.3m2+0.4m314.(5分)已知函数f(x)同时满足以下条件:①定义域为R;②值域为[0,2];③f(x)﹣f(﹣x)=0.试写出一个函数解析式f(x)=2|cosx| .【解答】解:由题意得:f(x)的定义域是R,值域是[0,2],函数f(x)是偶函数,故y=2|cosx|或y=cosx+1或y=等,故答案为:2|cosx|.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的取值范围.【解答】解:因为,所以===.(Ⅰ)函数f(x)的最小正周期为.(Ⅱ)因为,所以.所以.所以.即函数f(x)的取值范围为[0,].16.(13分)已知数列{a n}的前n项和为,满足S n=2a n﹣1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{a n}的前n项积为T n,求T n.【解答】解:(Ⅰ)由S n=2a n﹣1可得,当n=1时,a1=S1=2a1﹣1,即有a1=1;当n≥2时a n=S n﹣S n﹣1,a n=2a n﹣2a n﹣1,即a n=2a n﹣1,则数列{a n}为首项为1,公比为2的等比数列,即,n∈N*.(Ⅱ).17.(13分)已知△ABC中,,a=.(Ⅰ)若b=,求A;(Ⅱ)若△ABC的面积为,求b的值.【解答】解:(Ⅰ)由正弦定理,可得.所以sinA=.在三角形中,由已知b>a,所以.…(6分)(Ⅱ)由面积公式可得,,解得c=3.由余弦定理知b2=a2+c2﹣2accosB=18+2﹣6=14,所以b=…(13分)18.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PA⊥平面ABCD,E是棱PA上的一个动点.(Ⅰ)若E为PA的中点,求证:PC∥平面BDE;(Ⅱ)求证:平面PAC⊥平面BDE;(Ⅲ)若三棱锥P﹣BDE的体积是四棱锥P﹣ABCD体积的,求的值.【解答】(本小题满分14分)证明:(Ⅰ)如图,设AC交BD于O,连接EO.因为底面ABCD是菱形,所以O是AC的中点.又因为E为PA的中点,所以EO∥PC.因为PC⊄平面BDE,EO⊂平面BDE,所以PC∥平面BDE.…(4分)(Ⅱ)因为底面ABCD是菱形,所以AC⊥BD.又因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.因为PA∩AC=A,所以BD⊥平面PAC.因为BD⊂平面BDE,所以平面PAC⊥平面BDE.…(10分)解:(Ⅲ)设四棱锥P﹣ABCD的体积为V.因为PA⊥平面ABCD,所以.又因为底面ABCD是菱形,所以,所以.根据题意,,所以.又因为,所以.…(14分)19.(13分)已知函数f(x)=kx﹣﹣(k+1)lnx,k∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当k>0时,若函数f(x)在区间(1,2)内单调递减,求k的取值范围.【解答】解:(Ⅰ)函数f(x)的定义域为{x|x>0},==,(1)当k≤0时,令f'(x)>0,解得0<x<1,此时函数f(x)为单调递增函数;令f'(x)<0,解得x>1,此时函数f(x)为单调递减函数.(2)当k>0时,①当,即k>1时,令f'(x)>0,解得或x>1,此时函数f(x)为单调递增函数;令f'(x)<0,解得,此时函数f(x)为单调递减函数.②当k=1时,f'(x)≥0恒成立,函数f(x)在(0,+∞)上为单调递增函数;③当,即0<k<1时,令f'(x)>0,解得0<x<1或,此时函数f(x)为单调递增函数;令f'(x)<0,解得,此时函数f(x)为单调递减函数.…(9分)综上所述,当k≤0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞);当0<k<1时,函数f(x)的单调递增区间为(0,1),(,+∞),单调递减区间为(1,);当k=1时,函数f(x)的单调递增区间为(0,+∞);当k>1时,函数f(x)的单调递增区间为(0,),(1,+∞),单调递减区间为(,+∞).(Ⅱ),因为函数f(x)在(1,2)内单调递减,所以不等式在在(1,2)上成立.设g(x)=(kx﹣1)(x﹣1),则即,解得.…(13分)20.(14分)已知函数.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:;(Ⅲ)判断曲线y=f(x)是否位于x轴下方,并说明理由.【解答】解:函数的定义域为(0,+∞),(Ⅰ),又,曲线y=f(x)在x=1处的切线方程为.即.…(4分)(Ⅱ)“要证明”等价于“”.设函数g(x)=xlnx.令g'(x)=1+lnx=0,解得.因此,函数g(x)的最小值为.故.即.…(9分)(Ⅲ)曲线y=f(x)位于x轴下方.理由如下:由(Ⅱ)可知,所以.设,则.令k'(x )>0得0<x <1;令k'(x )<0得x >1.所以k (x )在(0,1)上为增函数,(1,+∞)上为减函数.所以当x >0时,k (x )≤k (1)=0恒成立,当且仅当x=1时,k (1)=0. 又因为,所以f (x )<0恒成立.故曲线y=f (x )位于x 轴下方.…(14分)赠送—高中数学知识点【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n a n 是偶数时,正数a 的正的n n a 表示,负的n 次方根用符号n a -0的n 次方根是0;负数a 没有n 次方根.n a n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nna a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,mm m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质 函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域 R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫xa y =xy(0,1)O1y =xa y =xy (0,1)O 1y =做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质。
2018-2019学年北京市朝阳区高三上学期期中模拟考试数学(文解析)试题及答案-精编试题

高三年级第一学期期中模拟统一考试数学试卷(文史类)(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 已知集合{|(1)0,}Ax x x xR ,1{|2,}2Bx x x R ,那么集合ABA.B .1{|1,}2x xx R C .{|22,}x x x R D .{|21,}x xxR 2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A .1y x B .tan y xC .3y xD .2yx3.已知3sin 5x ,则sin 2x 的值为A .1225B .2425C .1225或1225D .2425或24254. 设x R 且0x ,则“1x”是“1+2x x”成立的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.设m ,n 是两条不同的直线,,是两个不同的平面.下列命题正确的是A .若,,m n m n ,则B .若//,,//m n ,则m nC .若,,//mn ,则//m nD .若,,m n m ,则n6. 已知三角形ABC 外接圆O 的半径为1(O 为圆心),且OBOC0,||2||OA AB ,则CA BC 等于()A .154B .34C .154D .347. 已知函数21,0,()log ,0,x x f x x x则函数1()()2g x f f x 的零点个数是A .4B .3C .2D .18.5个黑球和4个白球从左到右任意排成一排,下列说法正确的是()A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.设平面向量(1,2),(2,)y a b,若a //b ,则y .[:,]10.已知角A 为三角形的一个内角,且3cos 5A,sin A =. cos 2A.11.已知 2.1log 0.6a,0.62.1b,0.5log 0.6c,则a ,b ,c 的大小关系是.12. 设各项均为正数的等比数列n a 的前n 项和为n S ,若23a ,245S S ,则1a 的值为,4S 的值为.13.已知函数221,0,()(1)2,0,xmx x f x mx在(,)上具有单调性,则实数m 的取值范围是.14. 《九章算术》是我国古代一部重要的数学著作.书中有如下问题:“今有良马与驽马发长安,至齐。
2018年北京市高考数学试卷(理科) word版 含参考答案及解析

2018年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2} D.{﹣1,0,1,2} 2.(5分)在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.4.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A. f B. f C. f D.f5.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.46.(5分)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1 B.2 C.3 D.48.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A二、填空题共6小题,每小题5分,共30分。
