西工大(冯青) 工程热力学作业答案 第九章

合集下载

最新第9章热力学(习题、答案)文件.doc

最新第9章热力学(习题、答案)文件.doc

大学物理Ⅱ习题集第9 章热力学基础一. 基本要求1. 理解平衡态、准静态过程的概念。

2. 掌握内能、功和热量的概念。

3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。

4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。

5. 了解可逆过程与不可逆过程的概念。

6. 解热力学第二定律的两种表述,了解两种表述的等价性。

7. 理解熵的概念,了解热力学第二定律的统计意义及无序性。

二. 内容提要1. 内能功热量内能从热力学观点来看,内能是系统的态函数,它由系统的态参量单值决定。

对于理想气体,其内能 E 仅为温度T 的函数,即EM M iC TVMmolM 2molRT当温度变化ΔT 时,内能的变化EM M iC TVM Mmol 2molR T功热学中的功与力学中的功在概念上没有差别,但热学中的作功过程必有系统边界的移动。

在热学中,功是过程量,在过程初、末状态相同的情况下,过程不同,系统作的功 A 也不相同。

系统膨胀作功的一般算式为A V2V1pdV在p—V 图上,系统对外作的功与过程曲线下方的面积等值。

热量热量是系统在热传递过程中传递能量的量度。

热量也是过程量,其大小不仅与过程、的初、末状态有关,而且也与系统所经历的过程有关。

2. 热力学第一定律系统从外界吸收的热量,一部分用于增加内能,一部分用于对外作功,即Q E A热力学第一定律的微分式为1大学物理Ⅱ习题集dQ dE pdV3. 热力学第一定律的应用——几种过程的A、Q、ΔE的计算公式(1)等体过程体积不变的过程,其特征是体积V =常量;其过程方程为1pT常量在等体过程中,系统不对外作功,即 A 0。

等体过程中系统吸收的热量与系统内V能的增量相等,即R TM M iQ E C TV 2VM Mmol mol(2) 等压过程压强不变的过程,其特点是压强p =常量;过程方程为1VT常量在等压过程中,系统对外做的功MV 2APd ( ) R(T T )p V p V VV1 2 1 2 1MmolM系统吸收的热量( 2 T )Q C TP P 1Mmol式中C C RP 为等压摩尔热容。

热工基础课后答案第八和九章

热工基础课后答案第八和九章

第八章习 题8-1. 一大平板,高3m ,宽2m ,厚 0.02m ,导热系数为45 W/(m ·K),两侧表面温度分别为1001=t ℃、502=t ℃,试求该板的热阻、热流量、热流密度。

解:解:由傅立叶导热定律: 热阻 W K AR /407.7452302.0=⨯⨯==λδm热流量 W t t A Q w w 67500002.050100452321=⨯⨯⨯-=-=δλ热流密度 2/11250023675000m W SQ q =⨯==8-2. 空气在一根内径50mm ,长2.5m 的管子内流动并被加热,已知空气平均温度为80℃,管内对流换热的表面传热系数为70=h W/(m 2·K),热5000=q W/m 2,试求管壁温度及热流量。

解:由牛顿冷却公式:()f w t t h q -=得到 C t h q t f w 042.15180705000=+=+=W s q Q 53.2405.045.250002=⨯⨯⨯⨯=π=8-3. 一单层玻璃窗,高1.2m ,宽1m ,玻璃厚0.3mm ,玻璃的导热系数为051.=λ W/(m ·K),室内外的空气温度分别为20℃和5℃,室内外空气与玻璃窗之间对流换热的表面传热系数分别为51=h W/(m 2 ·K)和202=h W/(m 2 ·K),试求玻璃窗的散热损失及玻璃的导热热阻、两侧的对流换热热阻。

解:对流换热计算公式: W h h t t s Q f f 9.7120105.10003.05152012.1112121=+⨯⨯++-⨯=+-=λδ导热热阻为:W K R /000286.005.10003.01===λδ内侧对流换热热阻为:W K h R /2.051112===外侧对流换热热阻为:W K h R /05.0201123===8-4. 如果采用双层玻璃窗,玻璃窗的大小、玻璃的厚度及室内外的对流换热条件与1-3题相同,双层玻璃间的空气夹层厚度为5mm ,夹层中的空气完全静止,空气的导热系数为025.0=λ W/(m ·K)。

