高中数学(矩阵行列)综合练习含解析
高中数学 行列式 试题及解析

高中数学行列式试题一.选择题(共12小题)1.定义:,若复数z 满足,则z等于()A.1+i B.1﹣i C.3+i D.3﹣i2.下列以行列式表达的结果中,与sin(α﹣β)相等的是()A .B .C .D .3.三阶行列式中,元素9的代数余子式的值为()A.38B.﹣38C.360D.﹣3604.定义行列式运算,将函数的图象向左平移n (n>0)个单位,所得图象关于y轴对称,则n的最小值为()A .B .C .D .5.行列式中,元素7的代数余子式的值为()A.﹣15B.﹣3C.3D.126.定义行列式运算:=a1a4﹣a2a3,函数f(x )=,则要得到函数f(x)的图象,只需将y=2cos2x的图象()A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位7.=()A.cos2θB.sin2θC.1D.﹣118.定义运算,则满足的复数z为()A.1﹣2i B.﹣1﹣i C.﹣1+i D.1﹣i9.设直线l1与l2的方程分别为a1x+b1y+c1=0与a2x+b2y+c2=0,则“”是“l1∥l2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.下列四个算式:①;②;③a1b2c3+a2b3c1+a3b1c2﹣a1b3c2﹣a2b1c3﹣a3b2c1;④其中运算结果与行列式的运算结果相同的算式有()A.1个B.2个C.3个D.4个11.展开式为ad﹣bc的行列式是()A .B .C .D .12.若规定=ad﹣bc 则不等式≤0的解集()A.{x|x≤﹣2或x≥1}B.{x|﹣2<x<1}C.{x|﹣2≤x≤1} D.∅二.填空题(共23小题)13.若=0,则锐角x =.14.已知,则λ=.15.已知行列式中的元素a n+j(j=1,2,3,…,9)是等比数列{a n}2的第n+j 项,则此行列式的值是.16.若行列式中(x≠1),元素1的代数余子式大于0,则x满足的条件是.17.把表示成一个三阶行列式是18.若行列式的第1行第2列的元素1的代数余子式﹣1,则实数x的取值集合为.19.行列式的最大值为.20.行列式的元素﹣3的代数余子式的值为10,则的模为.21.行列式中x的系数是22.行列式的元素π的代数余子式的值等于.23.三阶行列式中,元素1的代数余子式的值为.24.若行列式,则m的值是.25.三阶行列式中,元素4的代数余子式的值为26.若行列式的展开式的绝对值小于6的解集为(﹣1,2),则实数a等于.27.函数的最小正周期T=.28.已知矩阵A=,B=,C=,且A+B=C,则x+y的值为.29.方程,x∈(3,4)实数解x为.30.方程组的增广矩阵是.331.若行列式=0,则x =.32.对于下列四个命题①若向量,,满足,则与的夹角为钝角;②已知集合A=正四棱柱,B=长方体,则A∩B=B;③在直角坐标平面内,点M(|a|,|a﹣3|)与N(cosα,sinα)在直线x+y﹣2=0的异侧;④对2×2数表定义平方运算如下:=,则=其中真命题是(将你认为的正确命题的序号都填上).33.设A为3×4矩阵,则A的列向量组必线性(相关、无关)34.规定运算,则=.35.已知矩阵A=,B=,则A+B=.4参考答案与试题解析一.选择题(共12小题)1.定义:,若复数z 满足,则z等于()A.1+i B.1﹣i C.3+i D.3﹣i【分析】化简行列式,再计算.【解答】解:复数z 满足=iz+i,则z ==1﹣i.故选:B.【点评】本题考查行列式,复数,属于基础题.2.下列以行列式表达的结果中,与sin(α﹣β)相等的是()A .B .C .D .【分析】根据行列式的运算法则对四个选项一一进行化简运算得结果.【解答】解:∵sin(α﹣β)=sinαcosβ﹣cosαsinβ,对于A :=sinαcosβ+cosαsinβ;故错;对于B :=cosαcosβ﹣sinαsinβ,故错;对于C :=sinαcosβ﹣cosαsinβ,正确;对于D :=cosαcosβ﹣sinαsinβ,故错.故选:C.【点评】本题考查行列式的运算,三角函数的变换公式、和角及二倍角的公式等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.3.三阶行列式中,元素9的代数余子式的值为()5A.38B.﹣38C.360D.﹣360【分析】根据行列式的展开A32=﹣(8×7﹣6×3),即可得出结论.【解答】解:行列式中元素9的代数余子式的A32=﹣(8×7﹣6×3)=﹣38,故选:B.【点评】本题考查行列式的展开,考查行列式的展开式,考查计算能力,属于基础题.4.定义行列式运算,将函数的图象向左平移n (n>0)个单位,所得图象关于y轴对称,则n的最小值为()A .B .C .D .【分析】函数==2sin(x +),从而y=2sin[(x+n)+]的图象关于y轴对称,n>0,由此能出n的最小值.【解答】解:∵,∴函数==2sin(x +),∵f(x)的图象向左平移n(n>0)个单位,所得图象关于y轴对称,∴y=2sin[(x+n)+]的图象关于y轴对称,n>0,∴n +=+kπ,k∈Z,即n=k,k∈Z,n>0.∴当k=1时,n 取最小值.故选:D.【点评】本题考查实数值的最小值的求法,考查二阶行列式、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.5.行列式中,元素7的代数余子式的值为()A.﹣15B.﹣3C.3D.126【分析】利用代数余子式的定义和性质求解.【解答】解:∵行列式,∴元素7的代数余子式为:D13=(﹣1)4=2×6﹣5×3=﹣3.故选:B.【点评】本题考查余子式的值的求法,是基础题,解题时要认真审题,注意余子式的性质的合理运用.6.定义行列式运算:=a1a4﹣a2a3,函数f(x )=,则要得到函数f(x)的图象,只需将y=2cos2x的图象()A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位【分析】由二阶行列式的性质得:f(x )=,再由三角函数恒等式和诱导公式得到f(x)=2cos(2x ﹣),由此利用三角函数图象的平移变换能求出结果.【解答】解:f(x )===2sin(2x ﹣)=2cos[﹣(2x ﹣)]=2cos(2x ﹣),∴要得到函数f(x)的图象,只需将y=2cos2x的图象y=2cos2x 的图象向右平移个单位.故选:D.【点评】本题考查三角函数的图象的平移变换,是中档题,解题时要认真审题,注意二阶行列式、三角恒等式、三角函数图象的平移变换诱导公式等知识的合理运用.7.=()A.cos2θB.sin2θC.1D.﹣1【分析】本题可根据二阶行列式的定义算法进行计算,然后根据三角函数计算公式可得结果.【解答】解:由题意,可知:=cosθ•cosθ﹣sinθ•(﹣sinθ)=cos2θ+sin2θ=1.7故选:C.【点评】本题主要考查二阶行列式的定义计算,以及三角函数计算.本题属基础题.8.定义运算,则满足的复数z为()A.1﹣2i B.﹣1﹣i C.﹣1+i D.1﹣i【分析】直接利用新定义,求出z的表达式,通过复数的基本运算,求出复数z即可.【解答】解:因为,所以=zi+z=2.所以z ===1﹣i.故选:D.【点评】本题考查复数的基本运算,行列式的应用,考查计算能力.9.设直线l1与l2的方程分别为a1x+b1y+c1=0与a2x+b2y+c2=0,则“”是“l1∥l2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】若,则a1b2﹣a2b1=0,若a1c2﹣a2c1=0,则l1不平行于l2;若“l1∥l2”,则a1b2﹣a2b1=0,所以,故可得结论【解答】解:若,则a1b2﹣a2b1=0,若a1c2﹣a2c1=0,则l1不平行于l2,故“”是“l1∥l2”的不充分条件;若“l1∥l2”,则a1b2﹣a2b1=0,∴,故“”是“l1∥l2”的必要条件所以“”是“l1∥l2”的必要而不充分条件故选:B.【点评】本题重点考查四种条件的判定,解题的关键是理解行列式的定义,掌握两条直线平行的条件.810.下列四个算式:①;②;③a1b2c3+a2b3c1+a3b1c2﹣a1b3c2﹣a2b1c3﹣a3b2c1;④其中运算结果与行列式的运算结果相同的算式有()A.1个B.2个C.3个D.4个【分析】根据余子式的定义可知,在行列式中按照第一列展开后所余下的元素的代数余子式的和,即知①正确;同理,在行列式中按照第一行展开后所余下的元素的代数余子式的和,即得②正确;对于③,按照行列式展开的运算法则即得a1b2c3+a2b3c1+a3b1c2﹣a1b3c2﹣a2b1c3﹣a3b2c1;对于④,按照行列式展开的运算法则后与原行列式不相同.【解答】解:根据余子式的定义可知,在行列式中按照第一列展开后所余下的元素的代数余子式的和,即为.故①正确;同理,在行列式中按照第一行展开后所余下的元素的代数余子式的和,即为.故②正确;对于③,按照行列式展开的运算法则即得a1b2c3+a2b3c1+a3b1c2﹣a1b3c2﹣a2b1c3﹣9a3b2c1;故正确;对于④故选:C.【点评】本题主要考查了二阶行列式的实际应用以及根据二阶行列式的定义,属于基础题.11.展开式为ad﹣bc的行列式是()A .B .C .D .【分析】根据叫做二阶行列式,它的算法是:ad﹣bc,再根据所给的式子即可得出答案.【解答】解:根据叫做二阶行列式,它的算法是:ad﹣bc,由题意得,=ad﹣bc.故选:B.【点评】本题考查的是二阶行列式与逆矩阵,根据题意二阶行列式的意义得出所求代数式是解答此题的关键.12.若规定=ad﹣bc 则不等式≤0的解集()A.{x|x≤﹣2或x≥1}B.{x|﹣2<x<1}C.{x|﹣2≤x≤1}D.∅【分析】按照新的运算=ad﹣bc ,则不等式≤0,可化为:2x•x+2(x ﹣2)≤0,解此二次不等式即可得出答案.【解答】解:由题意可知:不等式的解集≤0可化为2x•x+2(x﹣2)≤0即x2+x﹣2≤0,求得x的解集﹣2≤x≤1.故选:C.【点评】本题考查其他不等式的解法,解答关键是理解行列式的计算方法,是基础题.二.填空题(共23小题)1013.若=0,则锐角x=.【分析】直接利用矩阵知识的应用和三角函数关系式的变换的应用求出结果.【解答】解:由于=0,所以2cos2x﹣sin2x=0,由于x为锐角,所以sin x=cos x,解得x=.故答案为:【点评】本题考查的知识要点:矩阵知识的应用,三角函数关系式的变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.14.已知,则λ=3.【分析】由行列式的公式化简求解.【解答】解:=(λ﹣4)+2λ=5,解之得λ=3,故答案为:3.【点评】本题考查行列式,属于基础题.15.已知行列式中的元素a n+j(j=1,2,3,…,9)是等比数列{a n}的第n+j项,则此行列式的值是0.【分析】根据题意等比关系代入求解.【解答】解:因为元素a n+j(j=1,2,3,…,9)是等比数列{a n}的第n+j项,所以设等比数列的公比为q,则a n+2=qa n+1,,,…,,∴===0,(两列(或行)相同的行列式值为0),故答案为:0【点评】本题考查行列式,等比数列,属于基础题.16.若行列式中(x≠1),元素1的代数余子式大于0,则x满足的条件是.【分析】先求出代数余子式,再进行化简,求解.【解答】解:元素1的代数余子式为=8x﹣45>0,故,故答案为:【点评】本题考查代数余子式,属于基础题.17.把表示成一个三阶行列式是【分析】本题根据行列式第一列进行展开的逆运算即可得到结果.【解答】解:根据行列式按第一列展开式,可知:2++3=2•(﹣1)1+1•+(﹣1)•(﹣1)2+1•+3•(﹣1)3+1•=.故答案为:.【点评】本题主要考查行列式按列展开的相关概念.本题属基础题.18.若行列式的第1行第2列的元素1的代数余子式﹣1,则实数x的取值集合为{x|x=π+2kπ,k∈Z}.【分析】本题先根据行列式代数余子式的定义写出第1行第2列的元素1的代数余子式,然后根据二阶行列式的计算法则进行计算,再化简三角函数,即可得到实数x 的取值集合.【解答】解:由题意,第1行第2列的元素1的代数余子式为:(﹣1)1+2•.(﹣1)1+2•=﹣1,则=1,即﹣sin(π+x)﹣cos(﹣x)=1.sin x﹣(cos cos x+sin sin x)=1,整理,得:cos x=﹣1.∴x=π+2kπ,k∈Z.故答案为:{x|x=π+2kπ,k∈Z}.【点评】本题主要考查行列式的代数余子式及二阶行列式的定义计算能力,三角函数知识.本题属基础题.19.行列式的最大值为13.【分析】先写出行列式结果,再用三角函数知识求解最大值.【解答】解:原式=,所以当时,行列式的最大值为13.故答案为:13【点评】本题考查行列式与三角函数的综合应用,属于基础题.20.行列式的元素﹣3的代数余子式的值为10,则的模为10.【分析】直接求代数余子式,求出k,再代入求向量的模.【解答】解:元素﹣3对应的行列式为,∴k=6,∴,∴,所以向量的模为为10.故答案为:10.【点评】此题考查行列式的代数余子式,向量的模的公式.21.行列式中x的系数是﹣3【分析】利用行列式展开式能求出行列式中x的系数.【解答】解:行列式=35﹣2x﹣4﹣7﹣x﹣40=﹣3x﹣16.∴行列式中x的系数是﹣3.故答案为:﹣3.【点评】本题考查行列式中未知数的系数的求法,考查行列式展开式等基础知识,考查运算求解能力,是基础题.22.行列式的元素π的代数余子式的值等于7.【分析】利用代数余子式的定义和性质直接求解.【解答】解:行列式的元素π的代数余子式的值为:(﹣1)2+1=﹣(4cos﹣9sin)=﹣(2﹣9)=7.故答案为:7.【点评】本题考查行列式的元素的代数余子式的值的求法,考查代数余子式的定义和性质等基础知识,考查运算求解能力,是基础题.23.三阶行列式中,元素1的代数余子式的值为4.【分析】利用代数余子式的定义、行列式的展开法则直接求解.【解答】解:三阶行列式中,元素1的代数余子式的值为:(﹣1)1+1=0﹣(﹣4)=4.故答案为:4.【点评】本题考查代数余子式的求法,考查代数余子式、行列式展开法则等基础知识,考查运算求解能力,是基础题.24.若行列式,则m的值是0.5.【分析】利用行列式展开法则直接求解.【解答】解;∵行列式,∴2﹣1﹣2m=0,解得m=0.5.∴m的值为0.5.故答案为:0.5.【点评】本题考查实数值的求法,考查行列式展开法则等基础知识,考查运算求解能力,是基础题.25.三阶行列式中,元素4的代数余子式的值为6【分析】利用代数余子式的定义直接求解.【解答】解:三阶行列式中,元素4的代数余子式的值为:(﹣1)3=﹣(18﹣24)=6.故答案为:6.【点评】本题考查三阶行列式中元素的化数余子式的求法,考查代数余子式等基础知识,考查运算求解能力,是基础题.26.若行列式的展开式的绝对值小于6的解集为(﹣1,2),则实数a等于4.【分析】推导出|ax﹣2|<6的解集为(﹣1,2),从而﹣4<ax<8解集为(﹣1,2),由此能求出a的值.【解答】解:∵行列式的展开式的绝对值小于6的解集为(﹣1,2),∴|ax﹣2|<6的解集为(﹣1,2),∴﹣6<ax﹣2<6,即﹣4<ax<8解集为(﹣1,2),解得a=4.故答案为:4.【点评】本题考查实数值的求法,考查行列式展开法则、不等式的性质等基础知识,考查运算求解能力,是基础题.27.函数的最小正周期T=π.【分析】利用行列式的计算方法化简f(x)解析式,再利用二倍角的余弦函数公式化为一个角的余弦函数,找出ω的值,即可求出最小正周期.【解答】解:f(x)=cos2x﹣sin2x=cos2x,∵ω=2,∴T=π.