9.(5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.10.(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=.11.(5分)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.12.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是.13.(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.14.(5分)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.三、解答题共6小题,共80分。
北京市朝阳区2017-2018学年高三上学期期中数学试卷(文科)Word版含解析

2017-2018学年北京市朝阳区高三(上)期中数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x(x﹣1)<0,x∈R},B={x|<x<2,x∈R},那么集合A∩B=()A.?B.C.{x|﹣2<x<2,x∈R}D.{x|﹣2<x<1,x∈R}2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是()A.y=x﹣1 B.y=tanx C.y=x3D.3.已知sinx=,则sin2x的值为()A.B.C.或D.或﹣4.设x∈R且x≠0,则“x>1”是“x+>2”成立的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题正确的是()A.若m?α,n?β,m⊥n,则α⊥βB.若α∥β,m⊥α,n∥β,则m⊥nC.若α⊥β,m⊥α,n∥β,则m∥n D.若α⊥β,α∩β=m,n⊥m,则n⊥β6.已知三角形ABC外接圆O的半径为1(O为圆心),且+=,||=2||,则?等于()A.B. C.D.7.已知函数f(x)=则函数g(x)=f(f(x))﹣的零点个数是()A.4 B.3 C.2 D.18.5个黑球和4个白球从左到右任意排成一排,下列说法正确的是()A.总存在一个黑球,它右侧的白球和黑球一样多B.总存在一个白球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.设平面向量=(1,2),=(﹣2,y),若∥,则y=.10.已知角A为三角形的一个内角,且cosA=,sinA=.cos2A=.11.已知a=log2.10.6,b=2.10.6,c=log0.50.6,则a,b,c的大小关系是.12.各项均为正数的等比数列{{a n}的前n项和为S n,若a3=2,S4=5S2,则a1的值为,S4的值为.13.已知函数f(x)=在(﹣∞,+∞)上是具有单调性,则实数m的取值范围.14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第天,两马相逢.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.已知数列{a n}(n∈N*)是公差不为0的等差数列,若a1=1,且a2,a4,a8成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=,求数列{b n}的前n项和S n.16.已知函数f(x)=asinx﹣cosx(a∈R)的图象经过点(,0).(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,],求f(x)的取值范围.17.如图,已知A,B,C,D四点共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=.(Ⅰ)求sin∠DBC;(Ⅱ)求AD.18.如图,四边形ABCD为矩形,PA⊥平面ABCD,DE∥PA.(Ⅰ)求证:BC⊥CE;(Ⅱ)若直线m?平面PAB,试判断直线m与平面CDE的位置关系,并说明理由;(Ⅲ)若AB=PA=2DE=2,AD=3,求三棱锥E﹣PCD的体积.19.已知函数f(x)=,a∈R.(Ⅰ)若曲线y=f(x)在点(0,f(0))处切线斜率为﹣2,求函数f(x)的最小值;(Ⅱ)若函数f(x)在区间(0,1)上无极值,求a的取值范围.20.已知函数f(x)=ax﹣﹣(a+1)lnx,a∈R.(I)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若a≥1,且f(x)>1在区间[,e]上恒成立,求a的取值范围;(III)若a>,判断函数g(x)=x[f(x)+a+1]的零点的个数.2016-2017学年北京市朝阳区高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x(x﹣1)<0,x∈R},B={x|<x<2,x∈R},那么集合A∩B=()A.?B.C.{x|﹣2<x<2,x∈R}D.{x|﹣2<x<1,x∈R}【考点】交集及其运算.【分析】化简集合A,根据交集的定义求出A∩B即可.【解答】解:集合A={x|x(x﹣1)<0,x∈R}={x|0<x<1,x∈R},B={x|<x<2,x∈R},集合A∩B={x|<x<1,x∈R}.故选:B.2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是()A.y=x﹣1 B.y=tanx C.y=x3D.【考点】函数奇偶性的判断.【分析】根据函数奇偶性和单调性的性质分别进行判断即可.【解答】解:A.f(x)=x﹣1是非奇非偶函数,不满足条件.B.y=tanx是奇函数,在定义域上函数不是单调函数,不满足条件.C.y=x 3是奇函数,在定义域上为增函数,满足条件.D.是奇函数,在定义域上不是单调函数,不满足条件.故选:C3.已知sinx=,则sin2x的值为()A.B.C.或D.或﹣【考点】二倍角的正弦.【分析】由已知利用同角三角函数基本关系式可求cosx,进而利用二倍角的正弦函数公式即可计算求值.【解答】解:∵sinx=,∴cosx=±=±,∴sin2x=2sinxcosx=2×(±)=±.故选:D.4.设x∈R且x≠0,则“x>1”是“x+>2”成立的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据基本不等式的性质,结合充分不必要条件的定义进行判断即可.【解答】解:当x<0时,不等式x+>2不成立,当x>0时,x+≥2=2,当且仅当x=,即x=1时,取等号,当x>1时,不等式x+>2成立,反之不一定成立,是充分不必要条件,故选:A5.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题正确的是()A.若m?α,n?β,m⊥n,则α⊥βB.若α∥β,m⊥α,n∥β,则m⊥nC.若α⊥β,m⊥α,n∥β,则m∥n D.若α⊥β,α∩β=m,n⊥m,则n⊥β【考点】空间中直线与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,推导出m⊥β,所以m⊥n;在C中,m与n相交、平行或异面;在D中,n与β相交、平行或n?β.【解答】解:由m,n是两条不同的直线,α,β是两个不同的平面,知:在A中,若m?α,n?β,m⊥n,则α与β相交或平行,故A错误;在B中,若α∥β,m⊥α,n∥β,则m⊥β,所以m⊥n,故B正确;在C中,若α⊥β,m⊥α,n∥β,则m与n相交、平行或异面,故C错误;在D中,若α⊥β,α∩β=m,n⊥m,则n与β相交、平行或n?β,故D错误.故选:B.6.已知三角形ABC外接圆O的半径为1(O为圆心),且+=,||=2||,则?等于()A.B. C.D.【考点】平面向量数量积的运算.【分析】由题意可得三角形是以角A为直角的直角三角形,解直角三角形求出相应的边和角,代入数量积公式得答案.【解答】解:三角形ABC外接圆O的半径为1(O为圆心),且+=,∴O为BC的中点,故△ABC是直角三角形,∠A为直角.又||=2||,∴||=,||=2,∴||=,∴cosC===,∴?=﹣?=﹣×2×=﹣故选:A.7.已知函数f(x)=则函数g(x)=f(f(x))﹣的零点个数是()A.4 B.3 C.2 D.1【考点】函数零点的判定定理.【分析】作出函数的图象,先求出f(x)=的根,然后利用数形结合转化为两个函数的交点个数即可.【解答】解:作出函数f(x)的图象如图:当x≤0时,由f(x)=得x+1=,即x=﹣1=﹣,当x>0时,由f(x)=得log2x=,即x==,由g(x)=f(f(x))﹣=0得f(f(x))=,则f(x)=﹣或f(x)=,若f(x)=﹣,此时方程f(x)=﹣有两个交点,若f(x)=,此时方程f(x)=只有一个交点,则数g(x)=f(f(x))﹣的零点个数是3个,故选:B。
2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
朝阳区高中2018-2019学年高三上学期11月月考数学试卷含答案