西工大(冯青) 工程热力学作业答案 第二章

西工大(冯青) 工程热力学作业答案 第二章
' '
0 = ( mu ′ − m0 u0 ) + 0( h + − ( m − m0 )( h +
1 2 cf + gz ) out 2
1 2 cf + gz ) in + 0 2
习题 2-13 储气罐充气
忽略宏观动能和位能后,整理得
( mu ′ − m0 u0 ) = h( m − m0 ) ,即开口系能量的增加等于
则由闭口系热力学第一定律表达式得
Q12 = ΔU 12 + W12 = 1.5( p2V2 − p1V1 ) +
1 ( p2 − p1 )(V2 + V1 ) + ( p1V2 − p2V1 ) 2
= 60 + 0.5 × ( 200 − 1000)(1.2 + 0.2) + (1000 × 1.2 − 200 × 0.2) = 660 kJ
PA2V A2 PA1V A1
× T A1 =
V2
2 × 0.00645 TA1 = 3T A1 = 900 K 1 × 0.043
(2)取 B 内气体为热力系, WB =

V2
V1
pdV = ∫
RgTB1
V
V1
dV = RgTB1 ln
V2 V1
kJ
= 0.287 × 300 × ln
则 QB = ΔU B + WB = 0 − 59.68 = −59.68
cf 3′ = 2( h3 − h3′ ) =
2γRg
γ −1
(T3 − T3′ ) =
2 × 1.40 × 0.287 (600 − 370) = 21.50 m/s 1.40 − 1

工程热力学思考题及答案 第 九 章

工程热力学思考题及答案 第 九 章

∫ Tds
2

2
等温过程所作的功为图 7-1 中面积 1-2T-m-n-1,绝热过程所作的功为图中面积 1- 2 s -f-n-1 多变过程所作的功为图中面积 1-2’n-j-g-2n-1 4.叶轮是压气机不可逆绝热压缩比可逆绝热压缩多耗功可用图 7-2 中的面积 m2s2’nm 表示,这 是否即是此不可逆过程的做功能力损失?为什么?
沈维道、将智敏、童钧耕《工程热力学》课后思考题答案
工程热力学思考题及答案
第 九 章 压气机的热力过程
1.如果由于应用汽缸冷却水套以及其他冷却方法, 气体在压气机气缸中已经能够按定温过程进行压 缩,这时是否还需要采用分级压缩?为什么? 答:分级压缩主要是减小余隙容积对产气量的影响,冷却作用只是减小消耗功。所以仍然需要采用 分级压缩。 2.压气机按定温压缩时气体对外放出热量, 而按绝热压缩时不向外放热, 为什么定温压缩反较绝热 压缩更为经济? 答:绝热压缩时压气机不向外放热,热量完全转化为工质的内能,使工质的温度升高不利于进一步 压缩容易对压气机造成损伤,耗功大。等温压缩压气机向外放热,工质的温度不变,有利于进一步 压缩耗功小,所以等温压缩更为经济。 3.压气机所需要的功也可以由第一定律能量方程式导出,试导出定温、多变、绝热压缩压气机所需 要的功,并用 T-s 图上面积表示其值。 答:由第一定律能量方程式 q = Δh + wt ,定温过程 Δh = 0 ,所以 wc = − wt = − q = −TΔs ,同时
'
1
答:多消耗的功量并不就是损失的做功能力损失。因为
i = T0 Δs g = T0 ( s 2 ' − s1 ) = T0 ( s 2 ' − s1 ) = 2 T ( s 2 ' − s1 )

