高中数学 第三章 圆锥曲线与方程 3.4.1 曲线与方程课件4 北师大版选修2-1
2021_2022学年高中数学第3章圆锥曲线与方程章末复习课学案北师大版选修2_1

第3章 圆锥曲线与方程1.三种圆锥曲线的定义、标准方程、几何性质椭圆双曲线 抛物线定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹平面内与一个定点F和一条定直线l (l 不经过点F )距离相等的点的轨迹标准方程(以焦点在x轴为例) x 2a 2+y 2b 2=1 (a >b >0)x 2a 2-y 2b 2=1 (a >0,b >0)y 2=2px(p >0) 关系式 a 2-b 2=c 2a 2+b 2=c 2图形封闭图形无限延展, 有渐近线无限延展, 无渐近线 对称性 对称中心为原点 无对称中心 两条对称轴一条对称轴顶点 四个两个一个离心率 0<e <1 e >1 e =1 准线方程 x =-p 2决定形 状的因素 e 决定扁平程度e 决定开口大小2p 决定 开口大小统一定义圆锥曲线上的点到一个定点的距离与它到一条定直线的距离之比为定值e2.椭圆的焦点三角形设P 为椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点(不在x 轴上),F 1,F 2为焦点且∠F 1PF 2=α,那么△PF 1F 2为焦点三角形(如图).(1)焦点三角形的面积S =b 2tan α2;(2)焦点三角形的周长L =2a +2c . 3.待定系数法求圆锥曲线标准方程 (1)椭圆、双曲线的标准方程求椭圆、双曲线的标准方程包括“定位〞和“定量〞两方面,一般先确定焦点的位置,再确定参数.当焦点位置不确定时,要分情况讨论.①可将椭圆方程设为Ax 2+By 2=1(A >0,B >0,A ≠B ),其中当1A >1B 时,焦点在x 轴上,当1A <1B时,焦点在y 轴上.②双曲线方程可设为Ax 2+By 2=1(AB <0),当1A <0时,焦点在y 轴上,当1B<0时,焦点在x轴上.(2)抛物线的标准方程对顶点在原点,对称轴为坐标轴的抛物线方程,一般可设为y 2=ax (a ≠0)或x 2=ay (a ≠0). 4.双曲线及渐近线的设法技巧(1)由双曲线标准方程求其渐近线方程时,把标准方程中的1换成0,即可得到两条渐近线的方程.(2)如果双曲线的渐近线为x a ±y b =0时,它的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0).5.抛物线的焦点弦问题抛物线过焦点F 的弦长|AB |的一个重要结论. (1)y 2=2px (p >0)中,|AB |=x 1+x 2+p ; (2)y 2=-2px (p >0)中,|AB |=-x 1-x 2+p ; (3)x 2=2py (p >0)中,|AB |=y 1+y 2+p ; (4)x 2=-2py (p >0)中,|AB |=-y 1-y 2+p . 6.直线与圆锥曲线有关的问题(1)直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式Δ,那么有:①Δ>0⇔直线与圆锥曲线相交于两点; ②Δ=0⇔直线与圆锥曲线相切于一点; ③Δ<0⇔直线与圆锥曲线无交点.提醒:直线与双曲线、直线与抛物线有一个公共点应有两种情况:一是相切;二是直线与双曲线渐近线平行、直线与抛物线的对称轴平行.(2)直线l 截圆锥曲线所得的弦长|AB |=〔1+k 2〕〔x 1-x 2〕2或⎝ ⎛⎭⎪⎫1+1k 2〔y 1-y 2〕2,其中k 是直线l 的斜率,(x 1,y 1),(x 2,y 2)是直线与圆锥曲线的两个交点A ,B 的坐标,且(x 1-x 2)2=(x 1+x 2)2-4x 1x 2,x 1+x 2,x 1x 2可由一元二次方程的根与系数的关系整体给出.圆锥曲线的定义及应用【例1】 (1)F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,P 是椭圆上任一点,从任一焦点引∠F 1PF 2的外角平分线的垂线,垂足为点Q ,那么点Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线(2)设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 为椭圆上的一点,P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.[思路探究] (1)借助角平分线的性质及相关曲线的定义求解;(2)要求|PF 1||PF 2|的值,可考虑利用椭圆的定义和△PF 1F 2为直角三角形的条件,求出|PF 1|和|PF 2|的值,但Rt △PF 1F 2的直角顶点不确定,故需要分类讨论.