故答案为:π【点评】此题考查了二倍角的余弦函数公式,三角函数的周期性及其求法,以及二阶行列式与逆矩阵,化简函数解析式是解本题的关键.28.已知矩阵A=,B=,C=,且A+B=C,则x+y的值为6.【分析】由题意,,求出x,y,即可得出结论.【解答】解:由题意,,∴x=5,y=1,∴x+y=6.故答案为6.【点评】本题考查矩阵的加法,考查学生的计算能力,比较基础.29.方程,x∈(3,4)实数解x为.【分析】通过二阶行列式的定义,利用二倍角的余弦函数及同角公式,求出tan2x=,再结合x的范围,求出结果即可.【解答】解:因为,所以cos x cos x﹣sin x cos x=,即×﹣sin2x=,∴tan2x=,∵x∈(3,4)∴2x=,∴x=故答案为:.【点评】本题考查二阶行列式的定义、三角函数的同角公式,二倍角公式的应用,考查计算能力.30.方程组的增广矩阵是.【分析】理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【解答】解:由题意,方程组的增广矩阵为其系数及常数项构成的矩阵故方程组的增广矩阵是.故答案为:.【点评】本题的考点是二元一次方程组的矩阵形式,主要考查二元线性方程组的增广矩阵的涵义,计算量小,属于较容易的题型.31.若行列式=0,则x=1.【分析】先根据行列式的计算公式进行化简,然后解指数方程即可求出x的值.【解答】解:∵=0,∴2×2x﹣4=0,即2x=2,∴x=1.故答案为:1.【点评】本题主要考查了行列式的基本运算,同时考查了指数方程,属于基础题.32.对于下列四个命题①若向量,,满足,则与的夹角为钝角;②已知集合A=正四棱柱,B=长方体,则A∩B=B;③在直角坐标平面内,点M(|a|,|a﹣3|)与N(cosα,sinα)在直线x+y﹣2=0的异侧;④对2×2数表定义平方运算如下:=,则=其中真命题是③④(将你认为的正确命题的序号都填上).【分析】①根据向量夹角的范围和钝角的范围可以判断①的真假;②利用长方体包含正四棱柱,进行判断;③把点M(|a|,|a﹣3|)与N(cosα,sinα)分别代入x+y﹣2,判断x+y﹣2是否异号;④利用已知定义进行代入计算验证.【解答】解:①当向量夹角为π时,满足,但不是钝角,故①错误;②∵长方体底是长方形,正四棱柱底是正方形,∴A∩B=A,故②错误;③∵|a|+|a﹣3|>2,cosα+sinα≤<2,∴|a|+|a﹣3|﹣2>0,cosα+sinα﹣2<0,∴点M(|a|,|a﹣3|)与N(cosα,sinα)在直线x+y﹣2=0的异侧,故③正确;④对2×2数表定义平方运算如下:∴===故答案为:③④.,【点评】此题考查的知识点比较多,有向量的计算,正四棱柱和长方体定义,集合之间的关系,以及矩阵的计算.33.设A为3×4矩阵,则A的列向量组必线性相关(相关、无关)【分析】利用矩阵的列向量的性质直接求解.【解答】解:A为3×4矩阵,三行四列矩阵,也就是4个3维列向量,故A的列向量组必线性相关.故答案为:相关.【点评】本题考查A的列向量组是否线性相关的判断,考查矩阵的列向量的性质等基础知识,考查运算求解能力,是基础题.34.规定运算,则=1.【分析】根据新运算可知该运算式表示了两对角相乘的差,注意a、b、c、d的位置.再利用复数的运算法则计算即可.【解答】解:根据题目的新规定知,=1×2﹣(﹣i)i=2+i2=2﹣1=1.故答案为:1.【点评】本题考查了二阶行列式,解题的关键是根据题目信息列出算式.35.已知矩阵A=,B=,则A+B=.【分析】利用矩阵的加法法则及其意义进行求解,即可得到答案.【解答】解:∵矩阵A=,B=,则A+B==.故答案为:.【点评】本题主要考查了矩阵的加法的意义,是一道考查基本运算的基础题.。
矩阵与行列式练习题及解析

矩阵与行列式练习题及解析矩阵与行列式是线性代数的重要内容之一,对于理解和运用线性代数的基本概念和方法具有重要作用。
本文将为读者提供一些矩阵与行列式的练习题,并对其解析过程进行详细讲解,帮助读者掌握相关知识。
练习题一:已知矩阵A=⎡⎣⎢123456⎤⎦⎥,求A的转置矩阵AT。
解析:矩阵的转置是指将矩阵的行与列进行对调。
根据定义,矩阵AT的第i行第j列元素等于矩阵A的第j行第i列元素。
因此,可以得到矩阵A的转置矩阵AT=⎡⎣⎢143256⎤⎦⎥。
练习题二:已知矩阵B=⎡⎣⎢112233⎤⎦⎥,求B的逆矩阵B-1。
解析:矩阵的逆是指与之相乘得到单位矩阵的矩阵。
对于2×2的矩阵而言,可以通过下面的公式求得逆矩阵:B-1 = 1/(ad-bc) * ⎡⎣⎢dd-bb-cc-aa⎤⎦⎥,其中a、b、c、d分别代表B的对应元素。
根据此公式,可以得到矩阵B的逆矩阵B-1=⎡⎣⎢-1/3-2/30.5-1⎤⎦⎥。
练习题三:已知矩阵C=⎡⎣⎢100010001⎤⎦⎥,求C的行列式|C|。
解析:行列式是用来表征矩阵性质的量,对于3×3的矩阵而言,行列式的计算公式如下:|C| = a(ei-hf) - b(di-hg) + c(dg-ge),其中a、b、c、d、e、f、g、h、i分别代表矩阵C的对应元素。
带入矩阵C的值,可以得到|C|=0。
练习题四:已知矩阵D=⎡⎣⎢123456789⎤⎦⎥,求D的特征值和特征向量。
解析:特征值和特征向量是矩阵在线性变换过程中的重要指标,特征值是矩阵对应特征向量的线性变换因子。
首先,求解特征值需要解特征方程Det(D-λI)=0,其中λ为特征值,I为单位矩阵。
通过计算得到特征值λ1=0,λ2=15,λ3=-15。
然后,根据特征值求解对应的特征向量,即求解方程组(D-λI)X=0,其中X为特征向量。
求解过程中,可以得到特征向量X1=⎡⎢⎣-1-101⎤⎥⎦,X2=⎡⎢⎣111⎤⎥⎦,X3=⎡⎢⎣100-11⎤⎥⎦。
高中数学矩阵检测试题(含答案)

高中数学矩阵检测试题〔含答案〕一.单项选择题1. 设为阶矩阵,且,那么〔 C 〕〔A〕均不可逆; 〔B〕不可逆,但可逆〔C〕 , 均可逆;〔D〕可逆,但不可逆2.设都是阶非零矩阵,且,那么的秩〔 B 〕〔A〕必有一个等于零〔B〕都小于〔C〕一个小于,一个等于〔D〕都等于3.假设为阶可逆矩阵,那么以下结论不正确的选项是〔 D 〕.〔A〕;〔B〕;〔C〕;〔D〕.4.设为阶矩阵,以下结论正确的选项是〔 D 〕〔A〕〔B〕〔C〕假设,那么〔D〕假设,那么5.均为三阶可逆矩阵,那么以下等式成立的是〔 A 〕.〔A〕;〔B〕;〔C〕;〔D〕.6.设,那么必满足〔 D 〕.〔A〕三阶子式全为零;〔B〕至少有一个四阶子式不为零;〔C〕二阶子式全为零;〔D〕至少有一个二阶子式不为零.7.,,秩〔B 〕.〔A〕;〔B〕;〔C〕;〔D〕.8.设为阶矩阵,是伴随矩阵,,那么〔 C 〕.〔A〕;〔B〕;〔C〕;〔D〕.9.设均为阶矩阵,与等价,以下结论不正确的选项是〔 A 〕.〔A〕假设,那么〔B〕假设,那么存在可逆矩阵使得〔C〕假设与等价,那么是可逆矩阵〔D〕存在可逆矩阵,使得10.设阶矩阵,其中,假设,那么应满足〔 B 〕〔A〕〔B〕〔C〕〔D〕11.设均为矩阵,, ,假设方程组有解,无解,且,那么〔 D 〕〔A〕〔B〕〔C〕〔D〕二.填空题1.假设,,那么.2.为三阶矩阵,,,那么 2 .3.,,那么.4.假设均为阶矩阵,且,那么 3E .5.是三维列向量,,那么 3 .6.假设为阶可逆矩阵,是的伴随矩阵,那么 = .三.判断题〔正确打V,错误打〕1.的充分必要条件是.〔〕2.不可逆.〔 V 〕3.假如,那么.〔 V 〕4.为阶非零矩阵,假设那么.〔 V 〕5.为阶可逆矩阵,假设的每行元素之和全为,那么的每行元素之和全为.〔 V 〕6.假设为阶可逆矩阵,是的伴随矩阵,那么〔〕四.设矩阵,求.五.讨论参数的取值,求矩阵的秩.六.设,是否存在可逆阵使 ,假设存在,求出。
上海高二数学矩阵及其运算(有详细答案)精品

上海版高二上数学矩阵及其运算一.初识矩阵 (一)引入:引例1:已知向量()1,3OP =,如果把OP 的坐标排成一列,可简记为13⎛⎫⎪⎝⎭; 引例2:2008我们可将上表奖牌数简记为:512128363836232128⎛⎫ ⎪⎪ ⎪⎝⎭;引例3:将方程组231324244x y mz x y z x y nz ++=⎧⎪-+=⎨⎪+-=⎩中未知数z y x ,,的系数按原来的次序排列,可简记为2332441m n ⎛⎫⎪- ⎪ ⎪-⎝⎭;若将常数项增加进去,则可简记为:2313242414m n ⎛⎫⎪- ⎪ ⎪-⎝⎭。
(二)矩阵的概念1、上述形如13⎛⎫ ⎪⎝⎭、512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭、2332441m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭、2313242414m n ⎛⎫⎪- ⎪ ⎪-⎝⎭这样的矩形数表叫做矩阵。
2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ⋅⋅⋅称为行向量;垂直方向排列的数组成的向量12n b b b ⎛⎫⎪ ⎪ ⎪⋅⋅⋅ ⎪⎝⎭称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ⨯阶矩阵,m n ⨯阶矩阵可记做m n A ⨯,如矩阵13⎛⎫ ⎪⎝⎭为21⨯阶矩阵,可记做21A ⨯;矩阵512128363836232128⎛⎫ ⎪⎪ ⎪⎝⎭为33⨯阶矩阵,可记做33A ⨯。
有时矩阵也可用A 、B 等字母表示。
3、矩阵中的每一个数叫做矩阵的元素,在一个m n ⨯阶矩阵m n A ⨯中的第i (i m ≤)行第j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128⎛⎫ ⎪⎪ ⎪⎝⎭第3行第2个数为3221a =。
4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。
如000000⎛⎫⎪⎝⎭为一个23⨯阶零矩阵。
5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行(列),可称此方阵为n阶方阵,如矩阵512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭、2332441m n ⎛⎫⎪- ⎪ ⎪-⎝⎭均为三阶方阵。
最新版高考高三数学小题分层训练原卷含解析——模块09--矩阵和行列式初步

模块09 矩阵和行列式初步一、单选题1.(2021·上海市奉贤中学高三开学考试)设x 、y 均为实数,且3147625x y-=,则在以下各项中(),x y 的可能取值只能是( ). A .()2,1B .()2,1-C .()1,2-D .()1,2--2.(2017·上海交大附中)关于x y 、的二元一次方程组50234x y x y +=⎧⎨+=⎩,其中行列式x D 为A .0543-B .1024C .0543D .0543-3.(2019·上海奉贤·高三一模)下列以行列式表达的结果中,与sin()αβ-相等的是 A .sin sin cos cos αβαβ-B .cos sin sin cos βαβαC .sin sin cos cos αβαβD .cos sin sin cos ααββ-4.(2019·上海师大附中高三一模)关于x 、y 的二元一次方程组的增广矩阵是111222a b c a b c ⎛⎫ ⎪⎝⎭,则方程组存在唯一解的条件是 A .12a a ⎛⎫ ⎪⎝⎭与12b b ⎛⎫ ⎪⎝⎭平行B .12a a ⎛⎫ ⎪⎝⎭与12c c ⎛⎫ ⎪⎝⎭不平C .12a a ⎛⎫⎪⎝⎭与12b b ⎛⎫ ⎪⎝⎭不平行D .12b b ⎛⎫ ⎪⎝⎭与12c c ⎛⎫⎪⎝⎭不平行5.(2021·上海崇明·)关于x 、y 的二元一次方程组341310x y x y +=⎧⎨-=⎩的增广矩阵为()A .3411310-⎛⎫ ⎪-⎝⎭B .3411310⎛⎫ ⎪--⎝⎭C .3411310⎛⎫⎪-⎝⎭D .3411310⎛⎫⎪⎝⎭6.(2021·上海市吴淞中学高三月考)若等比数列{}n a 的公比为q ,则关于,x y 的二元一次方程组132421a x a y a x a y +=⎧⎨+=⎩的解的情况下列说法正确的是()A .对任意(0)q R q ∈≠,方程组都有唯一解B .对任意(0)q R q ∈≠,方程组都无解C .当且仅当12q =时,方程组有无穷多解 D .当且仅当12q =时,方程组无解二、填空题7.(2019·上海高三模拟预测)若函数21()12x f x =,(0,)x ∈+∞,则其反函数1()f x -=_________.8.(2018·上海普陀·高三一模)已知i 是虚数单位,z 是复数z 的共轭复数,若1012z ii+=,则z 在复平面内所对应的点所在的象限为第________象限.9.(2017·上海高三模拟预测)计算:4321=__.10.(2020·上海市新场中学高三月考)已知111222a x b y c a x b y c +=⎧⎨+=⎩的增广矩阵是111113-⎛⎫⎪⎝⎭,则此方程组的解是________.11.(2020·上海)计算行列式的值,0123=______.12.(2020·上海长宁·高三二模)行列式5182的值等于____________.13.(2021·上海高三专题练习)线性方程组2538x y x y -=⎧⎨+=⎩的增广矩阵为_________.14.(2020·上海长宁·高三三模)三阶行列式374156200的值为________15.(2021·上海高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若22=+ab a b c,则角C 的大小为______.16.(2017·上海杨浦·)在三阶行列式123456789中,5的代数余子式的值为_________. 17.(2017·上海市实验学校高三月考)二元一次方程组的增广矩阵为0603m n ⎛⎫ ⎪⎝⎭,若该方程组的解为34x y =-⎧⎨=⎩,则mn =___________.18.(2017·上海青浦·高三二模)函数sin 2cos ()2cos sin x x f x xx=的最小正周期是________.19.(2016·上海松江·高三一模(理))行列式cos 20sin 20︒︒sin 40cos 40︒︒的值是______.20.(2017·上海黄浦·高三一模)已知()22ax xf x x=-(a 为常数),221()x g x x +=,且当12[1,4]x x ∈,时,总有1()f x ≤2()g x ,则实数a 的取值范围是_________.三、解答题21.(2018·cos0.5sin0(0) 1cosA x AA x Ax>按第一列展开得1121312M M-+,记函数1121()f x M M=+,且()f x的最大值是4.(1)求A;(2)将函数()y f x=的图像向左平移12π个单位,再将所得图像上各点的横坐标扩大为原来的2倍,纵坐标不变,得到函数()y g x=的图像,求()g x在11,1212ππ⎛⎫-⎪⎝⎭上的值域. 22.(2019·上海市控江中学高三三模)已知α、λ是实常数,cos sin()()sin()cosx xf xx xλαα-=+.(1)当1λ=,3πα=时,求函数()y f x=的最小正周期、单调增区间与最大值;(2)是否存在λ,使得()f x是与α有关的常数函数(即()f x的值与x的取值无关)?若存在,求出所有满足条件的λ,若不存在,说明理由.23.(2016·上海长宁·高三一模)关于x 的不等式201x a x+<的解集为()1,b -.()1求实数a ,b 的值;()2若1z a bi =+,2z cos isin αα=+,且12z z 为纯虚数,求tan α的值.