二次函数系数a、b、c与图像的关系05100
原创二次函数图象与a、b、c之间的关系、平移规则、位置关系

二次函数基本式y=ax²+bx+c(a≠0)二次函数交点式二次函数顶点式y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k)二次函数顶点坐标(一)二次函数图象与a、b、c之间的关系(二)二次函数的平移规则当函数为基本式y=ax²+bx+c(a≠0)将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y=ax2+bx+c+n将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y=ax2+bx+c-n将抛物线向左平移m个单位长度后,得到的新抛物线的解析式为y= a(x+m)2+b(x+m)+c将抛物线向右平移m个单位长度后,得到的新抛物线的解析式为y= a(x-m)2+b(x-m)+c将抛物线向左平移m个单位长度后, 再将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y= a(x+m)2+b(x+m)+c+n当函数为顶点式y=a(x-h)²+k左右平移:在括号里做变化,左加右减如:将y=a(x-h)²+k向左平移m个单位,y=a(x-h+m)²+k将y=a(x-h)²+k向右平移m个单位,y=a(x-h -m)²+k上下平移:K处做变化,下加下减如:将y=a(x-h)²+k向上平移n个单位,y=a(x-h)²+k+n将y=a(x-h)²+k向下平移n个单位,y=a(x-h )²+k-n将y=a(x-h)²+k向左平移m个单位,再向上平移n个单位,y=a(x-h+m)²+k+n注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平移h个单位得到;当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平移|h|个单位得到;当h>0,k>0时,将抛物线y=ax²向右平移h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;当h>0,k<0时,将抛物线y=ax²向右平移h个单位,再向下移动|k|个单位得到y=a(x-h)²+k的图象;当h<0,k>0时,将抛物线y=ax²向左平移|h|个单位,再向上移动k个单位得到y=a(x-h)²+k的图象;当h<0,k<0时,将抛物线y=ax²向左平移|h|个单位,再向下移动|k|个单位得到y=a(x-h)²+k的图象(三)二次函数图象对称关系对于一般式:①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称③y=ax2+bx+c与y=-ax2+bx+c-b2/2a关于顶点对称④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。
二次函数图象的位置与系数之是的关系二次函数图像与系数的关系

二次函数图象的位置与系数之是的关系二次函数图像与系数的关系二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b和c分别是二次项系数、一次项系数和常数项。
这个函数的图像是一个抛物线。
二次函数的图像与系数之间存在着密切的关系。
具体地说,系数a、b和c的值可以影响二次函数的图像的位置、形状和方向。
下面将详细介绍二次函数图像与系数的关系。
一、关于a的值:1.当a>0时,二次函数的抛物线开口向上。
这意味着函数的值随着x的增加而增加,图像的顶点是最低点。
当a的绝对值越大时,抛物线的开口越宽,抛物线越平缓。
2.当a<0时,二次函数的抛物线开口向下。
这意味着函数的值在顶点处取得最大值,然后随着x的增加或减少而减小。
当a的绝对值越大时,抛物线的开口越窄,抛物线越陡峭。
二、关于b的值:1.当b>0时,二次函数的抛物线向右平移。
这意味着函数在x轴正方向上平移,距离顶点越远,平移量越大。
2.当b<0时,二次函数的抛物线向左平移。
这意味着函数在x轴负方向上平移,距离顶点越远,平移量越大。
三、关于c的值:1.当c>0时,二次函数的抛物线上移。
这意味着函数的值在y轴正方向上移动,距离为c的绝对值。
2.当c<0时,二次函数的抛物线下移。
这意味着函数的值在y轴负方向上移动,距离为c的绝对值。
综上所述,二次函数的图像与系数之间有以下关系:1.a的值决定了抛物线的开口方向和形状。
2.b的值决定了抛物线在x轴上的平移方向和距离。
3.c的值决定了抛物线在y轴上的平移方向和距离。
举例来说,考虑二次函数f(x)=x^2+2x-31.a=1,表示抛物线的开口向上,且形状较为平缓。
2.b=2,表示抛物线在x轴上向右平移2个单位。
3.c=-3,表示抛物线在y轴上向下平移3个单位。
根据这些系数的值,可以在坐标系上绘制出对应的抛物线图像。
通过改变系数的值,可以进一步观察抛物线图像的变化。
同时,通过分析抛物线的图像,也可以推断出系数的值。
二次函数图象与a.b.c关系(上课用)

y
y
.
能否说出 它们的增 减性呢? . x
x
.
x
(6)△=b2-4ac决定抛物线与x轴交点情况:
① △>0<=>抛物线与x轴有两个交点; ② △=0<=>抛物线与x轴有唯一的公式点;
③ △<0<=>抛物线与x轴无交点。
y o x
y o x
y
o
x
(6)△=b2-4ac决定抛物线与x轴交点情况: ① △>0<=>抛物线与x轴有两个交点;
2
o
x
4.若抛物线 y (m 1) x 2mx m 3 位于x轴上方,求m的取值范围.