(1)A [延长垂线F 2Q 交F 1P 的延长线于点A ,如图. 那么△APF 2是等腰三角形,∴|PF 2|=|AP |, 从而|AF 1|=|AP |+|PF 1|=|PF 2|+|PF 1|=2a . ∵O 是F 1F 2的中点,Q 是AF 2的中点, ∴|OQ |=12|AF 1|=a .∴Q 点的轨迹是以原点O 为圆心,半径为a 的圆.] (2)解:由题意知,a =3,b =2,那么c 2=a 2-b 2=5,即c =5,由椭圆定义知|PF 1|+|PF 2|=6,|F 1F 2|=2 5.①假设∠PF 2F 1为直角,那么|PF 1|2=|F 1F 2|2+|PF 2|2,|PF 1|2-|PF 2|2=20,即⎩⎪⎨⎪⎧|PF 1|-|PF 2|=103,|PF 1|+|PF 2|=6,解得|PF 1|=143,|PF 2|=43.所以|PF 1||PF 2|=72.②假设∠F 1PF 2为直角,那么|F 1F 2|2=|PF 1|2+|PF 2|2.即20=|PF 1|2+(6-|PF 1|)2,解得|PF 1|=4,|PF 2|=2或|PF 1|=2,|PF 2|=4(舍去.)所以|PF 1||PF 2|=2.运用定义解题主要表达在以下几个方面:(1)在求动点的轨迹方程时,如果动点所满足的几何条件符合某种圆锥曲线的定义,那么可直接根据圆锥曲线的方程写出所求的动点的轨迹方程;(2)涉及椭圆或双曲线上的点与两个焦点构成的三角形问题,常常运用圆锥曲线的定义并结合三角形中的正、余弦定理来解决;(3)在求有关抛物线的最值问题时,常利用定义,把抛物线上某一点到焦点的距离转化为到准线的距离,并结合图形的几何意义去解决.1.(1)点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过点M ,N 与圆C 相切的两直线相交于点P ,那么P 点的轨迹方程为( )A .x 2-y 28=1(x >1)B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.(1)A [设PM ,PN 与⊙C 分别切于点E ,F ,如图,那么|PE |=|PF |,|ME |=|MB |,|NF |=|NB |.从而|PM |-|PN |=|ME |-|NF |=|MB |-|NB | =4-2=2<|MN |,∴P 点的轨迹是以M ,N 为焦点,实轴长为2的双曲线的右支(除去右顶点).∴所求轨迹方程为x 2-y 28=1(x >1).](2)解:抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如下图,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小,且最小值为|MD |=2-(-2)=4,所以|PM |+|PFP 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3.圆锥曲线简单性质的应用【例2】 (1)椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n2=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±152yB .y =±152xC .x =±34y D .y =±34x (2)椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-c ,0),A (-a ,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e .[思路探究] (1)由椭圆和双曲线有公共的焦点可得m ,n 的等量关系,从而求出双曲线的渐近线方程;(2)写出AB 的直线方程,由F 1到直线AB 的距离为b7得出a ,c 的关系,求椭圆的离心率e .(1)D [由题意,3m 2-5n 2=2m 2+3n 2,∴m 2=8n 2,令x 22m 2-y 23n 2=0,y 2=3n 22m 2x 2=316x 2,∴y =±34x ,即双曲线的渐近线方程是y =±34x .] (2)由A (-a ,0),B (0,b ),得直线AB 的斜率为k AB =ba,故AB 所在的直线方程为y -b=b ax ,即bx -ay +ab =0.又F 1(-c ,0),由点到直线的距离公式可得d =|-bc +ab |a 2+b 2=b 7,∴7·(a -c )=a 2+b 2.又b 2=a 2-c 2, 整理,得8c 2-14ac +5a 2=0,即8×⎝ ⎛⎭⎪⎫c a 2-14×c a +5=0,∴8e 2-14e +5=0.∴e =12或e=54(舍去). 综上可知,椭圆的离心率e =12.1.