工程热力学第三版答案【英文】第9章

工程热力学第三版答案【英文】第9章

9-13The three processes of an air-standard cycle are described. The cycle is to be shown on the P-v and T-s diagrams, and the back work ratio and the thermal efficiency are to be determined.Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats. Properties The properties of air are given as R = 0.287 kJ/kg.K, c p = 1.005 kJ/kg.K, c v = 0.718 kJ/kg·K, and k = 1.4.Analysis (a) The P -v and T -s diagrams of the cycle are shown in the figures. (b) The temperature at state 2 is K 2100kP a100kP a 700K) 300(1212===P P T TK 210023==T TDuring process 1-3, we havekJ/kg516.600)K 21K)(300kJ/kg 287.0()()(3131113,13=-⋅-=--=--=-=⎰-T T R P Pd w in V V vDuring process 2-3, we havekJ/kg8.1172n7K)(2100)Kl kJ/kg 287.0(7ln 7ln ln22233232,32=⋅======⎰⎰-RT RT RT d RTPd w out V VV V v Vv The back work ratio is then0.440===--kJ/kg8.1172kJ/kg6.516,32,13outin bw w w rHeat input is determined from an energybalance on the cycle during process 1-3,kJ/kg2465kJ/kg 1172.8300)K)(2100kJ/kg 718.0()(,3213,3231,3131,32,31=+-⋅=+-=+∆=-∆=--------outv outin out in w T T c w u q u w qThe net work output issvkJ/kg 2.6566.5168.1172,13,32=-=-=--in out net w w w(c) The thermal efficiency is then26.6%====266.0kJ2465kJ656.2in net th q w η9-21An air-standard cycle executed in a piston-cylinder system is composed of threespecified processes. The cycle is to be sketcehed on the P -v and T -s diagrams; the heat and work interactions and the thermal efficiency of the cycle are to bedetermined; and an expression for thermal efficiency as functions of compression ratio and specific heat ratio is to be obtained.Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats. Properties The properties of air are given as R = 0.3 kJ/kg·K and c v = 0.3 kJ/kg·K. Analysis (a) The P -v and T -s diagrams of the cycle are shown in the figures. (b) Noting that1.4297.00.1KkJ/kg 0.13.07.0===⋅=+=+=vv c c k R c c p pProcess 1-2: Isentropic compressionK 4.584)5)(K 293(429.01112112===⎪⎪⎭⎫ ⎝⎛=--k k r T T T vvkJ/kg 204.0=-⋅=-=-K )2934.584)(K kJ/kg 7.0()(12in 2,1T T c w v0=-21qFrom ideal gas relation,2922)5)(4.584(3212323==−→−===T r T T v v v v Process 2-3: Constant pressure heat additionkJ/kg701.3=-⋅=-=-==⎰-K )4.5842922)(K kJ/kg 3.0()()(2323232out 3,2T T R P Pd w v v vskJ/kg2338=-⋅=-=∆=∆+=----K )4.5842922)(K kJ/kg 1()(233232,32in 3,2T T c h u w q p outProcess 3-1: Constant volume heat rejectionkJ/kg 1840.3=⋅=-=∆=--K 293)-K)(2922kJ/kg 7.0()(1331out 1,3T T c u q v0=-13w(c) Net work isK kJ/kg 3.4970.2043.701in 2,1out 3,2net ⋅=-=-=--w w wThe thermal efficiency is then21.3%====213.0kJ2338kJ497.3in net th q w η9-32The two isentropic processes in an Otto cycle are replaced with polytropic processes.The heat added to and rejected from this cycle, and the cycle’s thermal efficiency are to be determined.Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats. Properties The properties of air at room temperature are R = 0.287 kPa·m 3/kg·K, c p = 1.005 kJ/kg·K, c v = 0.718 kJ/kg·K, and k = 1.4 (Table A-2a). Analysis The temperature at the end of the compression isK 4.537K)(8) 288(13.11112112===⎪⎪⎭⎫ ⎝⎛=---n n r T T T vvAnd the temperature at the end of the expansion isK 4.78981K) 1473(113.11314334=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=---n n r T T T vvThe integral of the work expression for the polytropic compression giveskJ/kg 6.238)18(13.1K) K)(288kJ/kg 287.0(1113.1121121=--⋅=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-=---n n RT w vvSimilarly, the work produced during the expansion iskJ/kg 0.65418113.1K) K)(1473kJ/kg 287.0(1113.1143343=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛-⋅-=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--=---n n RT w vv Application of the first law to each of the four processes giveskJ/kg 53.59K )2884.537)(K kJ/kg 718.0(kJ/kg 6.238)(122121=-⋅-=--=--T T c w q v