2
已知 : y ( m 1) x 2 x m , 当m _____ 1 时,图象为直线;
2
当m _____ 1时,图象为抛物线; 当m _____ 1时,抛物线开口向下;
y o x
二次函数的 图象和性质
复习
抛物线 y ax bx c 的对称轴及顶点 坐标: (公式法) b (1)对称轴:直线 x 2a
2
b 4ac b (2)顶点坐标: ( , ) 2a 4a
2
二次函数y=ax2+bx+c(a≠0)的图象和性质
抛物线 顶点坐标 对称轴 开口方向 增减性 最值
。
巩固训练 1.如图,若a<0,b>0,c>0,则二次 2 函数 y ax bx c的图象大致是( ) y y A o
y B o
x
C
o
x
x
D
o
x
2.若函数 y 2 x bx c 的顶点坐标 是(1,-2),则b= , c= 。
2
3.已知二次函数 y ax bx c 的图 象如图所示,则一次函数 y bx ac 的图象不经过第 象限。 y
二次函数的图像与字母a、b、c的关系

课次教学方案教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号确实定:〔1〕a 由抛物线开口方向确定:开口方向向上,那么a >0;否那么a <0. 〔2〕b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.〔3〕c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,那么c >0;否那么c <0.〔4〕b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.〔5〕当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. 〔6〕由对称轴公式x=,可确定2a+b 的符号.二、根底练习1、抛物线y=ax 2+bx+c 〔a ≠0〕在平面直角坐标系中的位置如下图,那么以下结论中,正确的选项是〔 D 〕 A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出以下结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,那么正确的结论是〔 D 〕 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤任课教师学科 版本 年段 辅导类型 上课时间学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号确实定方法课次教学目标掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。
教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。
3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为〔21,1〕,以下结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是〔 C 〕1\2\3 A 、1 B 、2 C 、3 D 、44、二次函数y=ax 2+bx+c 的图象如下图,对称轴为直线x=1,那么以下结论正确的选项是〔B 〕 A 、ac >0 B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、二次函数y=ax 2+bx+c 〔a ,b ,c 为常数,a ≠0〕的图象如下图,有以下结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是〔A4 〕 A 、1 B 、2 C 、3 D 、46、〔如下图的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: 〔1〕b 2-4ac >0;〔2〕c >1;〔3〕2a-b <0;〔4〕a+b+c <0.你认为其中错误的有〔D2〕 A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c 〔a ≠0〕的图象如下图,那么以下说法正确的选项是〔C 〕 A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,现有以下结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,那么其中结论正确的个数是〔B 〕1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、二次函数y=ax 2的图象开口向上,那么直线y=ax-1经过的象限是〔D 〕 A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、二次函数y=ax 2+bx+c 的图象如下图,那么以下判断不正确的选项是〔B 〕 A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、二次函数y=ax 2+bx+c 的图象如下图,那么a ,b ,c 满足〔A 〕A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0 C 、a <0,b >0,c >0,2b -4ac <0 D 、a >0,b <0,c >0,2b -4ac >013、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,有以下4个结论,其中正确的结论是〔B 〕 A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,那么以下结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0〔a ≠0〕有两个大于-1的实数根.