模块09 矩阵和行列式初步一、单选题1.(2021·上海市奉贤中学高三开学考试)设x 、y 均为实数,且3147625x y-=,则在以下各项中(),x y 的可能取值只能是().A .()2,1B .()2,1-C .()1,2-D .()1,2--【答案】B【分析】利用二阶行列式的运算法则可得出关于x 、y 的等式,由此可得出合适的选项. 【详解】()()31421820227625x x y x y y-=---=-+=,所以,25x y -=.满足25x y -=的有序实数对(),x y 为B 选项. 故选:B.2.(2017·上海交大附中)关于x y 、的二元一次方程组50234x y x y +=⎧⎨+=⎩,其中行列式x D 为 A .0543- B .1024C .0543 D .0543-【答案】C【详解】关于x 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式:5430Dx =,故选C.3.(2019·上海奉贤·高三一模)下列以行列式表达的结果中,与sin()αβ-相等的是 A .sin sin cos cos αβαβ-B .cos sin sin cos βαβαC .sin sin cos cos αβαβD .cos sin sin cos ααββ-【答案】C【分析】由题意,根据行列式的计算方法,即可求解. 【详解】由题意,根据行列式的运算可知sin sin sin cos cos sin sin()cos cos αβαβαβαβαβ=-=-故选C .【点睛】本题主要考查了列式的运算,其中解答中熟记行列式的计算方法是解答此类问题的关键,,着重考查了推理与运算能力,属于基础题.4.(2019·上海师大附中高三一模)关于x 、y 的二元一次方程组的增广矩阵是111222a b c a b c ⎛⎫⎪⎝⎭,则方程组存在唯一解的条件是A .12a a ⎛⎫⎪⎝⎭与12b b ⎛⎫ ⎪⎝⎭平行B .12a a ⎛⎫⎪⎝⎭与12c c ⎛⎫ ⎪⎝⎭不平C .12a a ⎛⎫⎪⎝⎭与12b b ⎛⎫ ⎪⎝⎭不平行D .12b b ⎛⎫ ⎪⎝⎭与12c c ⎛⎫⎪⎝⎭不平行【答案】C【分析】由方程组存在唯一解时,系数行列式11210a b a b ≠,所以12210a b a b -≠,即可求解.【详解】由题意,关于,x y 的二元一次方程组的增广矩阵是111222a b c a b c ⎛⎫⎪⎝⎭,若方程组存在唯一解时,系数行列式11210a b ab ≠,所以12210a b a b -≠,又由1122,a b a b a b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,可得向量a 和b 不平行,即12a a ⎛⎫ ⎪⎝⎭与12b b ⎛⎫ ⎪⎝⎭不平行.故选:C .【点睛】本题主要考查了行列式的运算性质,以及二元一次方程组的增广矩阵的应用,其中解答中熟记二元一次方程组唯一解的条件是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.(2021·上海崇明·)关于x 、y 的二元一次方程组341310x y x y +=⎧⎨-=⎩的增广矩阵为( )A .3411310-⎛⎫ ⎪-⎝⎭B .3411310⎛⎫ ⎪--⎝⎭C .3411310⎛⎫⎪-⎝⎭D .3411310⎛⎫⎪⎝⎭【答案】C【分析】根据二元一次方程方程组与增广矩阵的关系,即可求得结果. 【详解】关于,x y 的二元一次方程组341310x y x y +=⎧⎨-=⎩的增广矩阵为3411310⎛⎫⎪-⎝⎭,故选:C6.(2021·上海市吴淞中学高三月考)若等比数列{}n a 的公比为q ,则关于,x y 的二元一次方程组132421a x a y a x a y +=⎧⎨+=⎩的解的情况下列说法正确的是( )A .对任意(0)q R q ∈≠,方程组都有唯一解B .对任意(0)q R q ∈≠,方程组都无解C .当且仅当12q =时,方程组有无穷多解 D .当且仅当12q =时,方程组无解 【答案】C【分析】化简得到31131121a qx a q y q a qx a q y ⎧+=⎨+=⎩,讨论12q =和12q ≠得到答案.【详解】2313111133241111222111a x a y a x a q y a qx a q y qa x a y a qx a q y a qx a q y +=⎧⎧+=+=⎧∴∴⎨⎨⎨+=+=+=⎩⎩⎩故当12q =时,方程组有无穷多解;当12q ≠时,方程组无解 故选:C【点睛】本题考查了方程组解的问题,包含等比数列公式知识,意在考查学生的综合应用能力.二、填空题7.(2019·上海高三模拟预测)若函数21()12x f x =,(0,)x ∈+∞,则其反函数1()f x -=_________. 【答案】2log (1)1x +-,(1,)x ∈+∞【分析】计算二阶行列式化简()f x ,再根据求反函数的步骤可求得反函数.【详解】因为21()12x f x =1221121x x +=⨯-⨯=-, 因为x ∈(0,)+∞,所以()(1,)f x ∈+∞,所以由121x y +=-得21log (1)x y +=+,所以2log (1)1x y =+-, 交换,x y 可得2log (1)1y x =+-, 所以12()log (1)1f x x -=+-,(1,)x ∈+∞, 故答案为:2log (1)1x +-,(1,)x ∈+∞.【点睛】本题考查了二阶行列式的计算,反函数的求法,属于基础题. 8.(2018·上海普陀·高三一模)已知i 是虚数单位,z 是复数z 的共轭复数,若1012z ii +=,则z 在复平面内所对应的点所在的象限为第________象限. 【答案】一【分析】根据二阶行列的展开式,求得210zii,设z a bi =+,代入即可求得a 和b 值,求得z ,即可判断在复平面内所对应的点所在的象限.【详解】解:因为1012z ii +=,所以210zi i,设z a bi =+, 所以210a biii,则21210b a i所以有210210b a --=⎧⎨-=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩, 所以1122zi ,1212z i =+. 所以z 在复平面内所对应的点所在的象限为第一象限. 故答案为:一【点睛】本题考查二阶行列式的展开式的应用,考查复数的运算,考查转化思想,属于中档题.9.(2017·上海高三模拟预测)计算:4321=__.【答案】2-【分析】利用二阶行列式对角线法则,即可求得答案. 【详解】434132221=⨯-⨯=-.故答案为:2-.【点睛】本题考查了二阶行列式对角线法则,掌握二阶行列式对角线法则是解题关键,属于基础题.10.(2020·上海市新场中学高三月考)已知111222a x b y c a x b y c +=⎧⎨+=⎩的增广矩阵是111113-⎛⎫⎪⎝⎭,则此方程组的解是________. 【答案】21x y =⎧⎨=⎩【分析】先利用增广矩阵,写出相应的二元一次方程组,然后再求解即得.【详解】解:由题意,方程组13 x yx y-=⎧⎨+=⎩解之得21 xy=⎧⎨=⎩故答案为:21 xy=⎧⎨=⎩【点睛】本题的考点是系数矩阵的逆矩阵解方程组,关键是利用增广矩阵,写出相应的二元一次方程组,从而得解,属于基础题.11.(2020·上海)计算行列式的值,0123=______.【答案】2-【分析】根据行列式的计算公式计算可得答案.【详解】0123=03122⨯-⨯=-,故答案为:2-【点睛】本题考查了二阶行列式的计算,属于基础题.12.(2020·上海长宁·高三二模)行列式5182的值等于____________.【答案】2【分析】直接根据行列式的运算,即可求得结果.【详解】解:根据行列式的运算,得5125182 82=⨯-⨯=.故答案为:2.【点睛】本题考查二阶行列式的计算,属于基础题.13.(2021·上海高三专题练习)线性方程组2538x y x y -=⎧⎨+=⎩的增广矩阵为_________.【答案】125318-⎛⎫ ⎪⎝⎭.【分析】直接根据线性方程组的增广矩阵的含义求解.【详解】线性方程组2538x y x y -=⎧⎨+=⎩的增广矩阵为125318-⎛⎫⎪⎝⎭,故答案为:125318-⎛⎫⎪⎝⎭【点睛】考查了线性方程组的增广矩阵的含义,属于容易题.14.(2020·上海长宁·高三三模)三阶行列式374156200的值为________【答案】44【分析】根据三阶行列式计算公式即可得解.【详解】由题:37415635076241045271036044200=⨯⨯+⨯⨯+⨯⨯-⨯⨯-⨯⨯-⨯⨯=故答案为:44【点睛】此题考查行列式的计算,关键在于熟练掌握行列式的计算法则,根据法则计算得解.15.(2021·上海高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若22=+ab a b c,则角C 的大小为______.【答案】4π【分析】由二阶行列式和余弦定理,即可得出结果.222+=+c a b即222c a b =+,由余弦定理可得, cos C =4C π∴=.故答案为:4π.【点睛】本题考查了二阶行列式、余弦定理等基础知识,考查了理解辨析和数学运算能力,属于容易题目.16.(2017·上海杨浦·)在三阶行列式123456789中,5的代数余子式的值为_________. 【答案】12-【分析】根据代数余子式的定义直接计算即可求解. 【详解】由题意可得:5的代数余子式为221379M =,所以5的代数余子式的值为()()221193712+-⨯⨯-⨯=-,故答案为:12-17.(2017·上海市实验学校高三月考)二元一次方程组的增广矩阵为0603m n ⎛⎫⎪⎝⎭,若该方程组的解为34x y =-⎧⎨=⎩,则mn =___________. 【答案】24-【分析】根据增广矩阵得出二元一次方程组,结合其解为34x y =-⎧⎨=⎩,求出,m n 的值,即可得解.【详解】由题:二元一次方程组的增广矩阵为0603m n ⎛⎫ ⎪⎝⎭,列方程组:63mx y n =⎧⎨=⎩,该方程组的解为34x y =-⎧⎨=⎩,所以2,12m n =-=所以24mn =-. 故答案为:24-【点睛】此题考查增广矩阵与线性方程组之间的关系,通过增广矩阵列出线性方程组,根据方程组的解,求解参数的值. 18.(2017·上海青浦·高三二模)函数sin 2cos ()2cos sin x x f x xx=的最小正周期是________. 【答案】π【分析】整理()2253sin 4cos cos 222f x x x x =-=--,代入周期公式求解即可 【详解】由题,()()222553sin 4cos 15cos 11cos 2cos 2222f x x x x x x =-=-=-+=--, 所以22T ππ== 故答案为:π【点睛】考查计算二阶行列式,考查三角函数的周期,考查降幂公式的应用19.(2016·上海松江·高三一模(理))行列式cos 20sin 20︒︒sin 40cos 40︒︒的值是______.【答案】12.【分析】利用二阶行列式展开法则和两角和的余弦公式能求出结果. 【详解】cos 20sin 40sin 20cos 40︒︒︒︒cos20cos40sin20sin40=︒︒-︒︒cos(2040)=︒+︒cos60=︒12=. 故答案为:12【点睛】本题主要考查二阶行列式的值的求法,两角和的余弦公式,属于容易题.20.(2017·上海黄浦·高三一模)已知()22ax x f x x =-(a 为常数),221()x g x x+=,且当12[1,4]x x∈,时,总有1()f x ≤2()g x ,则实数a 的取值范围是_________.【答案】1(]6-∞-,. 【分析】由当12[1,4]x x∈,时,总有1()f x ≤2()g x 可转化为当12[1,4]x x ∈,时,()()12min f x g x ≤,利用均值不等式可得()2min 3g x =,即()13f x ≤在[]11,4x ∈上恒成立,进而参变分离可得121322x a x -≤在[]11,4x ∈上恒成立,利用换元法求得121322x x -的最小值即可【详解】由题,()222f x ax x =+,因为当12[1,4]x x∈,时,总有1()f x ≤2()g x ,即()()12min f x g x ≤,因为222222211()2x g x x x x +==+≥,当且仅当2212x x =,即2x =, 由于[]21,4x ∈,所以当21x =时,()()2min 13g x g ==;则()13f x ≤在[]11,4x ∈恒成立,即211223ax x +≤在[]11,4x ∈恒成立, 所以1221113231122x a x x x -≤=⋅-在[]11,4x ∈恒成立,设11t x =,1,14t ⎡⎤∈⎢⎥⎣⎦,()232h t t t =-, 则()min a h t ≤,所以当13t =时,()min 16h t =-, 所以16a ≤-, 故答案为:1(]6-∞-,【点睛】本题考查不等式恒成立问题,转化为最值问题是解题关键;考查利用均值不等式求最值,注意取等条件;考查二阶行列式的应用,考查换元法求最值,考查运算能力和转化思想三、解答题21.(2018·cos 0.5sin 0(0)1cos A x A A x A x>按第一列展开1121312M M -+,记函数1121()f x M M =+,且()f x 的最大值是4. (1)求A ; (2)将函数()y f x =的图像向左平移12π个单位,再将所得图像上各点的横坐标扩大为原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 在11,1212ππ⎛⎫- ⎪⎝⎭上的值域. 【答案】(1)A =2)(]()4sin 2,412g x x π⎛⎫=-∈- ⎪⎝⎭ 【分析】(1)先根据行列式,求出函数()f x ,再利用二倍角公式,辅助角公式化简,结合()f x 的最大值是4,即可求A ;(2)向左移12π得4sin 212y x π⎛⎫=- ⎪⎝⎭,横坐标变为原来2倍得()4sin 12g x x π⎛⎫=- ⎪⎝⎭因为11,1212x ππ⎛⎫∈- ⎪⎝⎭,所以5,1266x πππ⎛⎫-∈-⎪⎝⎭,所以()(]4sin 2,412g x x π⎛⎫=-∈- ⎪⎝⎭. 【详解】解(1)11sin 0sin cos 1cos A x M A x x x==,221cos cos 221cos AA x A M A x x=-=-+()sin2cos2sin 22224A A f x x x x π⎛⎫=-=- ⎪⎝⎭,max 4f ==,所以A =(2)向左移12π得4sin 212y x π⎛⎫=-⎪⎝⎭,横坐标变为原来2倍得()4sin 12g x x π⎛⎫=- ⎪⎝⎭因为11,1212x ππ⎛⎫∈- ⎪⎝⎭,所以5,1266x πππ⎛⎫-∈- ⎪⎝⎭,所以()(]4sin 2,412g x x π⎛⎫=-∈- ⎪⎝⎭ 【点睛】本题以行列式为载体,三角恒等变换为手段,对三角函数的图象与性质进行考查,难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心. 22.(2019·上海市控江中学高三三模)已知α、λ是实常数,cos sin()()sin()cos x x f x x xλαα-=+.(1)当1λ=,3πα=时,求函数()y f x =的最小正周期、单调增区间与最大值;(2)是否存在λ,使得()f x 是与α有关的常数函数(即()f x 的值与x 的取值无关)?