(变结论)在本例(1)条件不变的情况下,求该椭圆的离心率. [解] 题意可知,该椭圆的焦点在x 轴上,故 椭圆的离心率e =1-5n 23m2=1-5n 224n 2=11412.2.(变条件)在本例(2)条件换为“F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,〞求椭圆离心率的取值范围.[解] ∵MF 1→·MF 2→=0,∴点M 的轨迹是以F 1F 2为直径的圆,其方程为x 2+y 2=c 2. 由题意知椭圆上的点在该圆的外部, 设椭圆上任意一点P (x ,y ),到|OP |min =b , ∴c <b ,即c 2<a 2-c 2.解得e =c a <22. ∵0<e <1,∴0<e <22.1.本类问题主要有两种考察类型:(1)圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考察重点; (2)圆锥曲线的性质求其方程.2.对于求椭圆和双曲线的离心率,有两种方法: (1)代入法就是代入公式e =c a求离心率;(2)列方程法就是根据条件列出关于a ,b ,c 的关系式,然后把这个关系式整体转化为关于e 的方程,解方程即可求出e 的值.直线与圆锥曲线的位置关系2程是________.(2)向量a =(x ,3y ),b =(1,0),且(a +3b )⊥(a -3b ). ①求点Q (x ,y )的轨迹C 的方程;②设曲线C 与直线y =kx +m 相交于不同的两点M 、N ,又点A (0,-1),当|AM |=|AN |时,求实数m 的取值范围.8x -y -15=0 [(1)设所求直线与y 2=16x 相交于点A 、B ,且A (x 1,y 1),B (x 2,y 2),代入抛物线方程得y 21=16x 1,y 22=16x 2,两式相减,得(y 1+y 2)(y 1-y 2)=16(x 1-x 2),即y 1-y 2x 1-x 2=16y 1+y 2,得k AB =8. 设直线方程为y =8x +b ,代入点(2,1)得b =-15; 故所求直线方程为y =8x -15.](2)①由题意得,a +3b =(x +3,3y ),a -3b =(x -3,3y ),∵(a +3b )⊥(a -3b ),∴(a +3b )·(a -3b )=0,即(x +3)(x -3)+3y ·3y =0, 化简得x 23+y 2=1,∴点Q 的轨迹C 的方程为x 23+y 2=1.②由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1.得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 由于直线与椭圆有两个不同的交点, ∴Δ>0,即m 2<3k 2+1.①(ⅰ)当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标,那么x P =x M +x N2=-3mk3k 2+1,从而y P =kx P +m =m3k 2+1,k AP =y P +1x P =-m +3k 2+13mk,又|AM |=|AN |,∴AP ⊥MN .那么-m +3k 2+13mk =-1k,即2m =3k 2+1, ②将②代入①得2m >m 2,解得0<m <2, 由②得k 2=2m -13>0,解得m >12,故m 的取值范围是⎝ ⎛⎭⎪⎫12,2.(ⅱ)当k =0时,|AM |=|AN |, ∴AP ⊥MN ,m 2<3k 2+1. 即为m 2<1,解得-1<m <1.综上,当k ≠0时,m 的取值范围是⎝ ⎛⎭⎪⎫12,2, 当k =0时,m 的取值范围是(-1,1).解决圆锥曲线中的参数范围问题与求最值问题类似,一般有两种方法:(1)函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等关系式,通过解不等式求参数范围.2.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝ ⎛⎭⎪⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3,问:是否存在常数λ,使得k 1+k 2=λk 3?假设存在,求λ的值;假设不存在,请说明理由.[解] (1)由P ⎝ ⎛⎭⎪⎫1,32在椭圆上,得1a 2+94b 2=1.① 依题设知a =2c ,那么b 2=3c 2.②将②代入①,解得c 2=1,a 2=4,b 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)由题意可设AB 的斜率为k , 那么直线AB 的方程为y =k (x -1). ③代入椭圆方程3x 2+4y 2=12,并整理,得 (4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),那么有 x 1+x 2=8k 24k 2+3,x 1x 2=4〔k 2-3〕4k 2+3. ④在方程③中令x =4,得M 的坐标为(4,3k ). 