其中错误的结论有〔C 〕 A 、②③ B 、②④ C 、①③ D 、①④15、如下图为二次函数y=ax 2+bx+c 〔a ≠0〕的图象,在以下选项中错误的选项是〔C 〕 A 、ac <0 B 、x >1时,y 随x 的增大而增大 C 、a+b+c >0 D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如下图,以下结论错误的选项是〔B 〕 A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕 A 、a >0 B 、c <0 C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,以下结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有〔 C 〕个.1/2/3 A 、1 B 、2 C 、3 D 、4三、能力练习c bx ax y ++=2的图象如图 l -2-2所示,那么a 、b 、c 满足〔 〕 A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >02.二次函数c bx ax y ++=2(a≠0〕且a <0,a -b+c >0,那么一定有〔 〕A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac≤03.二次函数c bx ax y ++=2的图象如图1-2-10,那么点〔b ,c a〕在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限4.假设二次函数c bx ax y ++=2的图象如图,那么ac_____0〔“<〞“>〞或“=〞〕第4题图5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,那么以下关于a 、b 、c 间的关系判断正确的选项是〔 〕 A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:例题.抛物线c bx ax y ++=2过三点〔-1,-1〕、〔0,-2〕、〔1,l 〕.〔1〕求抛物线所对应的二次函数的表达式; 〔2〕写出它的开口方向、对称轴和顶点坐标;〔3〕这个函数有最大值还是最小值? 这个值是多少?五、中考真题回忆:〔09佛山〕19.〔1〕请在坐标系中画出二次函数22y x x =-+的大致图象;〔2〕在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; 〔3〕直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1.〔1〕画图〔略〕注:根本反映图形的特征〔如顶点、对称性、变化趋势、平滑〕给2分, 满足其中的两至三项给1分,满足一项以下给0分; 〔2〕画图、写解析式〔略〕注:画图总分值2分,同〔1〕的标准;写解析式2分〔无过程不扣分〕.〔11·佛山〕21.如图,二次函数y =ax 2+bx +c 的图像经过A 〔-1,-1〕、B 〔0,2〕、C 〔1,3〕; 〔1〕求二次函数的解析式; 〔2〕画出二次函数的图像;【答案】解:〔1〕根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3………………2分解得a =-1,b =2,c =2………………4分所以二次函数的解析式为y =-x 2+2x +2………………5分〔2〕二次函数的图象如图………………8分 给分要点:顶点、对称、光滑〔各1分〕〔12佛山〕xyO第19题图xyoABC1xyoABC122.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的局部数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③函数c bx ax y ++=2的图象的一局部〔如图〕. (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:〔1〕方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a ,解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y 〔三种选其一即可〕〔2〕1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点 4、交 y 轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像〔2021•佛山〕24.如图①,抛物线y=ax 2+bx+c 经过点A 〔0,3〕,B 〔3,0〕,C 〔4,3〕.x -1 0 1 2 3 y343〔1〕求抛物线的函数表达式;〔2〕求抛物线的顶点坐标和对称轴;〔3〕把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S〔图②中阴影局部〕.分析:〔1〕把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;〔2〕把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;〔3〕根据顶点坐标求出向上平移的距离,再根据阴影局部的面积等于平行四边形的面积,列式进展计算即可得解.解:〔1〕∵抛物线y=ax2+bx+c经过点A〔0,3〕,B〔3,0〕,C〔4,3〕,∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;〔2〕∵y=x2﹣4x+3=〔x﹣2〕2﹣1,∴抛物线的顶点坐标为〔2,﹣1〕,对称轴为直线x=2;〔3〕如图,∵抛物线的顶点坐标为〔2,﹣1〕,∴PP′=1,阴影局部的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影局部的面积=2.点评:此题考察了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,〔3〕根据平移的性质,把阴影局部的面积转化为平行四边形的面积是解题的关键.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