朝阳区高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________ 姓名__________ 分数__________一、选择题1.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为()A.1372 B.2024 C.3136 D.44952.已知三棱锥A﹣BCO,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA 上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为()A.B.或36+C.36﹣D.或36﹣3.i是虚数单位,i2015等于()A.1 B.﹣1 C.i D.﹣i4.记,那么ABCD5.已知命题p:存在x0>0,使2<1,则¬p是()A.对任意x>0,都有2x≥1 B.对任意x≤0,都有2x<1C.存在x0>0,使2≥1 D.存在x0≤0,使2<16. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .147. 已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65B .5C .5D .58. 在平行四边形ABCD 中,AC 为一条对角线,=(2,4),=(1,3),则等于( )A .(2,4)B .(3,5)C .(﹣3,﹣5)D .(﹣2,﹣4)9. 已知,其中i 为虚数单位,则a+b=( )A .﹣1B .1C .2D .310.已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .311.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny12.下列结论正确的是( )A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α二、填空题13.抛物线y=4x 2的焦点坐标是 .14.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x ﹣)在[0,π]上是减函数其中真命题的序号是 .15.设不等式组表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 .16.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .17.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.18.椭圆C : +=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .三、解答题19.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.(1)求证:PB PA =;(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.20.(本小题满分13分)如图,已知椭圆C :22221(0)x y a b a b +=>>C 的左顶点T 为圆心作圆T :222(2)x y r ++=(0r >),设圆T 与椭圆C 交于点M 、N .[_](1)求椭圆C 的方程;(2)求TM TN ⋅的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M 、N 的任意一点,且直线MP ,NP 分别与x 轴交于点R S 、(O 为坐标 原点),求证:OR OS ⋅为定值.【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力.21.有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47其中直径在区间[1.48,1.52]内的零件为一等品.(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率.22.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线.(1)求证:AD=122b2+2c2-a2;(2)若A=120°,AD=192,sin Bsin C=35,求△ABC的面积.23.在数列{a n}中,a1=1,a n+1=1﹣,b n=,其中n∈N*.(1)求证:数列{b n}为等差数列;(2)设c n=b n+1•(),数列{c n}的前n项和为T n,求T n;(3)证明:1+++…+≤2﹣1(n∈N*)24.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AEC⊥平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.朝阳区高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.2.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D3.【答案】D【解析】解:i2015=i503×4+3=i3=﹣i,故选:D【点评】本题主要考查复数的基本运算,比较基础.4.【答案】B【解析】【解析1】,所以【解析2】,5.【答案】A【解析】解:∵命题p:存在x0>0,使2<1为特称命题,∴¬p为全称命题,即对任意x>0,都有2x≥1.故选:A6.【答案】A【解析】考点:得出数列的性质及前项和.【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“10a>,0d<”判断前项和的符号问题是解答的关键.7.【答案】B考点:双曲线的性质.8.【答案】C【解析】解:∵,∴==(﹣3,﹣5).故选:C.【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力.9.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.10.【答案】D【解析】解:①∵x∈[0,],∴f(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;n②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.11.【答案】C【解析】解:∵实数x、y满足a x<a y(1>a>0),∴y<x.对于A.取x=1,y=0,不成立,因此不正确;对于B.取y=﹣2,x=﹣1,ln(x2+1)>ln(y2+1)不成立;对于C.利用y=x3在R上单调递增,可得x3>y3,正确;对于D.取y=﹣π,x=,但是sinx=,siny=,sinx>siny不成立,不正确.故选:C.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.12.【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交.故选:B.【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.二、填空题13.【答案】.【解析】解:由题意可知∴p=∴焦点坐标为故答案为【点评】本题主要考查抛物线的性质.属基础题.14.【答案】③.【解析】解:①、终边在y轴上的角的集合是{a|a=,k∈Z},故①错误;②、设f(x)=sinx﹣x,其导函数y′=cosx﹣1≤0,∴f(x)在R上单调递减,且f(0)=0,∴f(x)=sinx﹣x图象与轴只有一个交点.∴f(x)=sinx与y=x 图象只有一个交点,故②错误;③、由题意得,y=3sin[2(x﹣)+]=3sin2x,故③正确;④、由y=sin(x﹣)=﹣cosx得,在[0,π]上是增函数,故④错误.故答案为:③.【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键.15.【答案】.【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外区域D:表示正方形OABC,(如图)其中O为坐标原点,A(2,0),B(2,2),C(0,2).因此在区域D内随机取一个点P,则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,且在扇形OAC的外部,如图中的阴影部分∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π∴所求概率为P==故答案为:【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.16.【答案】 ﹣ .【解析】解:∵f (x )=﹣2ax+2a+1,∴求导数,得f ′(x )=a (x ﹣1)(x+2). ①a=0时,f (x )=1,不符合题意;②若a >0,则当x <﹣2或x >1时,f ′(x )>0;当﹣2<x <1时,f ′(x )<0, ∴f (x )在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数; ③若a <0,则当x <﹣2或x >1时,f ′(x )<0;当﹣2<x <1时,f ′(x )>0, ∴f (x )在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数因此,若函数的图象经过四个象限,必须有f (﹣2)f (1)<0,即()()<0,解之得﹣.