若存在,求出所有满足条件的λ,若不存在,说明理由. 【答案】(1)T π=,单调递增区间是[,]2k k πππ-,k ∈Z ,最大值是74,当且仅当x k π=;(2)存在,1λ=-.【分析】(1)将1λ=,3πα=代入化简()f x 的表达式,求出最小正周期、单调增区间和最大值即可;(2)根据(1)中化简的()f x 的解析式分析,当102λ+=时,满足条件【详解】cos sin()()||sin()cos xx f x x xλαα-=+ 22222cos (sin cos cos sin )x x x λαα=--2222(sin )cos cos sin x x λαα=+-221sin cos cos222x λλαα++-=+,(1)当1λ=,3πα=时,3()cos24f x x =+,()f x ∴的周期T π=,当从cos21x =时,最大值为74, 由222()k x k k Z πππ-+∈,得()2k x k k Z πππ-+∈,()f x ∴的单调增区间为[,]()2k k k Z πππ-+∈,(2)221sin cos ()cos222f x x λλαα++-=+,显然当102λ+=,即1λ=-时,()f x 的值与x 的取值无关,∴存在1λ=-,使得()f x 是与α有关的常数函数.【点睛】本题考查行列式的简单计算,三角函数的化简求值,三角函数的图象与性质,属于基础题23.(2016·上海长宁·高三一模)关于x 的不等式201x a x+<的解集为()1,b -.()1求实数a ,b 的值;()2若1z a bi =+,2z cos isin αα=+,且12z z 为纯虚数,求tan α的值. 【答案】(1)1a =-,2b =(2)12-【分析】(1)由题意可得:1-,b 是方程220x ax +-=的两个实数根,利用根与系数的关系即可得出答案;第 21 页 共 21 页 (2)利用(1)的结果得()()1222z z cos sin cos sin i αααα=--+-为纯虚数,利用纯虚数的定义即可得出.【详解】解:(1)不等式201x a x+<即()20x x a +-<的解集为()1,b -. 1∴-,b 是方程220x ax +-=的两个实数根,∴由1b a -+=-,2b -=-, 解得1a =-,2b =.(2)由(1)知1,2a b =-=,()()()()121222z z i cos isin cos sin cos sin i αααααα∴=-++=--+-为纯虚数,20cos sin αα∴--=,20cos sin αα-≠, 解得12tan α=-.【点睛】本题考查了行列式,复数的运算法则、纯虚数的定义、一元二次方程的根与系数的关系、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.。
高三数学矩阵行列式试题

高三数学矩阵行列式试题1.设矩阵M=(其中a>0,b>0).(1)若a=2,b=3,求矩阵M的逆矩阵M-1;(2)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:,求a,b 的值.【答案】(1)(2)【解析】(1)设矩阵M的逆矩阵,则又M=,所以=,所以,即,故所求的逆矩阵(2)设曲线C上任意一点P(x,y),它在矩阵M所对应的线性变换作用下得到点,则=,即又点在曲线C′上,所以,则为曲线C的方程,又已知曲线C的方程为,故又a>0,b>0,所以2.已知直线l:ax+y=1在矩阵A=对应的变换作用下变为直线l′x+by=1.(1)求实数a,b的值;(2)若点P(x0,y)在直线l上,且A=,求点P的坐标.【答案】(1)(2)(1,0)【解析】(1)设直线l:ax+y=1上任意点M(x,y)在矩阵A对应的变换作用下像是M′(x′,y′).由==,得.又点M′(x′,y′)在l′上,所以x′+by′=1即x+(b+2)y=1.依题意,得解得(2)由A=,得解得y=0.,又点P(x0,y)在直线l上,所以x=1.故点P的坐标为(1,0).3.已知矩阵M=,N=.(1)求矩阵MN;(2)若点P在矩阵MN对应的变换作用下得到Q(0,1),求点P的坐标.【答案】(1)MN==;(2)P(, 1).【解析】(1)利用矩阵乘法公式计算即可;(2)两种方法:法一,利用=,转化为关于的二元一次方程,解出,即点P的坐标;法二,求出MN的逆矩阵,直接计算. 试题解析:(1)MN==; 5分(2)设P(x,y),则解法一:=,即解得即P(, 1). 10分解法二:因为=.所以==.即P(, 1). 10分【考点】矩阵与变换、逆矩阵的求法、矩阵的计算.4.选修4-2:矩阵与变换(本小题满分10分)若点A(2,2)在矩阵对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵【答案】由题意知,,即,所以解得所以.………………5分由,解得. …………………………………10分另解:矩阵的行列式,所以.【解析】略5.定义运算,若函数在上单调递减,则实数的取值范围是【答案】.【解析】由定义,得,则在上单调递减,又因为在上单调递减,所以.【考点】新定义题目,二次函数的单调性.6.定义式子运算为,将函数(其中)的图象向左平移个单位,得到函数y="g" (x)的图象.若y=g(x)在[]上为增函数,则的最大值()A.6B.4C.3D.2【答案】C【解析】由定义式子运算为,可得函数(其中)的图象向左平移个单位,得到函数y="g" (x)的图像,y="g" (x)在上递增,又因为y=g(x)在[]上为增函数,所以,解得,所以的最大值为3.【考点】三角函数图像平移及单调性.7.(本小题满分14分)已知线性变换是按逆时针方向旋转的旋转变换,其对应的矩阵为,线性变换:对应的矩阵为.(Ⅰ)写出矩阵、;(Ⅱ)若直线在矩阵对应的变换作用下得到方程为的直线,求直线的方程.【答案】(1)(Ⅰ),.(Ⅱ).【解析】(1)(Ⅰ),.(Ⅱ)由于, 进一步由得, 根据即得.试题解析:(1)(Ⅰ), 2分. 3分(Ⅱ), 4分由得, 5分由题意得得,所以直线的方程为. 7分【考点】矩阵与变换.8.(本小题满分7分)选修4-2:矩阵与变换已知矩阵,其中.若点在矩阵的变换下得到点.(1)求实数的值;(2)若,求【答案】(1);(2).【解析】(1)矩阵,是线性代数中的基本概念之一,一个的矩阵就是个数排成行列的一个数阵.由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型.矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分广泛,,掌握相乘,列方程组求得;(2)先根据特征值的定义列出特征多项式,令解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.试题解析:(1)由,得所以(2).令,得,.属于的一个特征向量,属于的一个特征向量,所以..【考点】矩阵的应用.9.已知矩阵,求矩阵【答案】【解析】由逆矩阵公式得,再利用矩阵运算得试题解析:解:,【考点】逆矩阵10.变换T1是逆时针旋转角的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2=.(1)点P(2,1)经过变换T1得到点P',求P'的坐标;(2)求曲线y=x2先经过变换T1,再经过变换T2所得曲线的方程.【答案】(1)P'(-1,2).(2)y-x=y2.【解析】(1)先写出旋转矩阵M1=,再利用矩阵运算得到点P'的坐标是P'(-1,2).(2)先按序确定矩阵变换M=M2M1=,再根据相关点法求曲线方程:即先求出对应点之间关系,再代入已知曲线方程,化简得y-x=y2. 试题解析:解:(1)M1=,M1=.所以点P(2,1)在T1作用下的点P'的坐标是P'(-1,2).(2)M=M2M1=,设是变换后图象上任一点,与之对应的变换前的点是,则M=,也就是即所以,所求曲线的方程是y-x=y2.【考点】旋转矩阵,矩阵变换11. [选修4-2:矩阵与变换]已知矩阵矩阵B的逆矩阵,求矩阵AB.【答案】【解析】先求逆矩阵的逆:,再根据矩阵运算求矩阵AB.试题解析:解:设,则,即,故,解得,所以.因此,.【考点】逆矩阵,矩阵乘法【名师】矩阵乘法及逆矩阵需明确运算法则,实质是考查一种运算法则:,类似求矩阵特征值及特征向量也是如此.12.矩阵与变换求椭圆在矩阵对应的变换作用下所得的曲线的方程.【答案】【解析】实质为相关点法求轨迹:先根据矩阵运算得相关点之间关系代入,得所求曲线的方程试题解析:设椭圆上的点在矩阵对应的变换作用下得到点,则,………………………………………………5分则代入椭圆方程,得,所以所求曲线的方程为.……………………………………………10分【考点】矩阵运算13.设矩阵,求矩阵的逆矩阵的特征值及对应的特征向量.【答案】特征值对应的一个特征向量为,特征值对应的一个特征向量为【解析】先根据逆矩阵公式得,再根据特征多项式得,解得,最后根据对应向量关系求对应特征向量试题解析:矩阵的逆矩阵为,则特征多项式为令,解得,设特征向量为,则,易算得特征值对应的一个特征向量为,同理可得特征值对应的一个特征向量为【考点】特征值及特征向量14.(选修4-2:矩阵与变换)已知a、b∈R,若M=所对应的变换T把直线2x-y=3变换成自身,试求实数a、b.【答案】a=1,b=-4.【解析】实际上利用转移法求动点轨迹:先根据矩阵运算得到对应动点之间关系,设,则,再代入得(-2-b)x+(2a-3)y=3.最后根据两直线重合得-2-b=2,2a-3=-1.则a=1,b=-4.试题解析:设,则∵,∴ 2(-x+ay)-(bx+3y)=3.即(-2-b)x+(2a-3)y=3.此直线即为2x-y=3,∴-2-b=2,2a-3=-1.则a=1,b=-4.【考点】矩阵运算15.已知二阶矩阵有特征值及对应的一个特征向量,并且矩阵对应的变换将点变换成.(1)求矩阵;(2)求矩阵的另一个特征值.【答案】(1)M=.(2)矩阵M的另一个特征值为.【解析】(1)先设矩阵M=,由二阶矩阵有特征值及对应的一个特征向量及矩阵对应的变换将点换成,得到关于的方程组,即可求得矩阵;(2)由(1)知,矩阵的特征多项式为,从而求得另一个特征值为2.试题解析:设M=,M,M,解得即M=.(2)则令特征多项式,解得.矩阵M的另一个特征值为.16.运用旋转矩阵,求直线2x+y-1=0绕原点逆时针旋转45°后所得的直线方程.【答案】x+y-1=0【解析】旋转矩阵=.直线2x+y-1=0上任意一点(x0,y)旋转变换后为(x',y'),得=,∴即直线2x+y-1=0绕原点逆时针旋转45°后所得的直线方程是x+y-x+y-1=0,即x+y-1=0.17.2×2矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1)求矩阵M.(2)设直线l在矩阵M对应的变换作用下得到了直线m:x-y=4.求直线l的方程.【答案】(1) (2) x+y+2=0【解析】(1)设M=,则有=,=,所以且解得所以M=.(2)设直线l上一点为(x,y)在矩阵M对应的变换作用下变为(x',y'),因为==且直线m:x'-y'=4,所以(x+2y)-(3x+4y)=4,即x+y+2=0为直线l的方程.18.已知2×2矩阵M=,矩阵M对应的变换将点(2,1)变换成点(4,-1),求矩阵M将圆x2+y2=1变换后的曲线方程.【答案】2x2-2xy+5y2=9【解析】由已知得M=,即=,∴解得∴M=.设点P(x,y)是圆x2+y2=1上的任意一点,变换后的点为P'(x',y'),则M=,所以从而又点(x,y)在圆x2+y2=1上,则(x'-2y')2+(x'+y')2=9,即2x'2-2x'y'+5y'2=9,∴圆x2+y2=1变换后的曲线方程为2x2-2xy+5y2=9.19.曲线x2-4y2=16在y轴方向上进行伸缩变换,伸缩系数k=2,求变换后的曲线方程.【答案】x2-y2=16【解析】设变换后的曲线上任意一点为(x,y),其在x2-4y2=16上的对应点为(x0,y),由题意已知变换对应的矩阵A=,则=,∴,∴,∴x2-4()2=16,即x2-y2=16.20.[选修4-2:矩阵与变换]已知:点在变换:作用后,再绕原点逆时针转90°,得到点,若点的坐标为(-3,4),求点的坐标.【答案】.【解析】在变换作用后,再绕原点逆时针旋转90°后对应的矩阵为:,设,求A点在此矩阵的作用下变换后的点,代入已知条件即可求得所求点A的坐标.试题解析:根据题意知,在变换作用后,再绕原点逆时针旋转90°后对应的矩阵为:,设,则由,得,∴,即.。
高考数学专题训练——矩阵行列式(3)含解析
高考数学专题训练——矩阵行列式(3)三、解答题1.已知二阶矩阵A 有特征值11λ=及对应的一个特征向量111⎡⎤=⎢⎥⎣⎦e 和特征值22λ=及对应的一个特征向量210⎡⎤=⎢⎥⎣⎦e ,试求矩阵A .2.已知矩阵⎪⎪⎭⎫⎝⎛=3241A (1)求A 的逆矩阵A -1;(2)求A 的特征值及对应的特征向量。
3.选修4—2:矩阵与变换已知矩阵A =33c d ⎡⎤⎢⎥⎣⎦,若矩阵A 属于特征值6的一个特征向量为α1=11⎡⎤⎢⎥⎣⎦,属于 特征值1的一个特征向量为α2=32⎡⎤⎢⎥-⎣⎦.求矩阵A ,并写出A 的逆矩阵.4.已知二阶矩阵A 有特征值11λ=及对应的一个特征向量111⎡⎤=⎢⎥⎣⎦e 和特征值22λ=及对应的一个特征向量210⎡⎤=⎢⎥⎣⎦e ,试求矩阵A .5.选修4—2:矩阵与变换 已知矩阵⎥⎦⎤⎢⎣⎡=d c A 33,若矩阵A 属于特征值6的一个特征向量为⎥⎦⎤⎢⎣⎡=111α,属于特征值1的一个特征向量为⎥⎦⎤⎢⎣⎡-=232α.求矩阵A 的逆矩阵. 6.选修4-2:矩阵与变换若点A (-2,2)在矩阵cos sin sin cos αααα-⎡⎤=⎢⎥⎣⎦M 对应变换的作用下得到的点为B (2,2),求矩阵M .7.在平面直角坐标系xOy 中,设曲线1C 在矩阵10102A ⎡⎤⎢⎥=⎢⎥ ⎣⎦对应的变换作用下得到曲线222:14x C y +=,求曲线1C 的方程.8.选修4-2:矩阵与变换已知矩阵302a ⎡⎤=⎢⎥⎣⎦A ,A 的逆矩阵11031b -⎡⎤⎢⎥=⎢⎥⎣⎦A . (1)求a ,b 的值;(2)求A 的特征值.9.(1)已知矩阵1101,20201⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦A B ,若矩阵AB 对应的变换把直线l :20x y +-=变为直线'l ,求直线'l 的方程.(2)在极坐标系中,圆C的方程为)4πρθ=-,以极点为坐标原点,极轴为x 轴 的正半轴建立平面直角坐标系,直线l 的参数方程为11x t y t =+⎧⎨=-⎩(t 为参数),求直线l 被 圆C 截得的弦AB 的长度.10.选修4-2:矩阵与变换(本小题满分10分) 已知矩阵A =01a k ⎡⎤⎢⎥⎣⎦ (k ≠0)的一个特征向量为α=1k ⎡⎤⎢⎥-⎣⎦, A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).求实数a ,k 的值.11.(本小题满分14分)已知二阶矩阵21M a b ⎛⎫= ⎪⎝⎭),(R b a ∈,若矩阵M 属于特征值1-的一个特征向量⎪⎪⎭⎫⎝⎛-=311α,属于特征值3的一个特征向量⎪⎪⎭⎫⎝⎛=112α. (Ⅰ)求实数b a ,的值;(Ⅱ)若向量35β-⎛⎫=⎪⎝⎭,计算5M β 的值. 12.已知矩阵A的逆矩阵122A -⎡⎢⎢=⎢⎢⎣,求曲线1xy =在矩阵A 对应的交换作用下所得的曲线方程. 13.(本小题满分7分)选修4—2:矩阵与变换在平面直角坐标系中,矩阵M 对应的变换将平面上的任意一点()y x P ,变换为点()y x y x P +-',2.