二次函数系数a、b、c与图像的关系(完整资料).doc

【最新整理,下载后即可编辑】二次函数系数a、b、c与图象的关系知识归纳:1.a的作用:决定开口方向和开口大小2.a与b的作用:左同右异(对称轴的位置)3.c的作用:与y轴交点的位置。
4.b2-4ac的作用:与x轴交点的个数。
5.几个特殊点:顶点,与x轴交点,与y轴交点,(1,a+b+c), (-1,a-b+c) (2,4a+2b+c), (-2,4a-2b+c)。
针对训练:1.判断下列各图中的a、b、c及△的符号。
(1)a___0;b___0;c___0;△__0.(2)a___0;b___0;c___0;△__0.(3)a___0;b___0;c___0;△__0.(4)a___0;b___0;c___0;△__0.(5)a___0;b___0;c___0;△__0.2.二次函数y=ax2+bx+c的图象如图,用(>,<,=)填空:a___0;b___0;c___0;a+b+c__0;a-b+c__0.3.二次函数y=ax2+bx+c的图象如图1所示,则下列关于a、b、c 间的关系判断正确的是()A.ab<0B.bc<0C.a+b+c>0D.a -b+c<04.二次函数y=ax 2+bx+c 图象如图,则点 A (b 2-4ac ,-ba )在第 象限.5.已知 a <0,b >0,c >0,那么抛物线y=ax 2+bx+c 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限6.已知二次函数y=ax 2+bx+c 的图像如图所示,判断下列各式的符号:(1)a ; (2)b ; (3)c ; (4)a+b+c ; (5)a-b+c ;(6)b 2-4ac ;(7)4ac-b 2; (8)2a+b ; (9)2a-b7.练习:填空(1)函数y=ax 2+bx+c (a≠0)的函数值恒为正的条件: ,恒为负的条件: .(2)已知抛物线y=ax 2+bx+c 的图象在x 轴的下方,则方程ax 2+bx+c=0的解得情况为: .(3)二次函数y=ax 2+bx+c 中,ac <0,则抛物线与x 轴有 交点。
二次函数的图象与各项系数之间的关系

二次函数的图象与各项系数之间的关系资料编号:202209251655二次函数的图象开口方向取决于的符号,开口大小取决于c bx ax y ++=2a a 的大小;对称轴为直线,当,对称轴与轴的相对位置关系取决于a b x 2-=0>ab y b a ,的符号;图象与轴的交点为,交点在轴上的位置取决于的符号. y ()c ,0y c 与二次项系数的关系a (1)当时,抛物线开口向上,的值越大,开口越小,的值越小,开口越大;0>a a a (2)当时,抛物线开口向下,的值越大,开口越大,的值越小,开口越小. 0<a a a 总之,的值越大,抛物线的开口越小.a 与一次项系数的关系b 二次项系数和一次项系数共同决定了抛物线的对称轴.a b 若抛物线的对称轴在轴的右侧,即,则异号;若抛物线的对称y 02>-=ab x b a ,轴在轴的左侧,即,则同号. y 02<-=a b x b a ,总之,的符号遵循“左同右异”的规律.b a ,特别地,当对称轴是轴时,,此时. y 02=-=a b x 0=b 与常数项的关系c 对于二次函数,当时,,函数图象与轴的交点为c bx ax y ++=20=x c y =y :()c ,0(1)当时,抛物线与轴的交点在轴上方,即交于轴的正半轴;0>c y x y (2)当时,抛物线经过坐标原点;0=c (3)当时,抛物线与轴的交点在轴下方,即交于轴的负半轴. 0<c y x y 上述结论反之亦成立.例题讲解例1. 已知二次函数的图象如图所示,则【 】c bx ax y ++=2(A ) (B )0,0,0<<<c b a 0,0,0><<c b a (C ) (D )0,0,0>><c b a 0,0,0><>c b a 解析 图象开口向下,所以;0<a 图象的对称轴在轴右侧,所以异号,故;y b a ,0>b 图象与轴交于正半轴,所以.y 0>c 综上,.选择答案【 C 】.0,0,0>><c b a 例2. 已知二次函数的图象如图所示,则下列错误的是【】c bx ax y ++=2(A ) (B ) (C ) (D )0<a 0>c 042>-ac b 0<ab 解析 图象开口向下,所以.故(A )正确;0<a 图象与轴交于正半轴,所以.故(B )正确;y 0>c 图象与轴有两个不同的交点,所以.故(C )正确;x 042>-ac b图象的对称轴在轴左侧,同号,所以.故(D )错误.y b a ,0>ab ∴选择答案【 D 】.例3. 二次函数的函数值恒小于0的条件是____________.c bx ax y ++=2解析 二次函数的函数值恒小于0,即二次函数的图象开口向下,且c bx ax y ++=2图象与轴没有交点x ∴.04,02<-<ac b a。
二次函数y=ax2+bx+c的图像与a,b,c的关系
抛物线位置与系数a,b,c的关系:
⑴a决定抛物线的开口方向:
a>0
a<0
开口向上
开口向下
y
x
⑵c决定抛物线与y轴交点(0,c)的位置:
① c>0 <=>图象与y轴交点在y轴正半轴;
② c=0 <=>图象过原点;
③ c<0 <=>图象与y轴交点在y轴负半轴。
y
x
⑶a,b(4)4a+2b+c (5)4a-2b+c (6)2a+b (7)2a-b
变式练习 : 抛物线 = + + 如图所示,
判断下列各式的符号
(1) a、b、c、 − (2) + + (3)a-b+c