从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.注意到A ,F ,B 三点共线,那么有k =k AF =k BF , 即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-〔x 1+x 2〕+1.⑤将④代入⑤,得k 1+k 2=2k -32·8k24k 2+3-24〔k 2-3〕4k 2+3-8k24k 2+3+1=2k -1. 又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.函数与方程的思想【例4】 椭圆G :x 24+y 2=1.过点(m ,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值. [解] (1)由得a =2,b =1,所以c =a 2-b 2= 3.所以椭圆G 的焦点坐标为(-3,0),(3,0),离心率为e =c a =32. (2)由题意知|m |≥1.当m =1时,切线l 的方程为x =1,点A ,B 的坐标分别为⎝ ⎛⎭⎪⎫1,32,⎝ ⎛⎭⎪⎫1,-32.此时|AB |= 3.当m =-1时,同理可得|AB |= 3.当|m |>1时,设切线l 的方程为y =k (x -m ).由⎩⎪⎨⎪⎧y =k 〔x -m 〕,x 24+y 2=1,得(1+4k 2)x 2-8k 2mx +4k 2m 2-4=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),那么 x 1+x 2=8k 2m 1+4k 2,x 1x 2=4k 2m 2-41+4k 2.又由l 与圆x 2+y 2=1相切,得|km |k 2+1=1,即m 2k 2=k 2+1.所以|AB |=〔x 2-x 1〕2+〔y 2-y 1〕2=〔1+k 2〕[〔x 1+x 2〕2-4x 1x 2]=〔1+k 2〕⎣⎢⎡⎦⎥⎤64k 4m 2〔1+4k 2〕2-4〔4k 2m 2-4〕1+4k 2=43|m |m 2+3. 由于当m =±1时,|AB |=3,所以|AB |=43|m |m 2+3,m ∈(-∞,-1]∪[1,+∞).因为|AB |=43|m |m 2+3=43|m |+3|m |≤2, 当且仅当m =±3时,|AB |=2, 所以|AB |的最大值为2.1.函数思想是解决最值问题最有利的武器.通常用建立目标函数的方法解有关圆锥曲线的最值问题.2.方程思想是从分析问题的数量关系入手,通过联想与类比,将问题中的条件转化为方程或方程组,然后通过解方程或方程组使问题获解,在求圆锥曲线方程、直线与圆锥曲线的位置关系的问题中经常利用方程或方程组来解决.3.如下图,过抛物线y 2=2px 的顶点O 作两条互相垂直的弦交抛物线于A 、B 两点.(1)证明直线AB 过定点; (2)求△AOB 面积的最小值.[解] (1)证明:当直线AB 的斜率不存在时,AB ⊥x 轴,又OA ⊥OB ,∴△AOB 为等腰直角三角形,设A (x 0,y 0),那么y 20=2px 0,∴x 0=2p ,直线AB 过点(2p ,0).当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -a ),A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y 2=2px ,y =k 〔x -a 〕,消去x 得ky 2-2py -2pak =0,那么y 1y 2=-2pa .又OA ⊥OB .∴y 1y 2=-x 1x 2.由方程组消去y ,得k 2x 2-(2k 2a +2p )x +k 2a 2=0, 那么x 1·x 2=a 2.因此,a 2=2pa .∴a =2p ..下载后可自行编辑修改,页脚下载后可删除。
高中数学 3.1第1课时椭圆及其标准方程课件 北师大版选修2-1

① 解得①②得-3<a<-1 或 a>1.
当 a>1 时,③不成立.当-3<a<-1 时,得 a<-2. 综上可得:a 的取值范围是-3<a<-2.
最值问题
F1 是x92+y52=1 的左焦点,P 是椭圆上的动点,A(1,1) 为定点,则|PA|+|PF1|的最小值为________________.
[解析] (1)∵椭圆的焦点在 x 轴上,所以设它的标准方程为ax22 +by22=1(a>b>0).
∵2a= 5+32+0+ 5-32+0=10,2c=6. ∴a=5,c=3, ∴b2=a2-c2=52-32=16. ∴所求椭圆的方程为:2x52 +1y62 =1.