kJ/kg 8.671K )4.5371473)(K kJ/kg 718.0()(2332=-⋅=-=-T T c q vkJ/kg 2.163K )4.7891473)(K kJ/kg 718.0(kJ/kg 0.654)(434343=-⋅-=--=--T T c w q vkJ/kg 0.360K )2884.789)(K kJ/kg 718.0()(1414=-⋅=-=-T T c q vThe head added and rejected from the cycle arekJ/kg419.5kJ/kg 835.0=+=+==+=+=----0.36053.592.1638.6711421out 4332in q q q q q qThe thermal efficiency of this cycle is then0.498=-=-=0.8355.41911in out th q q η9-37An ideal Otto cycle with air as the working fluid has a compression ratio of 8. Theamount of heat transferred to the air during the heat addition process, the thermal efficiency, and the thermal efficiency of a Carnot cycle operating between the same temperature limits are to be determined. Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with variable specific heats.Properties The properties of air are given in Table A-17E. Analysis (a) Process 1-2: isentropic compression.32.144Btu/lbm92.04R 540111==−→−=r u T v()Btu/lbm 11.28204.1832.144811212222=−→−====u r r r r v v v v v Process 2-3: v = constant heat addition.Btu/lbm241.42=-=-===−→−=28.21170.452419.2Btu/lbm452.70R 240023333u u q u T in r vvP(b) Process 3-4: isentropic expansion.()()Btu/lbm 205.5435.19419.28434334=−→−====u r r r r v v v v v Process 4-1: v = constant heat rejection.Btu/lbm 50.11304.9254.20514out =-=-=u u q53.0%=-=-=Btu/lbm241.42Btu/lbm113.5011in out th q q η (c) The thermal efficiency of a Carnot cycle operating between the same temperature limits is 77.5%=-=-=R2400R54011C th,H L T T η9-40The expressions for the maximum gas temperature and pressure of an ideal Otto cycleare to be determined when the compression ratio is doubled.Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats. Analysis The temperature at the end of the compression varies with the compression ratio as1112112--=⎪⎪⎭⎫⎝⎛=k k r T T T v vsince T 1 is fixed. The temperature rise during thecombustion remains constant since the amount of heat addition is fixed. Then, the maximum cycle temperature is given by11in 2in 3//-+=+=k r T c q T c q T v vThe smallest gas specific volume during the cycle isr13v v =When this is combined with the maximum temperature, the maximum pressure is given by ()11in 1333/-+==k r T c qRrRT P v v v9-47An ideal diesel cycle has a compression ratio of 20 and a cutoff ratio of 1.3. The maximum temperature of the air and the rate of heat addition are to be determined. Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats. Properties The properties of air at room temperature are c p = 1.005 kJ/kg·K, c v = 0.718 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4 (Table A-2a). Analysis()K 6.95420K) 288(14.11112112===⎪⎪⎭⎫ ⎝⎛=---k k r T T T vvK 1241===⎪⎪⎭⎫ ⎝⎛=K)(1.3) 6.954(22323c r T T T vv Combining the first law as applied to the various processes with the process equations gives6812.0)13.1(4.113.12011)1(1114.111.41th =---=---=--c k c k r k r r ηAccording to the definition of the thermal efficiency,kW 367===0.6812kW 250th net inηW Q9-59An ideal dual cycle has a compression ratio of 15 and cutoff ratio of 1.4. The net work,heat addition, and the thermal efficiency are to be determined.Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats. Properties The properties of air at room temperature are R = 0.3704 psia·ft 3/lbm.R (Table A-1E), c p = 0.240 Btu/lbm·R, c v = 0.171 Btu/lbm·R, and k = 1.4 (Table A-2Ea).Analysis Working around the cycle, the germane properties at the various states are()R 158015R) 535(14.11112112===⎪⎪⎭⎫ ⎝⎛=---k k r T T T vvout()psia 2.62915psia) 2.14(4.112112===⎪⎪⎭⎫ ⎝⎛=k kr P P P vvpsia 1.692psia) 2.629)(1.1(23====P r P P p xR 1738psia 629.2psia 692.1R) 1580(22=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=PP T T xxR 2433R)(1.4) 1738(33===⎪⎪⎭⎫⎝⎛=c x xx r T T T vvR 2.942151.4R) 2433(14.11314334=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=---k c k rr T T T vvApplying the first law