(4)4a+2b+c (5)4a-2b+c (6)2a+b (7)2a-b
o
x=-2
x=-1
x=1
x=2
例1(1)如果a>0,c>0,那么二次函数y=
ax2+bx+c的图象大致是(
)
(2)在同一直角坐标系中,一次函数y=ax+c和二次函
数y=ax2+c的图象大致为(
)
例2抛物线 = + + 如图所示,判断下列
各式的符号(两幅图分别进行判断)
(1) a、b、c、 − (2) + +
b
对称轴是直线x =
①
②
③
2a
a,b同号<=> 对称轴在y轴左侧;
b=0
<=> 对称轴是y轴;
a,b异号<=> 对称轴在y轴右侧
y
左同右异
o
二次函数图象与各项系数的关系
顶点
二次函数图像的顶点代表了函数的最值点,它是函 数的转折点。
对称轴
对称轴是通过顶点的直线。它将二次函数图像分为 两个对称的部分。
二次函数的零点及其性质
零点
二次函数的零点是函数的根, 即函数与 x 轴相交的点。
根的个数
二次函数可能有零个、一个 或两个不同的根,这取决于 判别式的值。
ቤተ መጻሕፍቲ ባይዱ
判别式
判别式 b^2 - 4ac 决定了二次 函数的根的性质和图象与 x 轴的交点。
1
a 值对二次函数的图象的影响
a 值决定了二次函数的开口方向。正值使函数开口向上,负值使函数开口向下。
2
b 值对二次函数的图象的影响
b 值影响二次函数的位置。它确定了函数的对称轴位置。
3
c 值对二次函数的图象的影响
c 值决定了二次函数的纵向平移。正值使函数向上平移,负值使函数向下平移。
二次函数的顶点与对称轴
二次函数图象与各项系数的关 系
在这个演讲中,我们将探讨二次函数图象与各项系数之间的关系。通过深入 研究这个主题,我们将揭示出一些有趣且不太为人所知的内容。
二次函数的定义与一般式
通过一般式 y = ax^2 + bx + c,我们定义了二次函数。这个函数是一种二次方程,其中 a、b、c 是系数。
二次函数的图象与各项系数的关系
二次函数的图像与系数a,b,c之间的关系(解析版)
专题03 二次函数图像与系数之间关系类型一、判断图像位置关系例1.如图,一次函数1y x =与二次函数22y x bx c =++的图像相交于P 、Q 两点,则函数()21y x b x c =+-+的图像可能是( )A .B .C .D .【答案】A【详解】解: 由2y =x 2+bx +c 图象可知,对称轴x =2b ->0,0c <, 0b ∴<,抛物线21y x b x c =+-+()与y 轴的交点在x 轴下方,故选项B ,C 错误, 抛物线21y x b x c =+-+()的对称轴为1122b b x --=-=,∴102b ->, ∴抛物线y =x 2+(b -1)x +c 的对称轴在y 轴的右侧,故选项D 错误,故选:A .【变式训练1】二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =-+的图象大致是( ).A .B .C .D .【答案】C【详解】解:观察二次函数2y ax bx c =++的图象得:0,02b a a<-<, ∴0b <,0a ->,∴一次函数y ax b =-+的图象经过第一、三、四象限.故选:C【变式训练2】在同一平面直角坐标系中,函数()20y ax bx a =+≠与y ax b =+的图象可能是( ) A .B .C .D .【答案】A【详解】解:函数()20y ax bx a =+≠经过原点(0,0),则B 错误;当a <0时,y ax b =+经过二、四象限,则D 错误;当02b a->时,b >0, y ax b =+经过一、二、四象限,则C 错误; 当a >0,02b a ->时,b <0, y ax b =+经过一、三、四象限,则A 符合题意. 故选:A .【变式训练3】在同一平面直角坐标系中,函数2y ax bx =+与y =ax +b 的图象不可能是( )A .B .C .D .【答案】D【详解】解:当a >0,b >0时,y =ax 2+bx 的开口上,与x 轴的一个交点在x 轴的负半轴,y =ax +b 经过第一、二、三象限,且两函数图象交于x 的负半轴,无选项符合; 当a >0,b <0时,y =ax 2+bx 的开口向上,与x 轴的一个交点在x 轴的正半轴,y =ax +b 经过第一、三、四象限,且两函数图象交于x 的正半轴,故选项A 正确,不符合题意题意; 当a <0,b >0时,y =ax 2+bx 的开口向下,与x 轴的一个交点在x 轴的正半轴,y =ax +b经过第一、二、四象限,且两函数图象交于x 的正半轴,C 选项正确,不符合题意;当a <0,b <0时,y =ax 2+bx 的开口向下,与x 轴的一个交点在x 轴的负半轴,y =ax +b 经过第二、三、四象限,B 选项正确,不符合题意;只有选项D 的两图象的交点不经过x 轴, 故选D.【变式训练4】如图,一次函数1y x =与二次函数22y ax bx c =++的图像相交于P ,Q 两点,则函数()21y ax b x c =+-+的图像可能是( )A .B .C .D .【答案】D【详解】∴一次函数1y x =与二次函数22y ax bx c =++的图像相交于P ,Q 两点, ∴一元二次方程()210ax b x c +-+=有两个不相等的实数根,∴函数()21y ax b x c =+-+与x 轴有两个交点, 由题意可知:02b a ->,0a >,∴110222b b a a a --=-+>, ∴函数()21y ax b x c =+-+的对称轴102b x a -=->,∴选项D 符合条件. 故选D .类型二、根据图像判断a ,b ,c 之间关系例1.二次函数()20y ax bx c a =-+≠的图象如图所示,下列选项错误的是( )A .0ac <B .1x >时,y 随x 的增大而增大C .0a b c ++>D .方程20ax bx c ++=的根是11x =-,23x =【答案】C 【详解】A.由二次函数的图象开口向上可得a >0,由抛物线与y 轴交于x 轴下方可得c <0,所以ac <0,正确;B.