故答案为:﹣【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.17.【答案】(【解析】()2310f x x x ⎛=-+>⇒∈ ⎝'⎭ ,所以增区间是⎛ ⎝⎭18.【答案】.【解析】解:椭圆C:+=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,可得c=2,2a==8,可得a=4,b 2=a 2﹣c 2=12,可得b=2, 椭圆的短轴长为:4.故答案为:4.【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.三、解答题19.【答案】(1)详见解析;(2)详见解析.∴点P 为线段AB 中点,PB PA =;…………7分(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分若直线AB 斜率存在,由(1)可得148221+-=+k km x x ,144422221+-=k t m x x ,141141222212+-+=-+=k t k x x k AB ,…………11分点O 到直线AB 的距离2221141kk km d ++=+=,…………13分∴12212-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 20.【答案】【解析】(1)依题意,得2a =,c e a ==1,322=-==∴c a b c ;故椭圆C 的方程为2214x y += . (3分)(3)设),(00y x P 由题意知:01x x ≠,01y y ≠±.直线MP 的方程为),(010100x x x x y y y y ---=-令0=y 得101001y y y x y x x R --=,同理:101001y y y x y x x S ++=,∴212021202021y y y x y x x x S R --=⋅. (10分)又点P M ,在椭圆上,故)1(4),1(421212020y x y x -=-=,∴4)(4)1(4)1(421202120212021202021=--=----=y y y y y y y y y y x x S R ,4R S R S OR OS x x x x ∴⋅=⋅==,即OR OS ⋅为定值4.(13分)21.【答案】【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A ,则P (A )==;(Ⅱ)(i )一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6.从这6个一等品零件中随机抽取2个,所有可能的结果有:{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5}, {A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4}, {A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6}共有15种. (ii )“从一等品零件中,随机抽取的2个零件直径相等”记为事件B B 的所有可能结果有:{A 1,A 4},{A 1,A 6},{A 4,A 6}, {A 2,A 3},{A 2,A 5},{A 3,A 5},共有6种.∴P (B )=.【点评】本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.22.【答案】 【解析】解:(1)证明:∵D 是BC 的中点,∴BD =DC =a2.法一:在△ABD 与△ACD 中分别由余弦定理得c 2=AD 2+a 24-2AD ·a2cos ∠ADB ,① b 2=AD 2+a 24-2AD ·a 2·cos ∠ADC ,②①+②得c 2+b 2=2AD 2+a 22,即4AD 2=2b 2+2c 2-a 2,∴AD =122b 2+2c 2-a 2.法二:在△ABD 中,由余弦定理得AD 2=c 2+a 24-2c ·a 2cos B=c 2+a 24-ac ·a 2+c 2-b 22ac=2b 2+2c 2-a 24,∴AD =122b 2+2c 2-a 2.(2)∵A =120°,AD =1219,sin B sin C =35,由余弦定理和正弦定理与(1)可得 a 2=b 2+c 2+bc ,① 2b 2+2c 2-a 2=19,②b c =35,③ 联立①②③解得b =3,c =5,a =7,∴△ABC 的面积为S =12bc sin A =12×3×5×sin 120°=1534.即△ABC 的面积为154 3.23.【答案】【解析】(1)证明:b n+1﹣b n =﹣=﹣=1,又b 1=1.∴数列{b n }为等差数列,首项为1,公差为1. (2)解:由(1)可得:b n =n .c n =b n+1•()=(n+1).∴数列{c n }的前n 项和为T n =+3×++…+(n+1).=+3×+…+n+(n+1),∴T n =+++…+﹣(n+1)=+﹣(n+1),可得T n=﹣.(3)证明:1+++…+≤2﹣1(n∈N*)即为:1+++…+≤﹣1.∵=<=2(k=2,3,…).∴1+++…+≤1+2[(﹣1)+()+…+(﹣)]=1+2=2﹣1.∴1+++…+≤2﹣1(n∈N*).24.【答案】【解析】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD,∵PD⊥底面ABCD,∴PD⊥AC,∴AC⊥平面PDB,∴平面AEC⊥平面PDB.(Ⅱ)解:设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,∴∠AEO为AE与平面PDB所的角,∴O,E分别为DB、PB的中点,∴OE∥PD,,又∵PD⊥底面ABCD,∴OE⊥底面ABCD,OE⊥AO,在Rt△AOE中,,∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.。
北京市朝阳区2018~2019学年度第一学期高三年级期中文科数学试卷(含答案)
北京市朝阳区2018~2019学年度第一学期高三年级期中统一检测数学试卷(文史类) 2018.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知集合{|(2)0}A x x x =-≤,{}01B x x =<≤,则AB =A.{|01}x x ≤≤B.{|01}x x <≤C.{|02}x x <≤D.∅2. 下列函数中,既是偶函数又存在零点的是 A.2xy =B.||1y x =+C. 3y x =D.x y cos =3. 设平面向量(1,1)=a ,(1,2)=b ,k =+c a b .若⊥a c ,则实数k 的值等于 A. 32B. 0C. 23-D. 32-4. 执行如图所示的程序框图,输出的s 值为 A. 10- B. 2- C. 2 D. 10(第4题图)5. 设a ,b 为非零向量,则“2b =a ”是“a b ”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6. 设,m n 是两条不同的直线,,αβ是两个不同的平面,有以下四个命题: ①若,//m αβα⊥,则m β⊥ ②若,//m m n α⊥,则n α⊥ ③若,m m n α⊥⊥,则//n α ④若,m m αβ⊥⊥,则//αβ 其中真命题的序号为A.①③ B .②③ C .①④ D .②④7. 某三棱锥的三视图如图所示,则该三棱锥的体积等于(第7题图)A. 43B .2C .83D .68. 已知定义域为R 的奇函数()f x 的周期为2,且(0,1]x ∈时,12()log f x x =. 若函数()()sin2F x f x x =π-在区间[3,]m -(m ∈Z 且3m >-)上至少有5个零点,则m 的最小值为A. 2 B .3 C .4 D .6俯视图正视图侧视图第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知π3(,0),sin 25αα∈-=-,则cos α= .10. 已知等差数列{}n a 的公差2d =,且满足734a a a =+,则1a =__________.11. 已知,x y 满足0,20,20,x y x y y -≥⎧⎪+-≤⎨⎪+≥⎩则2z x y =+的最大值为 .12. 如图,甲、乙、丙三人在同一个圆形跑道上运动.计时开始时,甲、乙、丙分别从,,A B C 三点出发,三个人的前进方向相同,甲在乙后面13圈,乙在丙后面16圈.甲以13圈/分钟的速度慢跑,乙以14圈/分钟的速度快走,丙以16圈/分钟的速度慢走.那么,经过 分钟,甲和乙两人第一次相遇;30分钟之内,甲、乙、丙三人 (填“能”或“不能”)同时相遇.13.海水受日月的引力,在一定的时候发生的涨落现象叫潮.港口的水深会随潮的变化而变化.某港口水的深度y (单位:米)是时刻t (024t ≤≤,单位:小时)的函数,记作()y f t =. 下面是该港口某日水深的数据:经长期观察,曲线()y f t =可以近似地看成函数sin y A t b ω=+ (0,0A ω>>)的图象.根据以上数据,函数()y f t =的近似表达式为 .丙14.已知函数()22xf x =-.(1)若2m ≥,则关于x 的方程()f x m =的根的个数为 ; (2)若a b ≠,且()()f a f b =,则a b +的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)已知函数()2sin cos sin(2)3f x x x x π=-+.