(Ⅰ)求矩阵M 的逆矩阵1-M;(Ⅱ)求圆122=+y x 在矩阵M 对应的变换作用后得到的曲线C 的方程.14.(选修4-2:矩阵与变换) 已知矩阵1235A -⎡⎤=⎢⎥-⎣⎦, (1)求逆矩阵1A -;(2)若矩阵X 满足31AX ⎡⎤=⎢⎥⎣⎦,试求矩阵X . 15.(本小题满分7分)选修4-2:矩阵与变换已知矩阵10a M b ⎛⎫= ⎪⎝⎭,其中,a b R ∈.若点(1,2)P -在矩阵M 的变换下得到点(1,4)P '--. (1)求实数,a b 的值;(2)若21a ⎛⎫= ⎪⎝⎭,求10.M a16.选修4-2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤a 11a ,直线l :x -y +4=0在矩阵A 对应的变换作用下变为直线l ':x -y +2a =0. (1)求实数a 的值;(2)求A 2.17.(本题满分10分)已知矩阵M =⎥⎦⎤⎢⎣⎡2001,N =⎥⎥⎦⎤⎢⎢⎣⎡10021,试求曲线x y sin =在矩阵MN 变换下的函数解析式.18.(本小题满分7分)选修4—2:矩阵与变换在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点(,)P x y 变换为点(2,3)P x y x '+.(1)求矩阵M 的逆矩阵1M -;(2)求曲线410x y +-=在矩阵M 的变换作用后得到的曲线C '的方程. 19.选修4—2:矩阵与变换(本小题满分10分) 已知矩阵A =21a b ⎡⎤⎢⎥⎣⎦,若矩阵A 属于特征值-1的一个特征向量为α1=11⎡⎤⎢⎥-⎣⎦,属于特征值4 的一个特征向量为α2=32⎡⎤⎢⎥⎣⎦.求矩阵A ,并写出A 的逆矩阵A -1.20.(选修4—2:矩阵与变换)(本题满分10分)已知1002M ⎡⎤=⎢⎥⎣⎦,10201N ⎡⎤⎢⎥=⎢⎥⎣⎦,设曲线sin y x =在矩阵MN 对应的变换作用下得到曲线F,求F方程参考答案1.2101A -⎡⎤=⎢⎥⎣⎦ 【解析】试题分析:根据特征值与特征向量关系求矩阵:设矩阵a b A c d ⎡⎤=⎢⎥⎣⎦,则有11111ab c d ⎡⎤⎡⎤⎡⎤=⨯⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,11200a b c d ⎡⎤⎡⎤⎡⎤=⨯⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,11,20a b c d a c +=⎧⎪+=⎪⎨=⎪⎪=⎩,,,从而2101a b c d ==-==,,,,所以2101A -⎡⎤=⎢⎥⎣⎦. 试题解析:设矩阵a b A c d ⎡⎤=⎢⎥⎣⎦,这里a b c d ∈R ,,,, 因为11⎡⎤⎢⎥⎣⎦是矩阵A 的属于11λ=的特征向量,则有11111a b cd ⎡⎤⎡⎤⎡⎤=⨯⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ①, 4分又因为10⎡⎤⎢⎥⎣⎦是矩阵A 的属于22λ=的特征向量,则有11200a b c d ⎡⎤⎡⎤⎡⎤=⨯⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ② 6分 根据①②,则有11,20a b c d a c +=⎧⎪+=⎪⎨=⎪⎪=⎩,,,8分从而2101a b c d ==-==,,,,所以2101A -⎡⎤=⎢⎥⎣⎦. 10分 考点:特征值与特征向量 2.(1)⎪⎪⎪⎪⎭⎫⎝⎛--=-515254531A ; (2)5=λ或1-=λ;当5=λ时,特征向量⎪⎪⎭⎫⎝⎛=111ξ当1-=λ时,特征向量⎪⎪⎭⎫⎝⎛-=122ξ 【解析】试题分析:(1)利用逆矩阵的计算公式求出A 的逆矩阵A -1;(2)利用特征多项式对应方程的根,求矩阵的特征值,再结合对应的方程,求出每个特征值所对应的特征向量.试题解析:解:(1)∵54231||-=⨯-⨯=A ∴A 可逆 1分∴⎪⎪⎪⎪⎭⎫⎝⎛--=-515254531A 3分 (2)A 的特征多项式548)3)(1(3241)(2--=---=----=λλλλλλλf 4分 由0)(=λf ,得5=λ或1-=λ; 5分当5=λ时,由⎩⎨⎧=+-=-022044y x y x 得特征向量⎪⎪⎭⎫⎝⎛=111ξ 当1-=λ时,由⎩⎨⎧=--=--042042y x y x 得特征向量⎪⎪⎭⎫⎝⎛-=122ξ 7分 考点:矩阵与变换.3.A =3324⎡⎤⎢⎥⎣⎦,A 的逆矩阵21321132⎡⎤-⎢⎥⎢⎥-⎢⎥⎣⎦【解析】试题分析:由特征值与特征向量关系得:33c d ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=611⎡⎤⎢⎥⎣⎦,33c d ⎡⎤⎢⎥⎣⎦ 32⎡⎤⎢⎥-⎣⎦=32⎡⎤⎢⎥-⎣⎦,即c +d =6,3c -2d =-2,,因此24c d =⎧⎨=⎩即A =3324⎡⎤⎢⎥⎣⎦,从而A 的逆矩阵是21321132⎡⎤-⎢⎥⎢⎥-⎢⎥⎣⎦.试题解析:由矩阵A 属于特征值6的一个特征向量为α1=11⎡⎤⎢⎥⎣⎦可得,33c d ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=611⎡⎤⎢⎥⎣⎦,即c +d =6, 2分 由矩阵A 属于特征值1的一个特征向量为α2=32⎡⎤⎢⎥-⎣⎦,可得33c d ⎡⎤⎢⎥⎣⎦ 32⎡⎤⎢⎥-⎣⎦=32⎡⎤⎢⎥-⎣⎦,即3c -2d =-2, 4分解得24c d =⎧⎨=⎩即A =3324⎡⎤⎢⎥⎣⎦, 6分 所以A 的逆矩阵是21321132⎡⎤-⎢⎥⎢⎥-⎢⎥⎣⎦. 10分 考点:特征值与特征向量,逆矩阵4.2101A -⎡⎤=⎢⎥⎣⎦. 【解析】试题分析:设出二阶矩阵,利用待定系数法进行求解.试题解析:设矩阵a b A c d ⎡⎤=⎢⎥⎣⎦,这里a b c d ∈R ,,,, 因为11⎡⎤⎢⎥⎣⎦是矩阵A 的属于11λ=的特征向量,则有11111a b cd ⎡⎤⎡⎤⎡⎤=⨯⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦①, 又因为10⎡⎤⎢⎥⎣⎦是矩阵A 的属于22λ=的特征向量,则有11200a b c d ⎡⎤⎡⎤⎡⎤=⨯⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦② 根据①②,则有11,20a b c d a c +=⎧⎪+=⎪⎨=⎪⎪=⎩,,,从而2101a b c d ==-==,,,,所以2101A -⎡⎤=⎢⎥⎣⎦考点:1.矩阵;2.矩阵的特征向量;3.矩阵的特征量5.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2131-21-32【解析】试题分析:由特征向量定义知:⎥⎦⎤⎢⎣⎡d c 33⎥⎦⎤⎢⎣⎡11=6⎥⎦⎤⎢⎣⎡11,⎥⎦⎤⎢⎣⎡d c 33⎥⎦⎤⎢⎣⎡-23=⎥⎦⎤⎢⎣⎡-23,所以6=+d c ,223-=-d c ,解得⎩⎨⎧==,4,2d c 即A =⎥⎦⎤⎢⎣⎡4233,A 逆矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2131-21-32试题解析:解:由矩阵A 属于特征值6的一个特征向量为⎥⎦⎤⎢⎣⎡=111α,可得⎥⎦⎤⎢⎣⎡d c 33⎥⎦⎤⎢⎣⎡11=6⎥⎦⎤⎢⎣⎡11,即6=+d c ;由矩阵A 属于特征值1的一个特征向量为⎥⎦⎤⎢⎣⎡-=232α可得,⎥⎦⎤⎢⎣⎡d c 33⎥⎦⎤⎢⎣⎡-23=⎥⎦⎤⎢⎣⎡-23, 即223-=-d c ,解得⎩⎨⎧==,4,2d c 即A =⎥⎦⎤⎢⎣⎡4233,A 逆矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2131-21-32. 考点:特征向量,逆矩阵6.0110M ⎡⎤=⎢⎥-⎣⎦ 【解析】试题分析:根据矩阵变换得:cos sin sin cos αααα-⎡⎤⎢⎥⎣⎦2222-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,sin 1cos 0αα=-⎧⎨=⎩,所以0110M ⎡⎤=⎢⎥-⎣⎦ 试题解析:解: cos sin sin cos αααα-⎡⎤⎢⎥⎣⎦2222-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦sin 1cos 0αα=-⎧⎨=⎩0110M ⎡⎤=⎢⎥-⎣⎦ 考点:矩阵变换7.224x y += 【解析】试题分析:实质为转移法求轨迹:设(,)P x y 是曲线1C 上任意一点,点(,)P x y 在矩阵A 对应的变换下变为点(,P x y ''',则有10102x x y y ⎡⎤'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥' ⎣⎦⎣⎦⎣⎦,即12x xy y '=⎧⎪⎨'=⎪⎩22()()14x y ''+= 22()()142x y ∴+=,224x y += 试题解析:设(,)P x y 是曲线1C 上任意一点,点(,)P x y 在矩阵A 对应的变换下变为点(,)P x y '''则有10102x x y y ⎡⎤'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥' ⎣⎦⎣⎦⎣⎦,即12x x y y '=⎧⎪⎨'=⎪⎩5分 又因为点(,)P x y '''曲线222:14x C y +=上, 故22()()14x y ''+=,从而22()()142x y +=所以曲线1C 的方程是224x y +=. 10分 考点:矩阵变换8.(1)a =1,b =-23;(2)λ1=1,λ2=3;【解析】 试题分析:(1)利用逆矩阵的概念或公式求解;(2)利用特征多项式求特征值; 试题解析:(1)因为A A -1=302a ⎡⎤⎢⎥⎣⎦ 1 03 b 1⎡⎤⎢⎥⎢⎥⎣⎦=1023ab a ⎡⎤⎢⎥+⎢⎥⎣⎦=1001⎡⎤⎢⎥⎣⎦. 所以1,20.3a ab =⎧⎪⎨+=⎪⎩解得a =1,b =-23.(2)由(1)得A =3021⎡⎤⎢⎥⎣⎦, 则A 的特征多项式f (λ)=321λλ---=(λ-3)( λ-1). 令f (λ)=0,解得A 的特征值λ1=1,λ2=3. 考点:1.逆矩阵;2.矩阵的特征值; 9.(1)480x y +-=;(2)【解析】 试题分析:(1)先把AB 求出,再把直线l 上一点经矩阵AB 变换为直线'l 上一点,找到两者之间的关系,代入已知直线既得;相当于求轨迹方程中的相关点发;(2)先把C 和直线l 的方程化为直角坐标系下方程,再根据弦心距、弦长和半径之间的关系求出弦长.试题解析:(1)易得11101122020102AB ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,在直线l 上任取一点(,)P x y '',经矩阵AB 变换为点(,)Q x y ,则11122022x x x y y y y ⎡⎤⎡⎤'''+⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦'⎣⎦⎣⎦,∴122x x y y y ⎧''=+⎪⎨⎪'=⎩,即142x x y yy ⎧'=-⎪⎪⎨⎪'=⎪⎩,代入20x y ''+-=中得12042y x y -+-=,∴直线l '的方程为480x y +-=;(2)解:C 的方程化为4cos 4sin ρθθ=+,两边同乘以ρ,得24cos 4sin ρρθρθ=+由222,cos ,sin x y x y ρρθρθ=+== ,得22440x y x y +--=其圆心C 坐标为(2,2),半径r =l 的普通方程为20x y --=,∴圆心C 到直线l的距离d ==AB == 考点:1.矩阵的变换;2.相关点法;3.极坐标与直角坐标的转换;4.弦心距、弦长和半径之间的关系;10.解:设特征向量为α=1k ⎡⎤⎢⎥-⎣⎦对应的特征值为λ,则01a k ⎡⎤⎢⎥⎣⎦ 1k ⎡⎤⎢⎥-⎣⎦=λ1k ⎡⎤⎢⎥-⎣⎦,即1ak k kλλ-=⎧⎨=⎩因为k ≠0,所以a =2. 5分 因为13111A -⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,所以A 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦,即201k ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦, 所以2+k =3,解得 k =1.综上,a =2,k =1. 10分 【解析】试题分析:由 特征向量求矩阵A, 由逆矩阵求k 考点:特征向量, 逆矩阵点评:本题主要考查了二阶矩阵,以及特征值与特征向量的计算,考查逆矩阵. 11.(Ⅰ)30a b =⎧⎨=⎩;(Ⅱ)241249-⎛⎫⎪-⎝⎭【解析】试题分析:(1)(Ⅰ)由211133a b --⎛⎫⎛⎫⎛⎫=-⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,2111311a b ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭得333a b a b -+=-⎧⎨+=⎩ 即得;(Ⅱ)设311531m n --⎛⎫⎛⎫⎛⎫=+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由 335m n m n -+=-⎧⎨+=⎩解得21m n =⎧⎨=-⎩ 计算122βαα=-,555122M M M βαα=- .试题解析:(Ⅰ)由211133a b --⎛⎫⎛⎫⎛⎫=-⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,2111311a b ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭得333a b a b -+=-⎧⎨+=⎩解得30a b =⎧⎨=⎩ 4分(Ⅱ)设311531m n --⎛⎫⎛⎫⎛⎫=+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则335m n m n -+=-⎧⎨+=⎩解得21m n =⎧⎨=-⎩ ∴122βαα=-∴⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--⋅=-=24924111331)1(225525155ααM M M 7分考点:1.矩阵与变换;2.方程思想. 12.222y x -=【解析】试题分析:由矩阵变换公式直接代入计算可求曲线方程.试题解析:解法一:设1xy =上任意一点(),x y 在矩阵A 对应的变换作用下对应的点(),x y '',则1x x x y y y -⎡⎢''⎡⎤⎡⎤⎡⎤⎢==⎢⎥⎢⎥⎢⎥''⎢⎣⎦⎣⎦⎣⎦⎢⎣A , 4分由此得)),,x x y y y x ⎧''=+⎪⎪⎨⎪''=-⎪⎩6分 代入方程1xy =,得222y x ''-=.所以1xy =在矩阵A 对应的线性变换作用下的曲线方程为222y x -=.10分解法二:22⎥=⎥⎢⎥⎣⎦A , 4分 设1xy =上任意一点(),x y 在矩阵A 对应的线性变换作用下得到点(),x y '',则2222x x y y -⎢'⎡⎤⎡⎤⎥=⎢⎥⎢⎥'⎥⎣⎦⎣⎦⎢⎥⎣⎦,其坐标变换公式为,22,22x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩由此得)),2,2x x y y y x ⎧''=+⎪⎪⎨⎪''=-⎪⎩6分 代入方程1xy =,得222y x ''-=.