由a >0,对称轴为x =1,可知x >1时,y 随x 的增大而增大,正确;C.把x =1代入()20y ax bx c a =-+≠得,y =a +b +c ,由函数图象可以看出x =1时二次函数的值为负,错误;D.由二次函数的图象与x 轴交点的横坐标是-1或3,可知方程20ax bx c ++=的根是121,3x x =-=,正确. 故选:C .例2.如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4330a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥;⑥一元二次方程21ax bx c ++=有两个不相等的实数根,其中正确结论有( )A .2个B .3个C .4个D .5个【答案】D 【详解】解:①∴抛物线图象开口朝上,0a > ,∴抛物线对称轴为直线12x =,∴122b a -=, ∴0b a =-<,即0a b +=,故②错误;∴抛物线图象与y 轴交点位于x 轴下方,∴c <0,0abc ∴>,故①正确;③2y ax bx c =++经过()2,0,420a b c ∴++=又由①得c <0,0b <,4330a b c ∴++<,故③正确;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等,∴当1x =-时0y =,即0a b c -+= a b =-,20a c ∴+=即12c a =-,∴2y ax bx c =++经过,02c a ⎛⎫ ⎪⎝⎭,即经过(1,0)-,故④正确; ⑤当12x =时,1142y a b c =++,当x m =时,2y am bm c =++, 0a >,∴函数有最小值1142a b c ++,∴21142am bm c a b c ++≥++, ∴2442am bm a b +≥+,∴2440am bm b +-≥,故⑤正确;⑥方程21ax bx c ++=的解即为抛物线2y ax bx c =++与直线1y =的交点的横坐标,结合函数图象可知,抛物线2y ax bx c =++与直线1y =有两个不同的交点,即方程21ax bx c ++=有两个不相等的实数根,故⑥正确;综上所述:①③④⑤⑥正确.故选D .【变式训练1】如图,二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=≠ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】∴二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为()1,0, ∴当x =1时,0a b c ++=,故结论①正确;根据函数图像可知,当10x y =-<,,即0a b c -+<,对称轴为1x =-,即12b a-=-, 根据抛物线开口向上,得0a >,∴20b a =>,∴0a b c b -+-<,即20a b c -+<,故结论②正确; 根据抛物线与x 轴的一个交点为()1,0,对称轴为1x =-可知:抛物线与x 轴的另一个交点为(-3,0), ∴关于x 的一元二次方程20(a 0)++=≠ax bx c 的两根分别为-3和1,故结论③正确;根据函数图像可知:213y y y <<,故结论④错误;当x m =时,2()y am bm c m am b c =++=++,∴当1m =-时,()a b c m am b c -+=++,即()a b m am b -=+,故结论⑤错误,综上:①②③正确,故选:C .【变式训练2】二次函数2y ax bx c =++的部分图象如图所示,有以下结论:①3a -b =0;②240b ac ->;③520a b c -+>;④430b c +>,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【详解】解:由图象可知a <0,c >0,对称轴为32x =-,∴322b x a=-=-,∴3b a =,①正确; ∴函数图象与x 轴有两个不同的交点,∴240b ac ∆=->,②正确;当1x =-时,0a b c -+>,当3x =-时,930a b c -+>,∴10420a b c -+>,∴520a b c -+>,③正确;由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,∴当1x =时,0a b c ++<,∴3b a =,∴433333330b c b b c b a c a b c +=++=++=++()<,∴430b c +<,④错误;故选:C .【变式训练3】抛物线2y ax bx c =++(0a ≠)如图所示,下列结论中:①20a b +=;②0a b c -+>;③当1x ≠时,2a b ax bx +>+;④24ac b <.正确的个数是( )A .1个B .2个C .3个D .4个【答案】C 【详解】解:从图象上可以看出二次函数的对称轴是直线x =1.∴12b a -=.∴2a b =-.∴20a b +=.故①符合题意.从图象上可以看出当x =-1时,二次函数的图象在x 轴下方.∴当x =-1时,y <0即()()2110a b c a b c ⨯-+⨯-+=-+<.故②不符合题意.从图象上可以看出当x =1时,二次函数取得最大值.∴当1x ≠时,2211ax bx c a b c a b c ++<⨯+⨯+=++.∴2ax bx a b +<+.故③符合题意.从图象上可以看出二次函数图象与x 轴有两个交点.∴240b ac ->.∴24b ac >.故④符合题意.故①③④共3个符合题意.故选:C .【变式训练4】已知二次函数y =ax 2−4ax −5a +1(a >0)下列结论正确的是( )①已知点M (4,y 1),点N (−2,y 2)在二次函数的图象上,则y 1>y 2;②该图象一定过定点(5,1)和(-1,1);③直线y =x −1与抛物线y =ax 2−4ax −5a +1一定存在两个交点;④当−3≤x ≤1时,y 的最小值是a ,则a =110 A .