to each of the processes givesBtu/lbm 7.178R )5351580)(R Btu/lbm 171.0()(1221=-⋅=-=-T T c w v Btu/lbm 02.27R )15801738)(R Btu/lbm 171.0()(22=-⋅=-=-T T c q x x vBtu/lbm 8.166R )17382433)(R Btu/lbm 240.0()(33=-⋅=-=-x p x T T c qB t u /l b 96.47R )17382433)(R Btu/lbm 171.0(Btu/lbm 8.166)(333=-⋅-=--=--x x x T T c q w vBtu/lbm 9.254R )2.9422433)(R Btu/lbm 171.0()(4343=-⋅=-=-T T c w vThe net work of the cycle isBtu/lbm 124.2=-+=-+=---7.17896.479.25421343net w w w w x and the net heat addition isBtu/lbm 193.8=+=+=--8.16602.2732in x x q q q Hence, the thermal efficiency is0.641===Btu/lbm193.8Btu/lbm124.2in net th q w η9-61An expression for cutoff ratio of an ideal diesel cycle is to be developed.Assumptions 1 The air-standard assumptions are applicable. 2 Kinetic and potentialenergy changes are negligible. 3 Air is an ideal gas with constant specific heats. Analysis Employing the isentropic process equations,112-=k rT Toutwhile the ideal gas law gives1123T r r r T T k c c -==When the first law and the closed system work integral is applied to the constant pressure heat addition, the result is)()(111123in T r T r r c T T c q k k c p p ---=-=When this is solved for cutoff ratio, the result is11in1T r c q r k p c -+=9-81A simple ideal Brayton cycle with air as the working fluid has a pressure ratio of 10. The air temperature at the compressor exit, the back work ratio, and the thermal efficiency are to be determined.Assumptions 1 Steady operating conditions exist. 2 The air-standard assumptions are applicable. 3 Kinetic and potential energy changes are negligible. 4 Air is an ideal gas with variable specific heats.Properties The properties of air are given in Table A-17E. Analysis (a ) Noting that process 1-2 is isentropic,T h P r 11112147=−→−==520R124.27Btu /lbm .()()Btu/lbm 240.11 147.122147.110221212==−→−===h T P P P P r r R 996.5(b ) Process 3-4 is isentropic, and thus()Btu/lbm38.88283.26571.504Btu/lbm115.8427.12411.240Btu/lbm 265.834.170.1741010.174Btu/lbm 504.71R 200043out T,12inC,43433343=-=-==-=-==−→−=⎪⎭⎫⎝⎛====−→−=h h w h h w h P P P P P h T r r rThen the back-work ratio becomess200052048.5%===Btu/lbm238.88Btu/lbm115.84outT,in C,bw w w r(c ) 46.5%====-=-==-=-=Btu/lbm264.60Btu/lbm123.04Btu/lbm123.0484.11588.238Btu/lbm264.6011.24071.504inout net,th in C,out T,out net,23in q w w w w h h q η9-87A simple ideal Brayton cycle with air as the working fluid has a pressure ratio of 10.The air temperature at the compressor exit, the back work ratio, and the thermal efficiency are to be determined.Assumptions 1 Steady operating conditions exist. 2 The air-standard assumptions are applicable. 3 Kinetic and potential energy changes are negligible. 4 Air is an ideal gas with variable specific heats.Properties The properties of air are given in Table A-17E. Analysis (a ) Noting that process 1-2 is isentropic,T h P r 11112147=−→−==520R124.27Btu /lbm .()()Btu/lbm 240.11 147.122147.110221212==−→−===h T P P P P r r R 996.5(b ) Process 3-4 is isentropic, and thus()Btu/lbm38.88283.26571.504Btu/lbm115.8427.12411.240Btu/lbm 265.834.170.1741010.174Btu/lbm 504.71R 200043out T,12inC,43433343=-=-==-=-==−→−=⎪⎭⎫⎝⎛====−→−=h h w h h w h P P P P P h T r r rThen the back-work ratio becomes48.5%===Btu/lbm238.88Btu/lbm115.84outT,in C,bw w w rs2000520(c ) 46.5%====-=-==-=-=Btu/lbm264.60Btu/lbm123.04Btu/lbm123.0484.11588.238Btu/lbm264.6011.24071.504inout net,th in C,out T,out net,23in q w w w w h h q η(d) The expression for the cycle thermal efficiency is obtained as follows:⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=---=----=-==-----------1111111111111111111231223in in 2,1out 3,2in net th 11)1(11111)1(11)1(1)1(1)()()()()(k k p k p k p k k v p k k p k v p p v r r k k r r k c R r T T r k c R r r T c r T T r T c c R r T r rT c T r T c c RT T c T T c T T R q w w q w η since 111kc c c c c c R p v p v p p -=-=-=。