(2)∵椭圆的焦点在 y 轴上,所以设它的标准方程为:ay22+bx22= 1(a>b>0).
3.已知△ABC 的顶点 B、C 在椭圆x32+y2=1 上,顶点 A 是
椭圆的一个焦点,且椭圆的另外一个焦点在 BC 边上,则△ABC
的周长是( )
A.2 3
B.6
C.4 3
D.12
[答案] C
[解析] 设椭圆的另一个焦点为 F(如图),
则 △ ABC 的 周 长 为 (|AB| + |BF|) + (|CA| + |CF|) = 2a + 2a =
∴-2c≤|PF1|-|PF2|≤2c, ∴2a-2c≤2|PF1|≤2a+2c,即 a-c≤|PF1|≤a+c
∴|PF1|的最大值为 a+c,最小值为 a-C.
[总结反思] 椭圆上到某一焦点的最远点与最近点分别是长 轴的两个端点,应掌握这一性质.
[总结反思] 椭圆的焦点在哪个坐标轴上主要看标准方程 中x2和y2项分母的大小,如果x2项的分母大于y2项的分母,则椭 圆的焦点在x轴上;反之,焦点在y轴上.由于本题中x2和y2项 分母的大小不确定,因此需要进行分类讨论.
3.2.2抛物线的简单几何性质-北师大版高中数学选修2-1课件

6、 焦半径
连接抛物线任意一点与焦点的线段叫做抛物
线的焦半径。
y
焦半径公式:
p/2 x0 P
|PF|=x0+p/2
OF
x
焦半径及焦半径公式 抛物线上一点到焦点的距离
P(x0,y0)在y2=2px上, P(x0,y0)在y2=-2px上,
PF
PF
x0
p
2
p
2
1、范围:抛物线只位于半个坐标平面内,虽然它也可 以无限延伸,但没有渐近线;
2、对称性: 抛物线只有一条对称轴,没有对称中心;
3、顶点:抛物线只有一个顶点,一个焦点,一条准线; 4、离心率:抛物线的离心率是确定的,等于1; 5、通径: 抛物线的通径为2P, 2p越大,抛物线的张口
越大. 6、光学性质:从焦点出发的光线,通过抛物线反射就
的直线,则被抛物线截得的弦长为______1__6_
3.垂直于x轴的直线交抛物线y2=4x于A、B,
且|AB|=4 3 ,求直线AB的方程.
X=3
例5.正三角形的一个顶点位于坐标原点,另外两个点 在抛物线y2=2px(p>0)上,求这个正三角形的边长.
解:由题可设一个顶点为( 3a, a)
则由a2 2 p 3a a 2 3 p
例3.斜率为1的直线L经过抛物线 y2 = 4x 的焦点F, 且与抛物线相交于A,B两点,求线段AB的长.
解法二:由题意可知,
y
p
2,
p 2
1,
准线l
:
x
1.
A’
A
设A(x1, y1), B(x2, y2 ), A, B到
准线l的距离分别为dA, dB.