(Ⅰ)求)(x f 的最小正周期和最大值; (Ⅱ)求)(x f 的单调递增区间.16. (本小题满分13分)设{}n a (*n ∈N )是各项均为正数的等比数列,且2433,18a a a =-=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若3log n n n b a a =+,求12n b b b +++.18. (本小题满分13分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,3A π=,tan B =-8b =. (Ⅰ)求a ;(Ⅱ)求点A 到边BC 的距离.19. (本小题满分13分)已知函数3211()(1)132f x ax a x x =-+++(1a ≥). (Ⅰ)若3a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若()f x 在R 上无极值点,求a 的值;(Ⅲ)当x ∈()0,2时,讨论函数()f x 的零点个数,并说明理由.20. (本小题满分14分)已知函数()sin cos f x x x x =-.(Ⅰ)求证:当π[0,]2x ∈时,()0f x ≥;(Ⅱ)设(),(0,)tan 2x g x x x π=∈. (i )试判断函数()g x 的单调性并证明; (ii )若()g x a <恒成立,求实数a 的最小值.北京市朝阳区2018-2019学年度第一学期高三年级期中统一检测数学试卷(文史类)答案 2018.11二、填空题(本题满分30分)15. (本小题满分13分)解:(Ⅰ)1()sin 2sin 22f x x x x =--1sin22sin(2).3x x x =-π=-所以,()f x 的最小正周期为22T π==π.令22,32x k k ππ-=+π∈Z ,可得,12x k k 5π=+π∈Z ,所以,当,12x k k 5π=+π∈Z 时,()f x 取最大值1. …………8分(Ⅱ)由222,232k x k k ππππ-≤-≤π+∈Z 可得:,1212k x k k π5ππ-≤≤π+∈Z ,所以()f x 的单调递增区间为[,],1212k k k π5ππ-π+∈Z . …………13分16. (本小题满分13分)解:(Ⅰ)设{}n a 的首项为1a ,公比为(0)q q >,则依题意,13211318a q a q a q =⎧⎨-=⎩,,解得11,3a q ==, 所以{}n a 的通项公式为1*3,n n a n -=∈N . …………7分 (Ⅱ)因为13log 3(1)n n n n b a a n -=+=+-,所以123n b b b b ++++21(1333)[012(1)]n n -=+++++++++-13(1)132n n n --=+- 31(1)22n n n --=+. …………13分17. (本小题满分14分)BD O =连接EO .(如图)因为四边形ABCD 为矩形, 所以O 为BD 中点.又因为E 为PD 中点,所以//EO PB .因为PB ⊄平面ACE ,EO ⊂平面ACE , 所以//PB 平面ACE . …………9分 (Ⅲ)解:过点E 作EF AD ⊥于F .因为PA ⊥平面ABCD ,所以平面PAD ⊥平面ABCD . 因为平面PAD平面ABCD =AD ,且EF ⊂平面PAD,所以EF ⊥平面ABCD . 即EF 为三棱锥E ACD -的高, 且//EF PA . 因为E 为PD 中点,所以12EF PA =. 又因为22PA AD AB ===,所以1EF =. 于是-PABCE P ABCD E ACD V V V -=-多面体四棱锥三棱锥1133ACD ABCD S PA S EF ∆=⋅⋅-⋅⋅四边形 111332AB AD AP AD CD EF =⨯⨯-⨯⨯⨯114112221113633=⨯⨯⨯-⨯⨯⨯=-=. ……………14分18. (本小题满分13分)证明:(Ⅰ)因为tan B =-sin cos BB=- 又22sin cos 1B B +=,B 为钝角,所以sin 7B =. 由sin sin a b A B ==7a =. …………7分 (Ⅱ)在△ABC 中,由tan 0B <知B 为钝角,所以1cos 7B =-. 11sin sin()sin cos cos sin ()72C A B A B A B =+=+=-+=, BEDPACOF点A 到BC 的距离为sin 8b C == …………13分 19. (本小题满分13分)解:(I )当3a =时,32()21f x x x x =-++,2()341f x x x '=-+,(1)0f '=,(1)1f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为1y =. …………4分 (Ⅱ)2()=(1)1f x ax a x '-++,1a ≥,依题意有()0f x '≥,即0∆≤, 2(1)40a a +-≤,解得1a = …………7分(Ⅲ)2()=(1)1=(1)(1)f x ax a x ax x '-++--,1a ≥.(1)1a =时,函数()f x 在R 上恒为增函数且(0)1f =,函数()f x 在()0,2上无零点. (2)1a >时:当1(0,)x a∈,()0f x '>,函数()f x 为增函数;当1(1)x a∈,,()0f x '<,函数()f x 为减函数; 当(1,2)x ∈,()0f x '>,函数()f x 为增函数.由于2(2)103f a =+>,此时只需判定3(1)62a f =-+的符号:当19a <<时,函数()f x 在()0,2上无零点; 当9a =时,函数()f x 在()0,2上有一个零点; 当9a >时,函数()f x 在()0,2上有两个零点. 综上,19a ≤<时函数()f x 在()0,2上无零点;当9a =时,函数()f x 在()0,2上有一个零点;当9a >时,函数()f x 在()0,2上有两个零点. …………13分20. (本小题满分14分)解:(Ⅰ)因为在区间(0,)2π上, 所以222()1cos sin 2sin 0f x x x x '=-+=>.即()f x 在[0,]2π上递增,所以()(0)0f x f ≥=. …………4分(Ⅱ)(i )因为(0,)2x π∈,cos ()tan sin x x xg x x x ==, 所以22sin cos ()()sin sin x x x f x g x x x-'==-. 由(Ⅰ)知,当(0,)2x π∈时()0f x >,所以()0g x '<.所以()g x 在(0,)2π上递减. …………8分(ii )依题意,0a >.令()tan ,[0,)2h x a x x x π=-∈,则222cos ()1cos cos a a xh x x x-'=-=. (1)若1a ≥,则当x ∈(0,)2π时,()0h x '>,则()h x 在[0,)2π上递增.即x ∈(0,)2π时,()(0)0h x h >=.则x ∈(0,)2π时,tan x a x <.即当x ∈(0,)2π时,tan x a x<恒成立.(2)若01a <<,令()0h x '=得2cos a x =.因为2cos y x =在(0,)2π上减,且2cos (0,1)x ∈, 所以方程2cos a x =在(0,)2π上恰有一个根,记为0x ,当0(0,)x x ∈时,()0h x '<; 当0(,)2x x π∈时,()0h x '>.所以()h x 在0(0,)x 上递减,在0(,)2x π上递增. 所以min 0()()(0)0h x h x h =<=. 此时()g x a <不恒成立.综上,a 的最小值为1. …………14分。
2018年北京市高考数学试卷(理科)【附答案解析】
2018年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2} D.{﹣1,0,1,2} 2.(5分)在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.4.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A. f B. f C. f D.f5.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.46.(5分)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1 B.2 C.3 D.48.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A二、填空题共6小题,每小题5分,共30分。
9.(5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.10.(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=.11.(5分)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.12.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是.13.(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.14.(5分)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.三、解答题共6小题,共80分。