所以1xy =在矩阵A 对应的线性变换作用下的曲线方程为222y x -=. 10分 考点:矩阵变换. 13.(Ⅰ)⎝⎛-=-31311M ⎪⎪⎪⎪⎭⎫3132;(Ⅱ)952222=++y xy x . 【解析】试题分析:(Ⅰ)考查矩阵变换与矩阵的关系,设),(y x P ''',本题变换为⎩⎨⎧+='-='yx y yx x 2,则矩阵1211M -⎛⎫= ⎪⎝⎭,再求其逆矩阵,也可写出变换为⎩⎨⎧+='-='y x y yx x 2的逆变换⎪⎪⎩⎪⎪⎨⎧+'-='+'=y x y y x x 31313231,这样就得 ⎝⎛-=-31311M ⎪⎪⎪⎪⎭⎫3132; (Ⅱ)由(Ⅰ)可得圆C 上的点(,)P x y 与变换后的点'(',')P x y 间的关系是⎪⎪⎩⎪⎪⎨⎧+'-='+'=y x y y x x 31313231,把它代入C 的方程可得.试题解析:(Ⅰ)法一:设),(y x P ''',依题意得:⎩⎨⎧+='-='yx y yx x 2,∴ ⎝⎛=11M ⎪⎪⎭⎫-12, ∴3=M , ∴⎝⎛-=-31311M⎪⎪⎪⎪⎭⎫3132. 法二:设),(y x P ''',依题意得:⎩⎨⎧+='-='yx y yx x 2,∴⎪⎪⎩⎪⎪⎨⎧+'-='+'=y x y y x x 31313231 , ∴ ⎝⎛-=-31311M ⎪⎪⎪⎪⎭⎫3132.(Ⅱ) ∵点()y x P ,在圆122=+y x 上,又⎪⎪⎩⎪⎪⎨⎧+'-='+'=y x y y x x 31313231,∴13131323122=⎪⎭⎫ ⎝⎛'+'-+⎪⎭⎫ ⎝⎛'+'y x y x ,即得952222='+''+'y y x x ,∴变换作用后得到的曲线C 的方程为952222=++y xy x . 考点:矩阵变换,二阶逆矩阵. 14.(1)5231-⎡⎤⎢⎥-⎣⎦;(2)138-⎡⎤⎢⎥-⎣⎦【解析】试题分析:(1)求逆矩阵,可设1-A =ab cd ⎡⎤⎢⎥⎣⎦,利用1AA E -=,列出关于,,,a b c d 的方程组得解;(2)由已知31AX ⎡⎤=⎢⎥⎣⎦,可得131X A -⎡⎤=⎢⎥⎣⎦,计算即可.试题解析:(1)设1-A =ab cd ⎡⎤⎢⎥⎣⎦,则a b c d ⎡⎤⎢⎥⎣⎦1235-⎡⎤⎢⎥-⎣⎦=325325a b a b c d a d +--⎡⎤⎢⎥+--⎣⎦=1001⎡⎤⎢⎥⎣⎦. ∴3125030251a b a b c d c d +=⎧⎪--=⎪⎨+=⎪⎪--=⎩解得5231a b c d =-⎧⎪=⎪⎨=-⎪⎪=⎩∴1-A =5231-⎡⎤⎢⎥-⎣⎦,(2)523133118X --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦.考点:逆矩阵,矩阵的运算. 15.(1)⎩⎨⎧==21b a ;(2)⎪⎪⎭⎫⎝⎛10241025. 【解析】试题分析:(1)矩阵,是线性代数中的基本概念之一,一个n m ⨯的矩阵就是n m ⨯个数排成m 行n 列的一个数阵.由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型.矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分广泛,,掌握相乘⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡dy cx by ax y x d c b a ,列方程组求得; (2)先根据特征值的定义列出特征多项式,令()0=λf 解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量. 试题解析:(1)由10a b ⎛⎫⎪⎝⎭12⎛⎫ ⎪-⎝⎭14-⎛⎫= ⎪-⎝⎭,得121,24,a b -=-⎧⎨-=-⎩所以1,2.a b =⎧⎨=⎩ (2) 1102M ⎛⎫=⎪⎝⎭.令()1102f λλλ--=-()()120λλ=--=,得11λ=,22λ=. 属于11λ=的一个特征向量110e ⎛⎫= ⎪⎝⎭ ,属于22λ=的一个特征向量211e ⎛⎫= ⎪⎝⎭,所以12a e e =+ .()101012M a M e e =+ 10101122e e λλ=+ 101110252011024⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.考点:矩阵的应用. 16.(1)2a =;(2)⎣⎢⎡⎦⎥⎤5445 【解析】 试题分析:(1)矩阵变换问题,设直线l 上一点M 0(x 0,y 0)在矩阵A 对应的变换作用下变为l '上点M(x ,y), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a 11a ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤ax 0+y 0x 0+ay 0,即 ⎩⎨⎧x =ax 0+y 0,y =x 0+ay 0.,把(,)x y代入直线'l 方程化简得(a -1)x 0-(a -1)y 0+2a =0.又由x 0-y 0+4=0,得1214a a-=,可得2a =;(2)由矩阵的乘法法则可得.试题解析:(1)设直线l 上一点M 0(x 0,y 0)在矩阵A 对应的变换作用下变为l '上点M(x ,y), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a 11a ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤ax 0+y 0x 0+ay 0, 所以⎩⎨⎧x =ax 0+y 0,y =x 0+ay 0.3分代入l '方程得(ax 0+y 0)-(x 0+ay 0)+2a =0, 即(a -1)x 0-(a -1)y 0+2a =0. 因为(x 0,y 0)满足x 0-y 0+4=0,所以2a a -1=4,解得a =2. 6分(2)由A =⎣⎢⎡⎦⎥⎤2112,得A 2=⎣⎢⎡⎦⎥⎤2112⋅⎣⎢⎡⎦⎥⎤2112=⎣⎢⎡⎦⎥⎤5445. 10分 考点:矩阵变换,矩阵运算. 17.x y 2sin 2=. 【解析】试题分析:利用矩阵的乘法公式可得到MN =⎥⎥⎦⎤⎢⎢⎣⎡20021,故在矩阵MN 变换下11122x x x y y y⎡⎤⎡⎡⎤⎤⎢⎥→=⎢⎢⎥⎥⎢⎥⎦⎦⎣⎣⎢⎦⎣即可求得函数解析式 试题解析:MN = ⎥⎦⎤⎢⎣⎡2001⎥⎥⎦⎤⎢⎢⎣⎡10021=⎥⎥⎦⎤⎢⎢⎣⎡200214分 即在矩阵MN 变换下11122x x x y y y ⎡⎤⎡⎡⎤⎤⎢⎥→=⎢⎢⎥⎥⎢⎥⎦⎦⎣⎣⎢⎦⎣ 6分即曲线x y sin =在矩阵MN 变换下的函数解析式为x y 2sin 2= 10分 考点:矩阵的乘法、函数解析式18.(1)1103213M -⎛⎫- ⎪⎪= ⎪-- ⎪⎝⎭;012=++y x 【解析】试题分析:矩阵,是线性代数中的基本概念之一,一个n m ⨯的矩阵就是n m ⨯个数排成m 行n 列的一个数阵.由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型.矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分广泛,,掌握相乘⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡dy cx by ax y x d c b a ,列方程组求得. 试题解析:(1)设点(),P x y 在矩阵M 对应的变换作用下所得的点为(,)P x y ''', 则2,3,x x y y x '=+⎧⎨'=⎩即2130x x y y '⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪'⎝⎭⎝⎭⎝⎭,∴2130M ⎛⎫= ⎪⎝⎭. 1分 又det()3M =-,∴1103213M -⎛⎫- ⎪⎪= ⎪-- ⎪⎝⎭. 3分 (2)设点(),A x y 在矩阵M 对应的变换作用下所得的点为(,)A x y ''', 则1103213x x x M y y y -⎛⎫- ⎪''⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪'' ⎪⎝⎭⎝⎭⎝⎭-- ⎪⎝⎭, 即1,32,3x y y x y ⎧'=-⎪⎪⎨⎪''=--⎪⎩5分∴代入410x y +-=,得241033y x y '⎛⎫''----= ⎪⎝⎭,即变换后的曲线方程为210x y ++=. 7分考点:1、求逆矩阵;2、矩阵的应用.19.2321⎡⎤⎢⎥⎣⎦,11423142⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦【解析】试题分析:由特征值的定义转化已知的特征值与特征向量而求得矩阵A ,由逆矩阵公式或逆矩阵定义求得-1A ;试题解析:由矩阵A 属于特征值-1的一个特征向量为α1=11⎡⎤⎢⎥-⎣⎦可得,21a b ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥-⎣⎦=111⎡⎤-⎢⎥-⎣⎦,即a -b =-1;由矩阵A 属于特征值4的一个特征向量为α2=32⎡⎤⎢⎥⎣⎦,可得21a b ⎡⎤⎢⎥⎣⎦32⎡⎤⎢⎥⎣⎦=342⎡⎤⎢⎥⎣⎦,即3a+2b =12, 解得23a b =⎧⎨=⎩.即A =2321⎡⎤⎢⎥⎣⎦,所以A 逆矩阵A -1是11423142⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦考点:1.矩阵的特征值与特征向量;2.逆矩阵;20.x y 2sin 2= 【解析】试题分析:利用转移法求曲线方程,先设所求曲线F 上任意一点的坐标为(,)x y ,在矩阵MN 对应的变换作用下对应点的坐标为),(y x '',由MN ⎥⎦⎤⎢⎣⎡''y x =⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡''⎥⎥⎦⎤⎢⎢⎣⎡y x y x 20021,解得⎪⎩⎪⎨⎧='='y y x x 212,把⎪⎩⎪⎨⎧='='y y x x 212代入 x y '='sin ,化简得x y 2sin 2=,所以,曲线F 的方程为x y 2sin 2=.试题解析:由题设得11100022020102MN ==⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,设所求曲线F 上任意一点的坐标为(,)x y ,x y sin =上任意一点的坐标为),(y x '',则MN ⎥⎦⎤⎢⎣⎡''y x =⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡''⎥⎥⎦⎤⎢⎢⎣⎡y x y x 20021,解得⎪⎩⎪⎨⎧='='y y x x 212,把⎪⎩⎪⎨⎧='='y y x x 212代入 x y '='sin ,化简得x y 2sin 2=,所以,曲线F 的方程为x y 2sin 2=.考点:矩阵变换。
2019年沪教版高二必修三第九章矩阵与行列初步单元练习题.doc
a b B. a cC. a dd eb db eD .c2019年沪教版高二必修三第九章矩阵与行列初步单元练习题一、单选题x + 5y = 01关于,『的二元一次方程组h + 3y = 4的系数行列式°为()0 5 1 0 1 5 6 0 A B. C.D. 4 32 4 23 5 4x+5y=02关于” 丁的二元一次方程组h + 3y = 4'其中行列式°为()0 51 0 0 5 0 5 AB. C.D. -4 3 2 44 3 -4 3 3.展开式为加-be 的行列式是( )« = («!,a,),Z? =(Z2P ^2),c = (q,c 2),则此线性方程组有无穷多组解的充要条件是() A.Q + /?+C =0 B.a 、b 、c 两两平行C. Q //Z?D. a 、b 、c 方向都相同(_ 345.若线性方程组的增广矩阵是(;::;),解为「[菊,则b 2-b r 的值为( )V — 21A.l B 2C.3D.48 1 66.三阶行列式3 5 7 中,元素9的代数余子式的值为( )4 9 2A.38B -38C.360D.-360(\n7.设A=是一个二阶方程,100个A 的乘积A 100=()2- /丿4.己知关于兀、y 的二元一次线性方程组的增广矩A. 2" AB.3"AC.2100AD.3100A[3加12•增广矩阵为’切1 贝\\m+n13•行列式-2 1 Acosx Asinx 114.用行列式讨论关于x, y的方程x+my = -6(m 一2)x + 3 y +2m = 0的解的情x + 5 v = 08关于」『的二次一次方程组h + 3y = 4'其中行列式°为<)A .05 B.10 C.5 D.5 -4324434-3二、填空题4 19.行列式2§的值为一•log “ X -1 110.设a>0, azl,行列式2 0 1中第3行第2列的元素的代数余子1 2 -3式记作儿函数y = /(x)的反函数经过点(1,2),贝ijx _____________________ .-5 6 711.三阶行列式4 2X 1中元素-5的代数余子式为/(%),则方程f(x) = 0的解为0 3 1一\ X = 1的二元-次方程组的实数解是丄2三、解答题0.5A0 (A>0)按第一列展开得73M n-2M21+M31,COSX记函数f(x) = M n +M2l,且/(X)的最大值是4.⑴求4;(2)将函数y = f(x)的图像向左平移誇个单位,再将所得图像上各点的横坐标扩大为原(JT J \jT \来的2倍,纵坐标不变,得到函数y = g(x)的图像,求g(x)在[-右,在-J上的值域.参考答1. c【解关于x,y的二元一次方程组[:+牛=°的系数行列式D =:[2x + 3y = 0 2C【解x + 5y = 0关升的二元-次方程组]2+尸4的系数行列式:B【解ab,=ac-bd,错误; de bd=ad-be_ ad正确;=ac-bdb c故选C.故选C.ba错误;,=bc-ad,错d c误,故选B.4. B【解析】试题分析:由题意,二元一次线性方程组有无穷多组解等价于方程组中未知数的系数与常数项对应成比例a = (a l,a2),b =(Z^,Z?2),c =(q,c2),所以a、b、c两两平行,答案为B. 考点:二元线性方程组的增广矩阵的涵义.5. C【解析】【分析】由题意得5x|i + gh1 = 10, 2x|i + gh2 = 8,解方程即可得到所求值.【详解】由题意得5x^ + 1^^ = 10, 2><善 + 綁2 = 8,解得加=2, Z>2 = 5,则b2— b T = 3,故选C.【点睛】本题主要考查了线性方程组的解法,以及增广矩阵的概念,考查运算能力,属于中档题.6. B【解析】【分析】元素9为@2,先求得M32,然后由(-1)心M..求得代数余子式.【详解】依题意«32 =9,陆2 = ;=38,所以元素9的代数余子式的值为(-l)3+2M32 =-38. 故选:B.【点睛】本小题主要考查三阶行列式的代数余子式的求法,属于基础题.7. B【解析】【分析】根据矩阵乘法的定义运算。
上海市华东师范大学第二附属中学实验班用高三数学习题详解 第十章 矩阵与行列式初步 含解析