2021-2022年高中数学 第三章第3节双曲线知识精讲 理 北师大版选修2-1

2021-2022年高中数学 第三章第3节双曲线知识精讲 理 北师大版选修2-1【本讲教育信息】 一. 教学内容:双曲线的标准方程及简单的几何性质。
(3.1双曲线及标准方程+3.2双曲线的简单的几何性质)二. 教学目标:(1)熟练地掌握双曲线的定义及标准方程的形式。
会求双曲线标准方程。
(2)掌握双曲线的简单的几何性质及其应用。
理解渐近线的意义。
(3)体会用方程的数学思想、等价转化的数学思想及待定系数法等数学思想方法解决双曲线的问题。
三. 知识要点分析: 1. 双曲线定义:第一定义:平面内到两定点距离之差的绝对值等于常数(小于)的点的集合叫做双曲线。
定点叫双曲线的焦点,两焦点间距离是焦距。
M=|}F F |a 2,a 2||PF ||PF |||P {2121<=- 第二定义:平面内到定点F 的距离与到定直线L 的距离之比是大于1的常数的点的集合叫双曲线,定点是双曲线的焦点,定直线是双曲线的准线。
M=注意:(1)在第一定义中:若2a=,则点的集合是以为端点的射线,若2a>,点的集合是空集。
(2)在第一定义中:当,则点的集合是双曲线的右支(如图1),当,点的集合是双曲线的左支(如图2)。
(3)在定义二中定点F 不在定直线L 上。
2. 双曲线的标准方程(1))0,0(,12222>>=-b a b y a x ,焦点在x 轴上(实轴在x 轴上),(2))0,0(,12222>>=-b a bx a y ,焦点在y 轴上(实轴在y 轴上),3. 双曲线几何性质图 形对称性 关于x 轴、y 轴、原点对称 范围或或顶点 A 1(-a ,0)A 2(a ,0)实轴:2a ,虚轴:2bA 1(0,-a ) A 2(0,a ) 实轴: 2a 虚轴:2b离心率 (e :确定双曲线的开口程度)渐近线焦点半径(1)P (点在右支上,则,(2)P 点在左支上,则a ex PF a ex PF +-=--=0201||,||(1)点在上支上201||,||ey a PF ey a PF +-=+=(2)P 点在下支上a ey PF a ey PF +-=--=0201||||,4.求双曲线标准方程常见的类型及方法: (1)定义法(已知条件满足双曲线定义)(2)待定系数法(定位:确定双曲线的焦点位置,设方程:根据焦点位置设方程,定值:确定系数)(3)已知渐进线方程,可设双曲线方程是,确定值即可。
高中数学选修2-1《圆锥曲线》教案

4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。
数学北师大选修2-1课件:第三章 圆锥曲线与方程 习题课1

A.1������62 + ���9���2=1 B.1������62 + ���1���22=1
C.���4���2 + ���3���2=1
D.���3���2
+
������2 4
=1
解析:因为|F1F2|是|PF1|与|PF2|的等差中项,所以
|PF1|+|PF2|=2|F1F2|=4>|F1F2|,点P的轨迹是以F1,F2为焦点的椭圆,
反思感悟解决直线与椭圆的位置关系问题,一般采用代数法,即 将直线方程与椭圆方程联立,通过判别式Δ的符号决定位置关系.同 时涉及弦长问题时,往往采用设而不求的办法,即设出弦端点的坐 标,利用一元二次方程根与系数的关系,结合弦长公式进行求解.
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
直线与椭圆的位置关系问题 【例2】 已知椭圆4x2+y2=1及直线y=x+m. (1)当直线和椭圆有公共点时,求实数m的取值范围; (2)求被椭圆截得的最长弦所在的直线方程. 思维点拨:(1)将直线方程与椭圆方程联立,根据判别式Δ的符号,建 立关于m的不等式求解;(2)利用弦长公式建立关于m的函数关系式, 通过函数的最值求得m的值,从而得到直线方程.
圆方程
������2 ������2
+
������������22=1
(a>b>0)联立,消去y(或x),得到关于x(或y)的一元二
次方程,记该方程的判别式为Δ.那么:若Δ>0,则直线与椭圆相交;若
Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.
高中数学 第三章 圆锥曲线与方程 3.4.3 直线与圆锥曲线的交点课件7 北师大版选修2-1
注:得到一元二次方程,需计算判别式。
2、求直线 y = 6与抛物线 y2 =4x
的位置关系。 相 交
注:得到一元一次方程,得到一个交点。
K12课件
11
K12课件
12
把直线方程代入抛物线方程
得到一元一次方程 得到一元二次方程
直线与抛物线 相交(一个交点)
此方法适用于 其他各种曲线
4.3
K12课件
1
例题1 给定椭圆方程
x2 y2 54
1
,斜率
为1的直线过其焦点F2(1,0),直线与椭圆
相交于A,B两点,求A,B的坐标。
y
A
o F2(1,0) x
B
K12课件
2
y
MB
ll
o A
l
K12课件
复位 相离 相切 x 相交
3
如何从式子中解得直线与圆的关系?