北京市朝阳区2017-2018学年高三上学期期中数学试卷(文科) Word版含解析
2017-2018学年北京市朝阳区高三(上)期中数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x(x﹣1)<0,x∈R},B={x|<x<2,x∈R},那么集合A∩B=()A.∅B.C.{x|﹣2<x<2,x∈R}D.{x|﹣2<x<1,x∈R}2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是()A.y=x﹣1 B.y=tanx C.y=x3D.3.已知sinx=,则sin2x的值为()A.B.C.或D.或﹣4.设x∈R且x≠0,则“x>1”是“x+>2”成立的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题正确的是()A.若m⊂α,n⊂β,m⊥n,则α⊥βB.若α∥β,m⊥α,n∥β,则m⊥nC.若α⊥β,m⊥α,n∥β,则m∥n D.若α⊥β,α∩β=m,n⊥m,则n⊥β6.已知三角形ABC外接圆O的半径为1(O为圆心),且+=,||=2||,则•等于()A.B.C.D.7.已知函数f(x)=则函数g(x)=f(f(x))﹣的零点个数是()A.4 B.3 C.2 D.18.5个黑球和4个白球从左到右任意排成一排,下列说法正确的是()A.总存在一个黑球,它右侧的白球和黑球一样多B.总存在一个白球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.设平面向量=(1,2),=(﹣2,y),若∥,则y=.10.已知角A为三角形的一个内角,且cosA=,sinA=.cos2A=.11.已知a=log2.10.6,b=2.10.6,c=log0.50.6,则a,b,c的大小关系是.12.各项均为正数的等比数列{{a n}的前n项和为S n,若a3=2,S4=5S2,则a1的值为,S4的值为.13.已知函数f(x)=在(﹣∞,+∞)上是具有单调性,则实数m的取值范围.14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第天,两马相逢.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.已知数列{a n}(n∈N*)是公差不为0的等差数列,若a1=1,且a2,a4,a8成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=,求数列{b n}的前n项和S n.16.已知函数f(x)=asinx﹣cosx(a∈R)的图象经过点(,0).(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,],求f(x)的取值范围.17.如图,已知A,B,C,D四点共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=.(Ⅰ)求sin∠DBC;(Ⅱ)求AD.18.如图,四边形ABCD为矩形,PA⊥平面ABCD,DE∥PA.(Ⅰ)求证:BC⊥CE;(Ⅱ)若直线m⊂平面PAB,试判断直线m与平面CDE的位置关系,并说明理由;(Ⅲ)若AB=PA=2DE=2,AD=3,求三棱锥E﹣PCD的体积.19.已知函数f(x)=,a∈R.(Ⅰ)若曲线y=f(x)在点(0,f(0))处切线斜率为﹣2,求函数f(x)的最小值;(Ⅱ)若函数f(x)在区间(0,1)上无极值,求a的取值范围.20.已知函数f(x)=ax﹣﹣(a+1)lnx,a∈R.(I)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若a≥1,且f(x)>1在区间[,e]上恒成立,求a的取值范围;(III)若a>,判断函数g(x)=x[f(x)+a+1]的零点的个数.2016-2017学年北京市朝阳区高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x(x﹣1)<0,x∈R},B={x|<x<2,x∈R},那么集合A∩B=()A.∅B.C.{x|﹣2<x<2,x∈R}D.{x|﹣2<x<1,x∈R}【考点】交集及其运算.【分析】化简集合A,根据交集的定义求出A∩B即可.【解答】解:集合A={x|x(x﹣1)<0,x∈R}={x|0<x<1,x∈R},B={x|<x<2,x∈R},集合A∩B={x|<x<1,x∈R}.故选:B.2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是()A.y=x﹣1 B.y=tanx C.y=x3D.【考点】函数奇偶性的判断.【分析】根据函数奇偶性和单调性的性质分别进行判断即可.【解答】解:A.f(x)=x﹣1是非奇非偶函数,不满足条件.B.y=tanx是奇函数,在定义域上函数不是单调函数,不满足条件.C.y=x3是奇函数,在定义域上为增函数,满足条件.D.是奇函数,在定义域上不是单调函数,不满足条件.故选:C3.已知sinx=,则sin2x的值为()A.B.C.或D.或﹣【考点】二倍角的正弦.【分析】由已知利用同角三角函数基本关系式可求cosx,进而利用二倍角的正弦函数公式即可计算求值.【解答】解:∵sinx=,∴cosx=±=±,∴sin2x=2sinxcosx=2×(±)=±.故选:D.4.设x∈R且x≠0,则“x>1”是“x+>2”成立的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据基本不等式的性质,结合充分不必要条件的定义进行判断即可.【解答】解:当x<0时,不等式x+>2不成立,当x>0时,x+≥2=2,当且仅当x=,即x=1时,取等号,当x>1时,不等式x+>2成立,反之不一定成立,是充分不必要条件,故选:A5.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题正确的是()A.若m⊂α,n⊂β,m⊥n,则α⊥βB.若α∥β,m⊥α,n∥β,则m⊥nC.若α⊥β,m⊥α,n∥β,则m∥n D.若α⊥β,α∩β=m,n⊥m,则n⊥β【考点】空间中直线与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,推导出m⊥β,所以m⊥n;在C中,m与n相交、平行或异面;在D中,n与β相交、平行或n⊂β.【解答】解:由m,n是两条不同的直线,α,β是两个不同的平面,知:在A中,若m⊂α,n⊂β,m⊥n,则α与β相交或平行,故A错误;在B中,若α∥β,m⊥α,n∥β,则m⊥β,所以m⊥n,故B正确;在C中,若α⊥β,m⊥α,n∥β,则m与n相交、平行或异面,故C错误;在D中,若α⊥β,α∩β=m,n⊥m,则n与β相交、平行或n⊂β,故D错误.故选:B.6.已知三角形ABC外接圆O的半径为1(O为圆心),且+=,||=2||,则•等于()A.B.C.D.【考点】平面向量数量积的运算.【分析】由题意可得三角形是以角A为直角的直角三角形,解直角三角形求出相应的边和角,代入数量积公式得答案.【解答】解:三角形ABC外接圆O的半径为1(O为圆心),且+=,∴O为BC的中点,故△ABC是直角三角形,∠A为直角.又||=2||,∴||=,||=2,∴||=,∴cosC===,∴•=﹣•=﹣×2×=﹣故选:A.7.已知函数f(x)=则函数g(x)=f(f(x))﹣的零点个数是()A.4 B.3 C.2 D.1【考点】函数零点的判定定理.【分析】作出函数的图象,先求出f(x)=的根,然后利用数形结合转化为两个函数的交点个数即可.【解答】解:作出函数f(x)的图象如图:当x≤0时,由f(x)=得x+1=,即x=﹣1=﹣,当x>0时,由f(x)=得log2x=,即x==,由g(x)=f(f(x))﹣=0得f(f(x))=,则f(x)=﹣或f(x)=,若f(x)=﹣,此时方程f(x)=﹣有两个交点,若f(x)=,此时方程f(x)=只有一个交点,则数g(x)=f(f(x))﹣的零点个数是3个,故选:B8.5个黑球和4个白球从左到右任意排成一排,下列说法正确的是()A.总存在一个黑球,它右侧的白球和黑球一样多B.总存在一个白球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个【考点】进行简单的合情推理.【分析】5个黑球和4个白球,5为奇数,4为偶数,分析即可得到答案.【解答】解:5为奇数,4为偶数,故总存在一个黑球,它右侧的白球和黑球一样多,故选:A二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.设平面向量=(1,2),=(﹣2,y),若∥,则y=﹣4.【考点】平行向量与共线向量.【分析】直接利用向量共线的坐标表示列式计算【解答】解:∵=(1,2),=(﹣2,y),∥,∴1×y=2×(﹣2)∴y=﹣4故答案为:﹣410.已知角A为三角形的一个内角,且cosA=,sinA=.cos2A=﹣.【考点】同角三角函数基本关系的运用;二倍角的余弦.【分析】利用同角三角函数的基本关系,二倍角的余弦公式,求得sinA和cos2A的值.【解答】解:∵角A为三角形的一个内角,且cosA=,∴sinA==,cos2A=2cos2A﹣1=2•﹣1=﹣,故答案为:.11.已知a=log2.10.6,b=2.10.6,c=log0.50.6,则a,b,c的大小关系是b>c>a.