①④B .②③C .②④D .①②③④ 【答案】B【详解】解:二次函数y =ax 2−4ax −5a +1(a >0),开口向上,且对称轴为x =-42a a-=2, ①点N (−2,y 2)关于对称轴对称的点为(6,y 2) ,∴a >0,∴y 随x 的增加而增加,∴4<6,∴y 1<y 2;故①错误;②当y =1时,ax 2−4ax −5a +1=1,即x 2−4x −5=0,解得:x =5或x =-1,该图象一定过定点(5,1)和(-1,1);故②正确;③由题意得方程:ax 2−4ax −5a +1= x −1,整理得:ax 2−(4a +1)x −5a +2=0,()()241452a a a =+--+=16a 2+8a +1+20a 2-8a =36a 2+1>0, 直线y =x −1与抛物线y =ax 2−4ax −5a +1一定存在两个交点;故③正确;④当−3≤x ≤1时,y 随x 的增加而减少,∴当x =1时,y 有最小值为a ,即a −4a −5a +1=a ,解得:a =19,故④错误;综上,正确的有②③,故选:B .【变式训练5】抛物线2y ax bx c =++的对称轴是直线2x =-.抛物线与x 轴的一个交点在点()4,0-和点(3,0)-之间,其部分图象如图所示,下列结论:①40a b -=;②3c a ≤;③关于x 的方程22ax bx c ++=有两个不相等实数根;④若()15,y -,()22,y 是抛物线上的两点,则12y y <;⑤224b b ac +>.正确的个数有( )A .1个B .2个C .3个D .4个【答案】C【详解】解:∴抛物线的对称轴为直线x =-2b a =-2, ∴4a -b =0,所以①正确;∴与x 轴的一个交点在(-3,0)和(-4,0)之间,∴由抛物线的对称性知,另一个交点在(-1,0)和(0,0)之间,∴x =-1时,y >0,且b =4a ,即a -b +c =a -4a +c =-3a +c >0,∴c >3a ,所以②错误;∴抛物线与x 轴有两个交点,且顶点为(-2,3),∴抛物线与直线y =2有两个交点,∴关于x 的方程ax 2+bx +c =2有两个不相等实数根,所以③正确;∴抛物线的对称轴为直线x =-2b a =-2,∴22(5)2-----<, ∴a <0,∴12y y >所以④错误;∴抛物线的顶点坐标为(-2,3),∴2434ac b a-=,∴b 2+12a =4ac , ∴4a -b =0,∴b =4a ,∴b 2+3b =4ac ,∴a <0,∴b =4a <0,∴b 2+2b >4ac ,所以⑤正确;∴正确的为①③⑤.故选:C【变式训练6】如图,抛物线()20y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为()1,0-,其部分图象如图所示,下列结论:①24ac b <,②30a c ->,③方程20ax bx c ++=的两个根是11x =-,23x =,④当0y >时,x 的取值范围是13x ,其中正确的有( )A .①②B .①②③C .①③④D .①②④【答案】C 【详解】解:∴抛物线的对称轴为直线1x =,,与x 轴的一个交点坐标为()1,0-,∴抛物线与x 轴的另一个交点坐标为()3,0,12b a-=, ∴2b a =-,2=40b ac ∆->,即24ac b <,故①正确;∴抛物线开口向下,与y 轴交于y 轴正半轴,∴00a c <>,,∴30a <,∴30a c -<,故②错误;∴抛物线与x 轴的交点坐标为(-1,0),(3,0),∴方程20ax bx c ++=的两个根是11x =-,23x =,故③正确;由函数图象可知当0y >时,x 的取值范围是13x ,故④正确; 故选C .11。
中考复习课件 二次函数的图象与各项字母系数之间的关系
A、4个 B、3个
y
C、2个 D、1个
o
x
x=1
3、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①abc>0;②b=2a;③a+b+c<0;
④a+b-c>0; ⑤a-b+c>0正确的个数是 (C )
A、2个 B、3个
y
C、4个 D、5个
小试牛刀 快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
20
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
21
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
b
2a+b
- 与1比较,等于1,大于1,小于1
2a
2a-b
- b 与-1比较,等于-1,大于-1,小于-1 2a
b2-4ac
与x轴交点个数
a+b+c 令x=1,y=a+b+c,看纵坐标是在y轴的正半
轴上(>0)还是在负半轴上(<0)
a-b+c 令x=-1,y=a-b+c,看纵坐标
4a+2b+ c
4a-
b24ac>0
b2-4ac=0
与x轴无交点
b24ac<0
5.二次函数图象的对称轴特殊情况
(1)当对称轴是x=1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数系数a、b、c与图像的关系 知识要点 二次函数y=ax2+bx+c系数符号的确定: (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号. (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0. (4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0. (5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.