工程热力学第四版课后思考题答案

工程热力学第四版课后思考题答案

第一章基本概念与定义1.答:不一定。

稳定流动开口系统内质量也可以保持恒定2.答:这种说法是不对的。

工质在越过边界时,其热力学能也越过了边界。

但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。

3.答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。

稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。

平衡状态并非稳定状态之必要条件。

物系内部各处的性质均匀一致的状态为均匀状态。

平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。

4.答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。

当地大气压不一定是环境大气压。

环境大气压是指压力仪表所处的环境的压力。

5.答:温度计随物体的冷热程度不同有显著的变化。

6.答:任何一种经验温标不能作为度量温度的标准。

由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。

7.答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变化的原因。

8.答:(1)第一种情况如图1-1(a ),不作功(2)第二种情况如图1-1(b ),作功(3)第一种情况为不可逆过程不可以在p-v 图上表示出来,第二种情况为可逆过程可以在p-v 图上表示出来。

9.答:经历一个不可逆过程后系统可以恢复为原来状态。

系统和外界整个系统不能恢复原来状态。

10.答:系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。

11.答:不一定。

主要看输出功的主要作用是什么,排斥大气功是否有用。

第二章 热力学第一定理1.答:将隔板抽去,根据热力学第一定律w u q +∆=其中0,0==w q 所以容器中空 气的热力学能不变。

工程热力学第九章_第23-24节讲解


一般取10°~12 °
l
2 tan
2
背压变化的影响
假定入口参数不变
渐缩喷管
渐缩渐扩喷管
膨胀不足
过度膨胀
突击压缩 膨胀不足
具有摩擦的绝热流动
h1
h2

1 2
(c22
c12 )
T
实际焓降小于理论焓降,实际出口小于理论
出口速度。通常用速度系数或喷管效率描述
实际过程与理想过程之间的差异
p1 1
cc
2
k k 1
p1v1

k 2 k 1 RT1
cc 44.72 h1 hc
流量与临界流量
m
稳态稳流,各截面流量均相等: c m max b
m1 m2 ....... m const
对于渐缩喷管:出口处M≤1
p2 pc M 1
0
pc / p1
m
f 2 c2 v2
dc>0 dc < 0
dp < 0 dp > 0
管道截面变化规律
a
( p )
s
v
2

p v
s
cdc vdp
连续性方程: dc df dv 0 cfv
c2 dc 1 v
a2
c

v

p
s
dp
Mc a
M 2 dc dv cv
由于局部阻力,使流体压力降低的一种特殊的流动过程。
稳态稳流能量方程:

q

dh

1 2
dc2

gdz


ws
dh 0

西工大(冯青) 工程热力学作业答案 第一章

1-1体积为2L 的气瓶内盛有氧气2.858g,求氧气的比体积、密度和重度。

解:氧气的比体积为3310858.2102−−××==m V v =0.6998 m 3/kg 密度为vm V 110210858.233=××==−−ρ=1.429 kg/m 3重度80665.9429.1×==g ργ=14.01 N/m 31-2某容器被一刚性器壁分为两部分,在容器的不同部分安装了测压计,如图所示。