第十章 矩阵与行列式初步10.1 矩阵的定义及其运算1.设矩阵121052312432563241⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪===⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎩⎭,,,A B C 求(1)+A B ,(2)()++A B C ,(3)2-+A B C ,(4)32-B A .解:(1)225588⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,(2)7487129⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,(3)10671106⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,(4)1401016-⎧⎫⎪⎪⎨⎬⎪⎪--⎩⎭.2.设矩阵24241236-⎧⎫⎧⎫==⎨⎬⎨⎬---⎩⎭⎩⎭,A B ,求AB 和BA .解:242416322424001236816361200----⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫=⋅==⋅=⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬------⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭,AB BA . 3.求下列矩阵的乘积:(1)()317156425⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭.(2)212103032141⎧⎫⎧⎫⎪⎪⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭.(3)301601054234215321⎧⎫⎧⎫⎪⎪⎪⎪⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭. 解:(1){}3736.(2)72164⎧⎫⎨⎬⎩⎭.(3)2124222324291311⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭. 4.设矩阵215031400306760213221215624--⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪===-⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪---⎩⎭⎩⎭⎩⎭,,A B C . 求(1)()2-A B C .(2)3+A BC . 解:(1)30335422557383618-⎧⎫⎪⎪--⎨⎬⎪⎪-⎩⎭.(2)188104913634314-⎧⎫⎪⎪⎨⎬⎪⎪--⎩⎭. 5.在一次校运会中,高二年级的三个夺冠热门班级获得前六名的项目数如表1所示,而每一种名次可获得如表2所示相应的积分.表1 名次第一名 第二名 第三名 第四名 第五名 第六名 A 班 5 2 3 4 5 3 B 班187212如果现在要求按前6名的得分统计各个班的团体总分,进而决定各班在年级中的名次,那么,哪个班级最终获胜了呢?(要求用矩阵运算)解:()10645224535012121210399321⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪==+++++=⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭A S ;()106418721210482862292321⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪==+++++=⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭B S ;()10646124366068126698321⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪==+++++=⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭C S ;所以A 班最终获胜了. 6.设矩阵1001⎧⎫=⎨⎬-⎩⎭A ,⎧⎫=⎨⎬⎩⎭x B y ,求AB ;并说出矩阵A 对矩阵B 产生了怎样的变换? 解:⎧⎫=⎨⎬-⎩⎭x AB y ,产生了一个镜像变换,类似于直角坐标系中关于X 轴对称.10.2 矩阵变换求解线性方程组1.写出方程123123121232152232353-+=⎧⎪--=⎪⎨+=⎪⎪-+=⎩x x x x x x x x x x x 的系数矩阵和增广矩阵.解:系数矩阵112151203315-⎧⎫⎪⎪--⎪⎪⎨⎬⎪⎪⎪⎪-⎩⎭,增广矩阵1121151220323153-⎧⎫⎪⎪--⎪⎪⎨⎬⎪⎪⎪⎪-⎩⎭. 2.对下列方阵施以初等变换,使之成为单位方阵: (1)113327133-⎧⎫⎪⎪-⎨⎬⎪⎪-⎩⎭,(2)321111111⎧⎫⎪⎪-⎨⎬⎪⎪--⎩⎭解:(1)()122113113113327101101133133110----⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪-−−−−−−−−→−−−−−−→−−−−−−→⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪--⎩⎭⎩⎭⎩⎭第一行加到第三行第三行乘以第一行乘以加到第二行第三行加到第一行第三行不变第二行不变第二行不变 ()()()211203001001101101100110110110---⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪−−−−−−−−→−−−−−−−−→−−−−−−−−→⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎩⎭三一第二行乘以加到第一行第一行乘以加到第二行第一行乘以加到第行第三行不变第三行不变第行不变001100100010010001⎧⎫⎧⎫⎪⎪⎪⎪−−−−−−−→⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭交换第一行和第二行交换第二行和第三行(2)()()()21115112321321321111111110111001001---⎛⎫- ⎪⎝⎭⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪-−−−−−−−−→-−−−−−−−−→-−−−−−−−→⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪--⎩⎭⎩⎭⎩⎭三第二行乘以加到第一行第一行乘以第二行乘以加到第三行第行乘以加到第一行第三行乘以加到第二行第三行不变第三行乘以 ()()11100100110010001001--⎧⎫⎧⎫⎪⎪-⎪⎪⎪⎪−−−−−−−−→⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎩⎭第二行乘以加到第二行第二行乘以第三行不变3.把矩形23822122121314A -⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭化为行最简形矩阵.解:10322201330000⎧⎫⎪⎪⎪⎪-⎨⎬⎪⎪⎪⎪⎩⎭.4.用矩形的初等变换解下列线性方程组:(1)1212323312234115x x x x x x x +=-⎧⎪+-=⎨⎪-=⎩.(2)12312312321352752x x x x x x x x x ++=⎧⎪-++=-⎨⎪-++=⎩.(3)1212123232328233x x x x x x x +=⎧⎪-=-⎨⎪++=⎩.(4)12312312322313250x x x x x x x x x --=⎧⎪--=⎨⎪--+=⎩.解:(1)8757x y ⎧=⎪⎪⎨⎪=-⎪⎩.(2)无解.(3)212x y z =-⎧⎪=⎨⎪=⎩.(4)503x y z =⎧⎪=⎨⎪=⎩.5.线性方程组21202x z x y y z -=-⎧⎪+=⎨⎪+=⎩的增广矩阵是__________.解:201112000112--⎧⎪⎨⎪⎩. 6.设A 是一个n n ⨯的矩阵()11*k k A AA A A k +⎧=⎪⎨=⋅∈⎪⎩N .若1101A ⎧⎫=⎨⎬⎩⎭,求: (1)2A ,3A .(2)猜测()*n A n ∈N ,并用数学归纳法证明.解:(1)223111213010101A A ⎧⎫⎧⎫⎧⎫===⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,.(2)()*101n n A n N ⎧⎫=∈⎨⎬⎩⎭.10.3 二阶行列式与二元线性方程组1.计算下列二阶行列式的值: (1)35571--.(2)sin cos cos sin αααα--.解:(1)()3553535071-=---=-. (2)22sin cos sin cos cos 2cos sin ααααααα-=-+=-.2.用二阶行列式求解方程组12123234x x x x +=⎧⎨-=-⎩.解:1131135510234324x y D D D ==-==-==-----,,; 1212y xD D x x D D ====,,所以方程组的解为1212x x =⎧⎨=⎩. 3.设a ∈R ,若方程组()()120320a x y x a y ⎧-+=⎪⎨+-=⎪⎩除00x y ==,外,还有其他解,求a 的值.解:120432a a-=⇒-或1-.4.已知方程组()()()11232a x ay a a x a y ⎧-+=⎪∈⎨+++=⎪⎩R ,恰有一解,求x y +的最小值,并求此时a 的范围. 解:()()()1132323a aD a a a a a a -==-+-+=-++, 1113,42322x y a a D a D a a a -==-==-++. 3433a a x y --==--,. ()()()()7203341341343332743aa a a x y a a a a a -⎧<⎪⎪--⎪+=+=-+-=⎨⎪-⎪>⎪⎩≤≤.x y +的最小值为13,此时a 的范围是34a ≤≤.10.4 三阶行列式1.用对角线法计算下列行列式: (1)623251469----.(2)a cb ba c cba. 解:(1)182.(2)3333a b c abc ++-. 2.利用行列式解下列方程组:(1)()()415332x y y y z z⎧+=-⎪⎨+=-⎪⎩.(2)25314510x y x z y z +=⎧⎪-=-⎨⎪-=⎩.(3)123123123323154329547x x x x x x x x x ++=⎧⎪-+=⎨⎪-+=⎩.解:(1)1524513x k y k z k ⎧=-+⎪⎪⎪=-⎨⎪⎪=⎪⎩.(2)000x y z =⎧⎪=⎨⎪=⎩.(3)435215325x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩.3.利用行列式性质,化简并计算下列行列式: (1)682152056341---.(2)111a b cbc a c a b+++.(3)215326121236132623--解:(1)()()6821520566083026060480341--=-⋅-⋅-+⋅+=-.(2)()()()()2211110111ab cbc a c a bb c a a b c ab b ac c a b c b c c b ca b a b cca b++++=-++=+---+++-=+++.(3)2153261212411115311272363942336649108132623-⎛⎫⎛⎫⎛⎫=-⋅---⋅--+⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-.4.展开行列式,证明下列行列式的值为零: (1)000ma nab c nb c m ---.(2)254123131352323143--+. 解:(1)000000ma nabcnb c cnb ma nab mnabc mnabc cc mc m ---=+=+=---. (2)()()2541231313522756411727370323143--+=⋅-⋅-+⋅---⋅+⋅=.5.用行列式性质证明:(1)111111*********2222b c c a a b a b c b c c a a b a b c b c c a a b a b c ++++++=+++(2)()()()222111a a bb a b bc c a cc =---. 证明:(1)11111111111111111222222222222222222222b c c a a b b c a b a b b ca ab bc c a a b b c a b a b b c a a b b c c a a b b c a b a b b c a a b ++++-++++++=+-+=++++++-+++111111111111111122222222222222222232a b c a b a b c b a b b c a b ca b c a b a b c b a b b c a b c a b c a b a b c b a b b c a b c ++++=-++=-+=+=++++.(2)()()()()()()()222222222111a ab b bc b c a c b a c b b c bc ab ac a a b b c c a c c =---+-=--++-=---.6.[]0πθ∈,,且1cos sin 0cos sin 01sin cos θθθθθθ-=,,则θ=__________. 解:1cos sin π00cos sin 12sin cos 1sin 241sin cos θθθθθθθθθθ=-=-=-⇒=,.7.设行列式111222333a b c D a b c a b c =,则111111222222333333223223223c b c a b c c b c a b c c b c a b c ++++++=+++( ). A .D -B .DC .2D D .2D - 解:111111111111111112222222222222222233333333333333333223232232322323c b c a b c c b a b c c b a a b c c b c a b c c b a b c c b a a b c D c b c a b c c b a b c c b a a b c ++++++++=++==--=-+++++,选A.8.如行列式111213212223313233a a a a a a D a a a =,则313233212223111213333222a a a a a a a a a =---( ).A .6D -B .6DC .4D D .4D -解:313233313233111213212223212223212223111213111213313233333222666a a a a a a a a a a a a a a a a a a D a a a a a a a a a =-==---,选B . 9.