(6)由对称轴公式x=,可确定2a+b的符号.
一.选择题(共9小题) 1.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法: ①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1). 其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4 2.(2014•仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )
A. ③④ B. ②③ C. ①④ D. ①②③ 3.(2014•南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:
①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个 4.(2014•襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论: ①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0. 其中正确结论的个数为( )
A. 1 B. 2 C. 3 D. 4 5.(2014•宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法: ①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2. 其中说法正确的是( ) A. ①② B. ②③ C. ②③④ D. ①②④ 6.(2014•莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是( )
A. m>2 B. m<3 C. m>3 D. 2<m<3 7.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0. 其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个 8.(2014•乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与 y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:
①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4. 其中正确的是( )
A. ①② B. ③④ C. ①③ D. ①③④ 9.(2014•齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为( ) ①b<0;②c<0;③a+c<0;④4a﹣2b+c>0. A. 1个 B. 2个 C. 3个 D. 4个
10、(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( ) A、a>0 B、b<0 C、c<0 D、a+b+c>0
11、(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是( ) A、①②③④ B、②④⑤ C、②③④ D、①④⑤
12、(2011•孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为( 12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是( ) A、1 B、2 C、3 D、4 答案 一.选择题(共9小题) 1.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法: ①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1). 其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4 考点: 二次函数图象与系数的关系. 分析: 由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 解答: 解:抛物线与y轴交于原点, c=0,(故①正确);
该抛物线的对称轴是:, 直线x=﹣1,(故②正确); 当x=1时,y=a+b+c ∵对称轴是直线x=﹣1, ∴﹣b/2a=﹣1,b=2a, 又∵c=0, ∴y=3a,(故③错误);
x=m对应的函数值为y=am2+bm+c, x=﹣1对应的函数值为y=a﹣b+c, 又∵x=﹣1时函数取得最小值, ∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,
∵b=2a,
∴am2+bm+a>0(m≠﹣1).(故④正确).
故选:C. 点评: 本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称
轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.
2.(2014•仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( ) A. ③④ B. ②③ C. ①④ D. ①②③ 考点: 二次函数图象与系数的关系. 专题: 数形结合. 分析: 由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 解答: 解:①当x=1时,y=a+b+c=0,故①错误; ②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1, ∴y=a﹣b+c<0,
故②正确; ③由抛物线的开口向下知a<0, ∵对称轴为0<x=﹣<1,
∴2a+b<0, 故③正确; ④对称轴为x=﹣>0,a<0 ∴a、b异号,即b>0, 由图知抛物线与y轴交于正半轴,∴c>0 ∴abc<0,
故④错误; ∴正确结论的序号为②③.
故选:B. 点评: 二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;
(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号; (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0; (4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.
3.(2014•南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论: ①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个 考点: 二次函数图象与系数的关系. 专题: 数形结合. 分析: 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 解答: 解:①∵图象开口向下,∴a<0;故本选项正确; ②∵该二次函数的图象与y轴交于正半轴,∴c>0;故本选项正确; ③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式△=b2﹣4ac>0;故本选项正确;
④∵对称轴x=﹣>0,∴<0;故本选项正确; 综上所述,正确的结论有4个. 故选D. 点评: 本题主要考查了二次函数的图象和性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定,做 题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题. 4.(2014•襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论: ①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0. 其中正确结论的个数为( )
A. 1 B. 2 C. 3 D. 4 考点: 二次函数图象与系数的关系. 分析: 由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=﹣1时,y=1﹣b+c>0;当x=3时,y=9+3b+c=3;
当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案. 解答: 解:∵函数y=x2+bx+c与x轴无交点,
∴b2﹣4ac<0;
故①正确; 当x=﹣1时,y=1﹣b+c>0, 故②错误; ∵当x=3时,y=9+3b+c=3, ∴3b+c+6=0; ③正确; ∵当1<x<3时,二次函数值小于一次函数值,
∴x2+bx+c<x,
∴x2+(b﹣1)x+c<0.
故④正确. 故选C. 点评: 主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.
5.(2014•宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法: ①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2. 其中说法正确的是( )
A. ①② B. ②③ C. ②③④ D. ①②④ 考点: 二次函数图象与系数的关系. 分析: 根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣2时,y<0,则得到4a﹣2b+c<0,则可对③进行判断;通过点(﹣5,y1)和点(2,y2)离对称轴的远近对④进行判断. 解答: 解:∵抛物线开口向上, ∴a>0,