压力表A 的读数为0.125MPa,压力表B 的读数为0.190 MPa,如果大气压力为0.098 MPa,试确定容器两部分气体的绝对压力可各为多少?表C 是压力表还是真空表?表C的读数应是多少? 解:设表A、B、C 读出的绝对压力分别为A p 、B p 和C p 。

则根据题意,有容器左侧的绝对压力为=+=+==125.0098.0gA b A p p p p 左0.223 MPa 又∵容器左侧的绝对压力为gB C B p p p p +==左 ∴033.0190.0223.0gB C =−=−=p p p 左 MPa<b p∴表C 是真空表,其读数为033.0098.0C b vC −=−=p p p =0.065 MPa 则容器右侧的绝对压力为=−=−=065.0098.0vC b p p p 右0.033 MPa1-5水银温度计浸在冰水中时的水银柱长度为4.0cm,浸在沸水中时的水银柱长度为24.0cm。

试求:1)在室温为22℃时水银柱的长度为多少?2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,求溶液的温度。

解:假设水银柱长度随温度线性增加。

则1℃间隔的水银柱长度为424100−=ΔΔz t =5.00 ℃/cm 1) 在室温为22℃时水银柱的长度为=+=ΔΔ+5/224/0ztt z 8.4 cm2) 水银柱的长度为25.4cm时,溶液的温度为=×−=ΔΔ×−=5)44.25()(0ztz z t 107 ℃1-6如图所示,一垂直放置的汽缸内存有气体。

西北工业大学机械原理课后答案第9章

第9章课后参考答案 9-1 何谓凸轮机构传动中的刚性冲击和柔性冲击?试补全图示各段s一、 v一、一曲线,并指出哪些地方有刚性冲击,哪些地方有柔性冲击?

答 凸轮机构传动中的刚性冲击是指理论上无穷大的惯性力瞬问作用到构件上,使构件产生强烈的冲击;而柔性冲击是指理论上有限大的惯性力瞬间作用到构件上,使构件产生的冲击。 s-δ, v-δ, a-δ曲线见图。在图9-1中B,C处有刚性冲击,在0,A,D,E处有柔性冲击。 9—2何谓凸轮工作廓线的变尖现象和推杆运动的失真现象?它对凸轮机构的工作有何影响?如何加以避免? 答 在用包络的方法确定凸轮的工作廓线时,凸轮的工作廓线出现尖点的现象称为变尖现象:凸轮的工作廓线使推杆不能实现预期的运动规律的现象件为失真现象。变尖的工作廓线极易磨损,使推杆运动失真.使推杆运动规律达不到设计要求,因此应设法避免。变尖和失真现象可通过增大凸轮的基圆半径.减小滚子半

径以及修改推杆的运动规律等方法来避免。 9—3力封闭与几何封闭凸轮机构的许用压力角的确定是否一样?为什么? 答 力封闭与几何封闭凸轮机沟的许用压力角的确定是不一样的。因为在回程阶段-对于力封闭的凸轮饥构,由于这时使推杆运动的不是凸轮对推杆的作用力F,而是推杆所受的封闭力.其不存在自锁的同题,故允许采用较大的压力角。但为

avs03/

3/2

3/43/52

题9-1图 使推秆与凸轮之间的作用力不致过大。也需限定较大的许用压力角。而对于几何形状封闭的凸轮机构,则需要考虑自锁的问题。许用压力角相对就小一些。 9—4一滚子推杆盘形凸轮机构,在使用中发现推杆滚子的直径偏小,欲改用较大的滚子?问是否可行?为什么? 答 不可行。因为滚子半径增大后。凸轮的理论廓线改变了.推杆的运动规律也势必发生变化。 9—5一对心直动推杆盘形凸轮机构,在使用中发现推程压力角稍偏大,拟采用推杆偏置的办法来改善,问是否可行?为什么? 答 不可行。因为推杆偏置的大小、方向的改变会直接影响推杆的运动规律.而原凸轮机构推杆的运动规律应该是不允许擅自改动的。 9-6 在图示机构中,哪个是正偏置?哪个是负偏置?根据式(9-24)说明偏置方向对凸轮机构压力角有何影响?