一位同学对三元一次方程组111122223333a x b y c z d a x b y c z d a x b y c z d++=⎧⎪++=⎨⎪++=⎩(其中()123i i i a b c i =,,,,不全为零)的解的情况进行研究后得到下列结论:结论1:当0D =,且0x y z D D D ===时,方程组有无穷个解; 结论2:当0D =,且x y z D D D ,,都不为零时,方程组有无穷个解; 结论3:当0D =,且0x y z D D D ===时,方程组无解.但是上述结论均不正确.下面给出的方程组可以作为结论1、2和3的反例依次为( ). (1)230231232x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩;(2)2020240x y x y z x y +=⎧⎪++=⎨⎪+=⎩;(3)212032x y x y z x y z +=⎧⎪-++=⎨⎪++=⎩.A .(1)(2)(3)B .(1)(3)(2)C .(2)(1)(3)D .(3)(2)(1)解:带入逐一检验即可,选B .10.在ABC △中,A 、B 、C 所对的边分别为a 、b 、c ,已知2a c ==,且sin sin 0020cos 01C B b c A -=,求ABC △的面积. 解:sin sin 0002sin sin 2cos cos 01C B b c b C B c A A =-=-, ()1π2sin sin 2sin sin cos 0cos 23R C B C B A A A -=⇒==,,2221cos 422b c a A b bc +-==⇒=,1sin 2ABC S bc A ==△10.5 三阶行列的展开与三元齐次线性方程组1.利用代数余子式展开下列三阶行列式并求值,并用对角线法验算:(1)122451314-.(2)584345463---. 解:(1)()12245112121321921263843314=⋅-⋅+⋅-=--=--.(2)()()()584345512308920418162102328450463--=⋅---⋅+-⋅-=---=--. 2.利用行列式按行或按列展开式计算三阶行列式:104014131D =.解:1041201014145493113131=⋅+⋅=--=-. 3.计算下列行列式:(1)837504922---.(2)152552515552515---.(3)64227828362035135-.解:(1)()837504883467104922-=⋅-⋅-⋅-=---.(2)()()()1525525155152251252537525562575200052515--=⋅++⋅--+⋅-=--.(3)6422782836226802035135-=-.4.解下列齐次线性方程组:(1)023204540x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.(2)202020x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.(3)670510504370x y z x y z x y z --=⎧⎪++=⎨⎪--=⎩.解:(1)0x k y z k =-⎧⎪=⎨⎪=⎩.(2)000x y z =⎧⎪=⎨⎪=⎩.(3)x k y k z k =⎧⎪=-⎨⎪=⎩.5.已知1023142x x 的代数余子式120A =,则代数余子式21A =__________.解:12211023124022442x A x x A x x =--=⇒==-=-,.6.1010411a a 大于零的充要条件为__________.解:()()210101011411a a a a =->∈-∞-+∞,,,∪. 7.问λμ,取何值时,齐次线性方程组1231231220020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?解:111101121λμλμ=⇒=或0μ=.9.()2*4n n n ∈N ,≥个正数排成一个n 行n 列的矩阵111212122212.....................n n n n nn a a a a a a A a a a ⎧⎫⎪⎪⎪⎪=⎨⎬⎪⎪⎪⎪⎩⎭,其中()11ik a i n k n ,≤≤≤≤表示该数阵中位于第i 行第k 列的数,已知该数阵每一行的数成等差数列,每一列的数成公比为2的等比数列,且2134820a a ==,. (1)求11a 和ik a . (2)计算行列式11122122a a a a 和im ik jm jka a a a .(3)设()()112132...n n n n n A a a a a --=++++,证明:当n 是3的倍数时,n A n +能被21整除.解:(1)()211122212i i ik k a a a k --===+.(2)1112212223046a a a a ==. ()()()()1111121212120im iki j i j jm jk a a m k k m a a ----=++-++=;(3)()()()()2123......12122221221222n n n n A n n n A n n n -=++⋅+-⋅++⋅=+⋅+⋅+-⋅++⋅,. 两式相减,得()()323321n n n n A n A n =⋅-++=-,.当*3n m m =∈N ,时,()381m n A n +=-. ①1m =时,()38121n -=显然能被21整除; ②假设m k =时,()381k -能被21整除,结论也成立. 由①、②可知,当n 是3的倍数时,n A n +能被21整除.。
高中矩阵练习题及讲解详细解析
高中矩阵练习题及讲解详细解析### 高中矩阵练习题及详细解析#### 练习题一:矩阵的基本运算题目:给定两个2x2矩阵 A 和 B:\[ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B= \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \]求矩阵 A 和 B 的加法和乘法结果。
解析:首先进行矩阵加法,即对应元素相加:\[ A + B = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8\end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \]接下来进行矩阵乘法,根据矩阵乘法的定义:\[ A \times B = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix} \]#### 练习题二:矩阵的行列式和逆矩阵题目:已知矩阵 C:\[ C = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \]求矩阵 C 的行列式和逆矩阵。
解析:首先计算矩阵 C 的行列式,使用公式:\[ \text{det}(C) = 2\cdot3 - 1\cdot4 = 6 - 4 = 2 \]接着计算逆矩阵,使用公式:\[ C^{-1} = \frac{1}{\text{det}(C)} \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1.5 & -0.5 \\ -2 & 1 \end{bmatrix} \]#### 练习题三:矩阵的特征值和特征向量题目:给定矩阵 D:\[ D = \begin{bmatrix} 4 & -1 \\ 1 & 3 \end{bmatrix} \]求矩阵 D 的特征值和对应的特征向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.属于特征值 1
2 的一个特征向量1
2 1
属于特征值 2
3
2 的一个特征向量
1 1
【来源】2016 届江苏省淮安、宿迁、连云港、徐州苏北四市高三上期末数学试卷(带解析) 【解析】
f 1 2 2 5 + 6
试题分析:由特征多项式为
1 4
=0 解得两个特征值 1 2 ,
2
3
.再代入得对应特征方程组,因此属于特征值 1
,求矩阵
A1B
.
28.求使等式
2 3
4 5
2 0
0 1
M
成立的矩阵
M
.
29.已知矩阵
A=
a 1
b2 有一个属于特征值 1 的特征向量 21 .
(Ⅰ) 求矩阵 A;
(Ⅱ)
若矩阵
B=
1 0
11 ,求直线 x y 1 0 先在矩阵 A,再在矩阵 B 的对应变换作
用下的像的方程.
30.已知矩阵
A
x 0
y y
2 2
解得
x=4,y=2,故答案为:2.
考点:二元线性方程组的增广矩阵的含义. 7.3 或-1. 【来源】2013-2014 学年江苏省连云港高二下学期期末数学试卷(选修物理)(带解析) 【解析】
试题分析:矩阵
1 4
1 1
的特征多项式为
1 4
1 1
(
1) 2
4 .令 (
1)2
寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加
入量可以是
;
10.已知
,
,则 y= .
11.若 x2
y2 x
x ,则 x y ______
1 1 y y
试卷第 1 页,总 3 页
12.计算矩阵的乘积
x m
y n
10
01 ______________
13.已知矩阵
答案第 3 页,总 11 页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
试题分析:由矩阵特征多项式得 2 (x 1) (x 5) 0 一个解为 2 ,因此 x 3,再根
据矩阵运算得
M
2
6 5
4 14
1 2
5
2 (x 1) (x 5) 0 x
试题解析:解: 2代入 2
12.
y n
x
m
【来源】2012-2013 学年江苏淮安市涟水县第一中学高一下学期期末考试数学题(带解析) 【解析】
试题分析:根据矩阵乘法法则得,
x m
y 0
n
1
1
0
y n
x
m
。
考点:矩阵乘法法则。 点评:简单题,应用矩阵乘法法则直接计算,属于基础题。
13. 11 32
【来源】2012-2013 学年福建省建瓯二中高二下学期第一次月考数学试题(带解析) 【解析】
,则
x
y
.
6.已知一个关于
x,
y
的二元一次方程组的增广矩阵为
1 0
1 1
2 2
,则
x
y
_______.
7.矩阵
1 4
1 1
的特征值为
.
8.已知变换
M
1 0
0 b
,点
A(2,
1)
在变换
M
下变换为点
A(a,1)
,则
a
b
9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在 10 ml 到 110 ml 之间,用 0.618法
2 的一个特征向量1
2 1
,属于
特征值 2
3
2 的一个特征向量
1 1
.
f 1 2 2 5 + 6
试题解析:矩阵 A 的特征多项式为
1 4
,
由 f 0 ,解得 1 2 , 2 3 .
x 2 y 0, 当 1 2 时,特征方程组为 x 2 y 0,
4
0 ,可
得 3或 1.故应填 3 或-1.
考点:矩阵特征值的定义. 8.1 【来源】2013-2014 学年江苏省阜宁中学高二下学期期中考试理科数学试卷(带解析) 【解析】
1 0 2 a 试题分析:由 0 b 1 1 得 a 2, b 1, a b 1.
考点:矩阵运算
9. 33.6ml
24.已知
N=
0 1
1
0
,计算
N2.
25.已知矩阵
M=
1 3
2 4
,N=
0 1
1
3
.
(1)求矩阵 MN; (2)若点 P 在矩阵 MN 对应的变换作用下得到 Q(0,1),求点 P 的坐标.
26.已知矩阵
A
2 0
0
1
,
B
1 2
1
5
,求矩阵
A1B
27.已知矩阵
A
1 0
0 2
,
B
0 1
2 6
(1)求矩阵 M; (2)求曲线 5x2+8xy+4y2=1 在 M 的作用下的新曲线的方程.
21.求直线
x+y=5
在矩阵
0 1
0 1
对应的变换作用下得到的图形.
22.已知变换 T 是将平面内图形投影到直线 y=2x 上的变换,求它所对应的矩阵.
23.求点
A(2,0)在矩阵
1 0
0 2
对应的变换作用下得到的点的坐标.
已知矩阵
A
1 1
2 4
,求矩阵
A 的特征值和特征向量.
17.已知二阶矩阵
M
有特征值
=3
及对应的一个特征向量
e1
1 1
,并且矩阵
M
对应的
变换将点(-1,2)变换成(9,15),求矩阵 M. 18.(选修 4—2:矩阵与变换)
设
矩
阵
M
a 2
0
1
的一个
特征值为
2
,若
曲线
C
在
矩阵
M
变换下的
方程为
x2 y2 1,求曲线 C 的方程.
的逆矩阵
A1
1 4
1
2
3
4
,求矩阵 A 的特征值.
1 2
试卷第 3 页,总 3 页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
参考答案 1.A 【来源】2012-2013 学年湖南省浏阳一中高一 6 月阶段性考试理科数学试题(带解析) 【解析】
试题分
析:根据
题意,由
于根据新
定义可知
,则符合条件 1 2i 1 i 的复数 z 对应的点在
() A.第四象限
B.第三象限
C.第二象限
D.第一象限
3.矩阵 E
=
1 0
0 1
的特征值为(
A. 1
B. 2
) C. 3
D. 任意实数
1 4. 若行列式 1
2 x
4 x2
0 ,则 x
.
1 3 9
5.若
2 1
0 3
Байду номын сангаас
x y
2
10
试题分析:因为
2 1
0 3
x y
2 10
,所以
2x x
2 3y
10
解得
x y
1,所以 3
x
y
2
考点:矩阵的含义. 6.2 【来源】【百强校】2015-2016 学年上海师大附中高二上期中数学试卷(带解析) 【解析】 试题分析:由二元线性方程组的增广矩阵可得到
二元线性方程组的表达式
试题分析:设
A=
a
c
b
d
,则可知 a c
b d
1 0
12
=
1 0
0 ,可知得到 A= 1
1
0
2 ,同理可 1
知
B=
1 1 0
1
,则可知(AB)-1
=
11
32
考点:矩阵的乘法,逆矩阵 点评:利用矩阵的乘法法则及逆矩阵的求解,即可得到答案.属于基础题。
14.
M
2
6 5
4 14
【来源】2016 届江苏省泰州市高三第一次模拟考试理科数学试卷(带解析) 【解析】
【来源】2013 届湖南省株洲市二中高三第五次月考文科数学试题(带解析) 【解析】 试题分析:根 据 公 式 x1=小 +0.618( 大 -小 ) =10+0.618( 110-10) =71.8, x2=小 +大 -x1=10+110-71.8=48.2, 此 时 差 点 将 区 间 分 成 两 部 分 , 一 部 分 是 [10, 71.8], 另 一 部 分 是 [71.8, 110]将 不 包 含 好 点 的 那 部 分 去 掉 得 存 优 部 分 为 [10, 71.8], 根据公式 x3=小+大-x2=10+71.8-48.2=33.6, 所以第三次实验时葡萄糖的加入量为 33.6mL,
试题分析:解:矩阵
M
的特征多项式
f(λ)=
0
-1
0 -1
=(λ-1)(λ-1)0 所以(λ-1)
(λ-1)=0,可知 λ-=1,故即为所求的特征值,因此选 A.
考点:矩阵的特征值
点评:本题主要考查矩阵的特征值与特征向量等基础知识,考查运算求解能力及函数与方程
思想,属于基础题.
4.2 或 3
【来源】【百强校】2015-2016 学年上海师大附中高二上期中数学试卷(带解析)
a c
b