把直线方程代入圆的方程
பைடு நூலகம்
与抛物线y2 4x,
( 1)有 两个交点;
( 2)只有一个交点;
( 3)无交点
K12课件
19
K12课件
20
把直线方程代入抛物线方程
得到一元一次方程 得到一元二次方程
直线与抛物线 相交(一个交点)
此方法适用于 其他各种曲线
计算判别式
△> 0 ,相交
△= 0 ,相切
△< 0 ,相离
K12课件
21
圆
x2 y2 1
5m
恒有公共点,
则实数m的取值范围
K12课件
6
思考:课本P77B组第4题
K12课件
7
K12课件
高中数学_圆锥曲线的方程与性质教学课件设计
2.(2018·全国Ⅱ,文,11)已知F1,F2是椭圆C的两个焦点,P是C上的一点.若PF1⊥PF2, 且∠PF2F1=60°,则C的离心率为
值范围是
√A.[ 5, 6]
C.54,32
B.
25,
6
2
D.52,3
x+y=1, 解析 联立ax22+by22=1, 得(a2+b2)x2-2a2x+a2-a2b2=0, 设P(x1,y1),Q(x2,y2), Δ=4a4-4(a2+b2)(a2-a2b2)>0,化为a2+b2>1. x1+x2=a22+a2b2,x1x2=aa2-2+ab2b2 2. ∵OP⊥OQ, ∴O→P·O→Q=x1x2+y1y2=x1x2+(x1-1)(x2-1)=2x1x2-(x1+x2)+1=0,
∴椭圆长轴的取值范围是[ 5, 6].
跟踪演练 3 (1)(2019·合肥质检)已知椭圆ax22+by22=1(a>b>0)的左、右焦点分别为 F1,
F2,右顶点为 A,上顶点为 B,以线段 F1A 为直径的圆交线段 F1B 的延长线于点 P,
若 F2B∥AP,则该椭圆的离心率是
3 A. 3
2 B. 3
当直线AB的斜率不存在时,2t1+2t2=0,此时t1=-t2, 则 AB 的方程为 x=2,焦点 F 到直线 AB 的距离为 2-12=32, ∵kAB=22tt112--22tt222=t1+1 t2,得直线 AB 的方程为 y-2t1=t1+1 t2(x-2t21). 即x-(t1+t2)y-2=0. 令y=0,解得x=2. ∴直线AB恒过定点D(2,0). ∴抛物线的焦点 F 到直线 AB 的距离小于32, 综上,焦点 F 到直线 AB 距离的最大值为32.
2021年高中数学第三章圆锥曲线与方程3.4.2圆锥曲线的共同特征课件3北师大版选修2_1
课后练习
1、椭圆 (x2)2(y2)2|3x4y8| 的离心率为 25
A、1/25 B、1/5 C、1/10 D、无法确定
2、椭圆长轴长为10,短轴长为8,那么椭圆上点到原点距离的取值范围是
A、[8,10]
B、[4,5] C、[6,10]
D、[2,8]
平面内到定点F的距离和到定直线的距离相等的点的 轨迹 表达式|PF|=d (d为动点到定直线距离〕
平面内动点P到一个定点F的距离PF和到一条定 直线l (F不在l上)的距离d相等时,动点P的轨迹为抛 物线,此时PF/d=1.
探究与思考: 假设PF/d≠1呢?
在推导椭圆的标准方程时,我们曾得到这样 一个式子:
虚轴长分别为2a,2b的双曲线.
圆锥曲线统一定义:
平面内到一定点F 与到一条定直线l 的距离之比为 常数 e 的点的轨迹.( 点F 不在直线l 上〕 (1)当 0< e <1 时, 点的轨迹是椭圆. (2)当 e >1 时, 点的轨迹是双曲线.
(3)当 e = 1 时, 点的轨迹是抛物线.
其中常数e叫做圆锥曲线的离心率, 定点F叫做圆锥曲线的焦点, 定直线l就是该圆锥曲线的准线.
1(a0,b0)
l1 y
l2
M2 d2 P
.
F1
O
.
F2
x
M1 d1
P′
准线: x a 2 c
定义式:
PF1 PF2 d1 d2
e
标准方程
x2 a2
y2 b2
1
(a b 0)
y2 a2
x2 b2
1
(a b 0)
x2 y2 a2 b2 1 (a 0,b 0)