第9章 热力学基础答案.doc

1.B 注释:功和热量均为过程两, 内能为状态量,AE = —- 町一7])M 22.C 注释:等压过程公式 4=心吧=苏号鸣一7;)=号吧3.C 注释:等压过程公式 。

广心吧=若号皿—)=号吧热力学基础(同步训练第60页至64页)-.选择题4. D 注释:热力学第一定律Q = △£ + *,系统体积膨胀,系统对外做正功;系统体积压缩,系统对外做负功;内能是温度的单值函数,与温度成正比。

.5. D 注释:热力学第一定律Q = NE + W ,功的公式[pdV ,内能增量公式八E = =L R (TT )J M 2.6. A 注释:热力学第一定律Q = M + W ,功的公式ipdV ,内能增量公式八E = --R (T.-T^J M 27. B 注释:三个过程始末温度相同,所以AE 1/?=A£4r 再有已知AC 绝热过程,得 △E AC=一吧。

=—S AC 下,则厢过程:0w = AE +吧B = -,c 下+ 5人虾V 0,气体放热;同理AD 过程:Q AD = NE + W AD = 一$化卜・+,人。

下> 0,气体吸热.8. A 注释:系统被压缩,外界对系统作正功,等于pv 图上曲线下方面积. 9. A 注释:内能是温度的单值函数,与温度成正比。

10. C 注释:A 错,反例:等温过程中,就是单一热源吸收热量全部变为有用功.应改为:在循环过程中,不可能 从单一热源吸收热量使之全部变为有用功.B 错,理由同AC 对,炳是分子的无序度的量度,日然界中一切与热现象有关的过程都是向者炳增加的方向进D 错.反例:制冷机冰箱就是通过外界做功将热量从温度低的物体传到温度高的物体.应改为: 热量不可能1=1发地从温度低的物体传到温度高的物体. 二.填空题N M M1. 一, -—, N =也 --------- 注释:略2. 326J 注释:热力学第一定律Q = ^E + W V "mol M3. 500J ; 700J 注释:热力学第一定律Q = AE + W4. 124.65J; 84.35J 注释:热力学第一定律Q = /^E + W5.90J6.", p2 = 5 注释:理想气体状态方程pV = ~^RTV ) M7. 3.14J,注释:循环过程中,正循环时,系统经历一次循环系统所做的净功等于pv 图上循环曲线包围的面积. 8.15%注释:注意该循环不是卡诺循环,不能用卡诺热机效率公式.ab 为等温膨胀过程,系统吸热,be 系 统被压收缩,内能降低,系统放热,同理cd系统放热,da系统吸热,则QcQuQdaf 町吟+ M"2 c /E E 、 一 I — I I — I /H c z — ―、f/T —. — - H— /?(?!-T 2)f Q 2 =\Q bc \ + \Q cd\= -R(T 2-T }) + —RT 2\n —1VJLLVJL LVJL V9. 6X I06J,0注释:系统对外作正功等于pv 图上曲线下方面积,内能△ E = W : R G — L )= ;( PM 一亿凡)=° M 2 210. 相等,不等 注释:循环过程中,正循环吐系统经历一次循环系统所做的净功等于pv 图上循环曲线 包围的面积.卡诺热机效率〃=1 - ? 三.计算题.1.解:氧气 i = 5 (1)等体过程 △E = £^&(7;_L) =2.08X 103J ; w=02M 一 1 2I fflQ = ^E=-—R(T 2 -7;) = 2.08X 103J⑵等压过程W = P(V 2 —匕)=行&(& —4) = 830」l m\E = -—R(T. -7^) = 2.08X 103J , 2 = AE + W = 2.91X 103Jf )i P A V A P R V R 丹匕2解:(1)根据理想气体状态方程pV = — RT 得*^ = *^ =专匕,所以7;=3OOK,* = 1OOKM T A T B Tc(1)根据功与PV 图曲线面积关系,吧疽400J ,巧如=-200J ,电,=0 (2)循环过程 Q = W AB + W BC + W CA =200J3 解: a-c-b Q=80J, W=30J, AE=Q-W=8O-3O=5()J(1) a->d-*b W= 10J, Q= A E+W=50+10=60J(2) 沿曲线 b-a W=-20J, Q= AE+W=-50-20=-70J.所以系统放热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档