【考点】对数值大小的比较.【分析】直接利用中间量“0”,“1”判断三个数的大小即可.【解答】解:a=log2.10.6<0,b=2.10.6>1,0<c=log0.50.6<1∴b>c>a,故答案为:b>c>a.12.各项均为正数的等比数列{{a n}的前n项和为S n,若a3=2,S4=5S2,则a1的值为,S4的值为.【考点】等比数列的前n项和.【分析】经分析等比数列为非常数列,设出等比数列的公比,有给出的条件列方程组求出a1和q的值,则S4的值可求.【解答】解:若等比数列的公比等于1,由a3=2,则S4=4a3=4×2=8,5S2=5×2S3=5×2×2=20,与题意不符.设等比数列的公比为q(q≠1),由a3=2,S4=5S2,得:,整理得,解得,q=±2.因为数列{a n}的各项均为正数,所以q=2.则.故答案为;.13.已知函数f(x)=在(﹣∞,+∞)上是具有单调性,则实数m的取值范围(1,] .【考点】函数单调性的性质.【分析】函数f(x)在(﹣∞,+∞)上是具有单调性,需要对m分类讨论,当m>1,m<﹣1,m=±1、0,﹣1<m<0,0<m<1分别判断分段函数的单调性.【解答】解:令h(x)=mx2+1,x≥0;g(x)=(m2﹣1)2x,x<0;①当m>1时,要使得f(x)在(﹣∞,+∞)上是具有单调性,即要满足m2﹣1≤1⇒﹣≤m≤故:1<m≤;②当m<﹣1时,h(x)在x≥0上递减,g(x)在x<0上递增,所以,f(x)在R上不具有单调性,不符合题意;③当m=±1时,g(x)=0;当m=0时,h(x)=1;所以,f(x)在R上不具有单调性,不符合题意;④当﹣1<m<0 时,h(x)在x≥0上递减,g(x)在x<0上递减,对于任意的x≥0,g(x)<0;当x→0时,h(x)>0;所以,f(x)在R上不具有单调性,不符合题意;⑤当0<m<1时,h(x)在x≥0上递增,g(x)在x<0上递减;所以,f(x)在R上不具有单调性,不符合题意;故答案为:(1,]14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第20天,两马相逢.【考点】等差数列的前n项和.【分析】利用等差数列的求和公式与不等式的解法即可得出.【解答】解:由题意知,良马每日行的距离成等差数列,记为{a n},其中a1=103,d=13;驽马每日行的距离成等差数列,记为{b n},其中b1=97,d=﹣0.5;设第m天相逢,则a1+a2+…+a m+b1+b2+…+b m=103m++97m+=200m+×12.5≥2×3000,化为m2+31m﹣960≥0,解得m,取m=20.故答案为:20.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.已知数列{a n}(n∈N*)是公差不为0的等差数列,若a1=1,且a2,a4,a8成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=,求数列{b n}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(I)a2,a4,a8成等比数列,可得.再利用等差数列的通项公式即可得出.(Ⅱ)b n==,利用“裂项求和方法”即可得出.【解答】解:(Ⅰ)设{a n}的公差为d,因为a2,a4,a8成等比数列,所以.即,即d2=a1d.又a1=1,且d≠0,解得d=1.所以有a n=a1+(n﹣1)d=1=(n﹣1)=n.(Ⅱ)由(Ⅰ)知:.则.即.16.已知函数f(x)=asinx﹣cosx(a∈R)的图象经过点(,0).(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,],求f(x)的取值范围.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)根据函数f(x)的图象过点,代入函数解析式求出a的值,从而写出函数解析式并求出最小正周期;(Ⅱ)根据x的取值范围,计算f(x)的最值,从而求出它的取值范围.【解答】解:(Ⅰ)因为函数的图象经过点,所以,解得a=1;…所以,所以f(x)最小正周期为T=2π;…(Ⅱ)因为,所以;所以当,即时,f(x)取得最大值,最大值是2;当,即时,f(x)取得最小值,最小值是﹣1;所以f(x)的取值范围是[﹣1,2].…17.如图,已知A,B,C,D四点共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=.(Ⅰ)求sin∠DBC;(Ⅱ)求AD.【考点】余弦定理;正弦定理.【分析】(Ⅰ)利用已知及同角三角函数基本关系式可求,进而利用正弦定理即可求得sin∠DBC的值.(Ⅱ)在△BDC中,由余弦定理可求DB的值,利用同角三角函数基本关系式可求,进而利用两角差的余弦函数公式可求cos∠ABD的值,在△ABD中,由余弦定理可求AD的值.【解答】(本小题满分13分)解:(Ⅰ)在△BDC中,因为,所以.由正弦定理得,.…(Ⅱ)在△BDC中,由BC2=DC2+DB2﹣2DC•DBcos∠BDC,得,.所以.解得或(舍).由已知得∠DBC是锐角,又,所以.所以cos∠ABD=cos=cos120°•cos∠DBC+sin120°•sin∠DBC==.在△ABD中,因为AD2=AB2+BD2﹣2AB•BDcos∠ABD=,所以.…18.如图,四边形ABCD为矩形,PA⊥平面ABCD,DE∥PA.(Ⅰ)求证:BC⊥CE;(Ⅱ)若直线m⊂平面PAB,试判断直线m与平面CDE的位置关系,并说明理由;(Ⅲ)若AB=PA=2DE=2,AD=3,求三棱锥E﹣PCD的体积.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【分析】(Ⅰ)推导出DE⊥BC.,BC⊥CD,由此能证明BC⊥CE.(Ⅱ)推导出DE∥平面PAB,CD∥平面PAB,从而平面PAB∥平面CDE,从而得到m∥平面CDE.(Ⅲ)三棱锥E﹣PCD的体积等于三棱锥P﹣CDE的体积,由此能求出三棱锥E﹣PCD的体积.【解答】(本小题满分14分)证明:(Ⅰ)因为PA⊥底面ABCD,PA∥DE所以DE⊥底面ABCD.所以DE⊥BC.又因为底面ABCD为矩形,所以BC⊥CD.又因为CD∩DE=D,所以BC⊥平面CDE.所以BC⊥CE.…解:(Ⅱ)若直线m⊂平面PAB,则直线m∥平面CDE.证明如下,因为PA∥DE,且PA⊂平面PAB,DE⊄平面PAB,所以DE∥平面PAB.在矩形ABCD中,CD∥BA,且BA⊂平面PAB,CD⊄平面PAB,所以CD∥平面PAB.又因为CD∩DE=D,所以平面PAB∥平面CDE.又因为直线m⊂平面PAB,所以直线m∥平面CDE.…(Ⅲ)由题意知,三棱锥E﹣PCD的体积等于三棱锥P﹣CDE的体积.由(Ⅰ)可知,BC⊥平面CDE.又因为AD∥BC,所以AD⊥平面CDE.易证PA∥平面CDE,所以点P到平面CDE的距离等于AD的长.因为AB=PA=2DE=2,AD=3,所以.所以三棱锥E﹣PCD的体积.…19.已知函数f(x)=,a∈R.(Ⅰ)若曲线y=f(x)在点(0,f(0))处切线斜率为﹣2,求函数f(x)的最小值;(Ⅱ)若函数f(x)在区间(0,1)上无极值,求a的取值范围.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)先求出函数的导函数令x的值为0代入其中得到f'(0)=﹣2即切线方程的斜率为﹣2,即可求出a的值,再利用导数和函数的最值的关系即可求出最小值,(Ⅱ)求出函数的导函数,f(x)在区间(0,1)上无极值,则函数f(x)在(0,1)单调,分类讨论,求出函数的单调性即可求出a的取值范围【解答】解:(Ⅰ)因为,所以.依题意,f′(0)=﹣2,解得a=﹣1.所以,.当x>2时,f'(x)>0,函数f(x)为增函数;当x<2时,f'(x)<0,函数f(x)为减函数;所以函数f(x)的最小值是.(Ⅱ)因为,所以.(1)若a=0,则.此时f(x)在(0,1)上单调递减,满足条件.(2)若a≠0,令f'(x)=0得.(ⅰ)若,即0<a≤1,则f'(x)<0在(0,1)上恒成立.此时f(x)在(0,1)上单调递减,满足条件.(ⅱ)若,即a>1时,由f'(x)>0得;由f'(x)<0得.此时f(x)在上为增函数,在上为减,不满足条件.(ⅲ)若即a<0.则f'(x)<0在(0,1)上恒成立.此时f(x)在(0,1)上单调递减,满足条件.综上,a≤1.20.已知函数f(x)=ax﹣﹣(a+1)lnx,a∈R.(I)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若a≥1,且f(x)>1在区间[,e]上恒成立,求a的取值范围;(III)若a>,判断函数g(x)=x[f(x)+a+1]的零点的个数.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)当a=﹣2时,对f(x)求导,求出导函数的零点,即可判断单调区间;(2)若a≥1,且f(x)>1在区间[,e]上恒成立,即:f(x)在[,e]上的最小值大于1;利用导数求判断函数f(x)的最小值.(3)分类讨论判断g'(x)的单调性与函数的最小值,从而验证g(x)在区间(0,+∞)上单调递增.再构造新函数h(a)=e3a﹣(2lna+6),证明h(a)>0,进而判断函数g(x)是否穿过x轴即可.【解答】解:(Ⅰ)若a=﹣2,则,x∈(0,+∞)由f'(x)>0得,0<x<1;由f'(x)<0得,x>1.所以函数f(x)的单调增区间为(0,1);单调减区间为(1,+∞).(Ⅱ)依题意,在区间上f(x)min>1.,a≥1.令f'(x)=0得,x=1或.若a≥e,则由f'(x)>0得,1<x≤e;由f'(x)<0得,.所以f(x)min=f(1)=a﹣1>1,满足条件;若1<a<e,则由f'(x)>0得,或1<x≤e;由f'(x)<0得,.,依题意,即,所以2<a<e.若a=1,则f'(x)≥0.所以f(x)在区间上单调递增,,不满足条件;综上,a>2.(III)x∈(0,+∞),g(x)=ax2﹣(a+1)xlnx+(a+1)x﹣1.所以g'(x)=2ax﹣(a+1)lnx.设m(x)=2ax﹣(a+1)lnx,.令m'(x)=0得.当时,m'(x)<0;当时,m'(x)>0.所以g'(x)在上单调递减,在上单调递增.所以g'(x)的最小值为.因为,所以.所以g'(x)的最小值.从而,g(x)在区间(0,+∞)上单调递增.又,设h(a)=e3a﹣(2lna+6).则.令h'(a)=0得.由h'(a)<0,得;由h'(a)>0,得.所以h(a)在上单调递减,在上单调递增.所以.所以h(a)>0恒成立.所以e3a>2lna+6,.所以.又g(1)=2a>0,所以当时,函数g(x)恰有1个零点.2016年11月25日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区2017-2018学年度第一学期高三年级期中统一考试 数学试卷(理工类) 2017.11
(考试时间120分钟 满分150分)
本试卷分为选择题(共40分)和非选择题(共110分)两部分 第一部分(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 已知集合{|1}Axx,2{|log1}Bxx,则ABI A. {|1}xx B. {|12}xx C. {|2}xx D. {|0}xx
2. 已知实数,xy满足条件2,2,6,xyxy则2xy的最大值为 A. 12 B. 10 C. 8 D. 6 3.要得到函数πsin(2)3yx的图象,只需将函数sinyx的图象上所有的点 A. 先向右平移π3个单位长度,再将横坐标伸长为原来的2倍,纵坐标不变 B. 先向右平移π6个单位长度,横坐标缩短为原来的12倍,纵坐标不变 C. 横坐标缩短为原来的12倍,纵坐标不变,再向右平移π6个单位长度 D. 横坐标变伸长原来的2倍,纵坐标不变,再向右平移π3个单位长度 4. 已知非零平面向量,ab,则“abab”是“存在非零实数,使b=a”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.已知nS是等差数列na(n )的前n项和,且564SSS,以下有四个命题: ①数列na中的最大项为10S ②数列na的公差0d ③100S ④110S 其中正确的序号是( ) A. ②③ B. ②③④ C. ②④ D. ①③④ 6. 如图,在直角梯形ABCD中,AB//CD,ADDC,E是CD的中点1DC,2AB,则EAABuuuruuur
A.5 B. 5 C.1 D.1
( 7. 袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,再让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.” 甲听完乙的回答以后,甲说:“我现在可以确定两个球的编号了.” 根据以上信息, 你可以推断出抽取的两球中 A.一定有3号球 B.一定没有3号球 C.可能有5号球 D.可能有6号球 8. 已知函数()sin(cos)fxxx与函数()cos(sin)gxxx在区间(0)2,都为减函数,设
123,,(0)2xxx,,且11cosxx,22sin(cos)xx,33cos(sin)xx,则123,,xxx的大小关系是
( ) A. 123xxx B. 312xxx C. 213xxx D. 231xxx
EC
D
BA 第二部分(非选择题 共110分) 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 执行如下图所示的程序框图,则输出i的值为 .
(第9题图) 10. 已知1x,且1xy,则1xy的最小值是 .
11. 已知函数1211(),,22()1log,.2xxfxxx若()fx的图象与直线ykx有两个不同的交点,则实数k的取值范围为 . 12. 已知函数()fx同时满足以下条件: ① 定义域为R; ② 值域为[0,1]; ③ ()()0fxfx.
开始 i=1,S=2
结束 i=i+1 S>14? 输出i 是
否
S=S+2i 试写出一个函数解析式()fx . 13. 某罐头生产厂计划制造一种圆柱形的密封铁皮罐头盒,其表面积为定值S. 若罐头盒的底面半径为r,则罐头盒的体积V与r的函数关系式为 ;当r 时,罐头盒的体积最大. 14. 将集合=M1,2,3,表示为它的5个三元子集(三元集:含三个元素的集合)的并集,并
且这些三元子集的元素之和都相等,则每个三元集的元素之和为 ;请写出满足上述条件的集合M的5个三元子集 . (只写出一组)
三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.
15. (本小题满分13分) 已知数列na的前n项和为nS(n ),满足21nnSa. (Ⅰ)求数列na的通项公式; (Ⅱ)若数列nb满足12=lognnba,求数列nb的前n项和nT.
16. (本小题满分13分) 已知函数π()2sincos()3fxxx. (Ⅰ)求函数()fx的最小正周期; (Ⅱ)当π[0,]2x时,求函数()fx的取值范围.
17. (本小题满分13分) 在ABC△中,π4A,327cb. (Ⅰ)试求tanC的值; (Ⅱ)若5a,试求ABC△的面积. 18. (本小题满分14分) 已知函数2()()exfxxaxa,aR. (Ⅰ)求函数()fx的单调区间; (Ⅱ)设()()gxfx,其中()fx为函数()fx的导函数.判断()gx在定义域内是否为单调函数,并说明理由.
19. (本小题满分14分) 已知函数12()lneexfxxx.
(Ⅰ)求曲线()yfx在点1,(1)f处的切线方程; (Ⅱ)求证:1lnexx; (Ⅲ)判断曲线()yfx是否位于x轴下方,并说明理由.
20. (本小题满分13分) 数列12,,,naaaL是正整数1,2,,nL的任一排列,且同时满足以下两个条件: ①11a;②当2n时,1||2iiaa(1,2,,1inL). 记这样的数列个数为()fn. (I)写出(2),(3),(4)fff的值; (II)证明(2018)f不能被4整除. 北京市朝阳区2017-2018学年度第一学期高三年级期中统一考试 数学答案(理工类)2017.11
一、 选择题: 题号 1 2 3 4 5 6 7 8 答案 C B C A B D D C
二、 填空题: 9. 5 10. 3 11. [2,2)1ln2(,2ln2)U 1
ln2
1,02ln2
U
12. ()|sin|fxx或cos12x或2,11,()0,11.xxfxxx或(答案不唯一) 13. 312π(0)22SVSrrr; S 14. 24;1815,,, 3714,,,5613,,,21012,,,4911,,(答案不唯一) 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分) 解:(Ⅰ)当1n时,11a. 当2n时,1nnnaSS, 122nnnaaa,即1=2nnaa
所以数列na是首项为1,公比为2的等比数列. 故1=2nna, nN. ┈┈ 8分 (Ⅱ)由已知得11122=log=log2=1nnnban.
因为1(1)(2)1nnbbnn, 所以nb是首项为0,公差为1的等差数列. 故nb的前n项和(1)2nnnT. ┈┈ 13分
16. (本小题满分13分) 解:因为π()2sincos()3fxxx, 所以ππ()2sin(coscossinsin)33fxxxx 2sincos3sinxxx
13sin2(1cos2)22xx
π3sin(2)32x.
(Ⅰ)函数()fx的最小正周期为2ππ2T. ┈┈ 8分 (Ⅱ)因为π[0,]2x,所以ππ2π2[,]333x. 所以π3sin(2)[,1]32x. 所以3()[0,1]2fx. ┈┈ 13分
17. (本小题满分13分) 解:(Ⅰ)因为π4A,327cb,所以sinsin323πsin7sin()4CCBC. 所以3π7sin32sin()4CC. 所以3π3π7sin32(sincoscossin)44CCC. 所以7sin3cos3sinCCC. 所以4sin3cosCC. 所以3tan4C. ┈┈ 7分 (Ⅱ)因为5a,π4A,327cb,由余弦定理2222cosabcbcA得 223232225()2772bbbb.
所以7b,32c. 所以△ABC的面积11221sin7322222SbcA. ┈┈ 13分
18. (本小题满分14分) 解:(Ⅰ)函数()fx的定义域为xxR.()(2)()exfxxxa. ① 当2a时,令()0fx,解得:xa或2x,()fx为减函数; 令()0fx,解得:2ax,()fx为增函数. ② 当2a时,2()(2)e0xfxx恒成立,函数()fx为减函数; ③ 当2a时,令()0fx,解得:2x或xa,函数()fx为减函数; 令()0fx,解得:2xa,函数()fx为增函数. 综上, 当2a时,()fx的单调递减区间为(,),(2,)a;单调递增区间为(,2)a; 当2a时,()fx 的单调递减区间为(,) ; 当2a时,()fx的单调递减区间为(,2),(,)a;单调递增区间为(2,)a. ┈┈ 8分