北师大版初三九年级数学上册6.1 频率与概率(1)频率与概率的关系
6.1频率与概率 课件3(北师大版九年级上册)

2
要“玩”出水平
“配紫色”游戏
小颖为学校联欢会设计了一个“配紫色”游戏:下面是 两个可以自由转动的转盘,每个转盘被分成相等的几个扇 形 . 游戏规则是 :游戏者同时转动两个转盘,如果转盘A转出 了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝 色在一起配成了紫色.
(1)利用树状图或列 表的方法表示游戏者 所有可能出现的结果. (2)游戏者获胜的概 率是多少?
解:随机抛掷两个这样的四面体,所有可能出现的结果如下:
第二次着地的数字
第一次着地的数字
1
2
3
4
1
(1 , 1 )
(1,2)
(1,3)
(1(3 , 1 ) (4 , 1 )
(2,2)
(3,2) (4,2)
(2,3)
(3,3) (4,3)
(2,4)
(3,4) (4,4)
由表格可知总共有16种结果,每种结果出现的可能性相 同,而数字相同的结果有4种:(1,1) (2,2) (3,3) (4, 4),因此着地一面的数字相同概率为4/16=1/4.
解:转动转盘A、B,所有可能出现的结果如下:
转盘A 转盘B
红色
(蓝1,红) (蓝2,红)
白色
(蓝1,白) (蓝2,白)
蓝色1 蓝色2
红 白 A 盘
黄 蓝
蓝
黄色
(黄,红)
(黄,白)
B 盘
又表格可知总共有6种结果,每种结果出现的可能性相 同,其中能配成紫色的结果有两种:(蓝1,红) (蓝2,红), 因此游戏者获胜的概率为2/6=1/3
“配紫色”游戏的变异
用如图所示的转盘进行“配紫色”游戏. 小颖制作了下图,并据此求出游戏者获胜的 概率是1/2.
北师大版-九年级数学-上学期-第六章频率与概率

第六章频率与概率一、知识概括二、要点分析:本章应注重在具体情境中体会概率的意义,加强统计与概率之间的联系。
本章的教学内容具有挑战性,动手收集与呈现数据是一个活动性很强并且充满挑战和乐趣的过程,做概率游戏本身就是对思维的一种挑战,建议在学习本章知识时应积极参与实验过程,亲身动手从事实验,收集实验数据,分析数据,从而获得事件发生的频率,通过频率来估计概率。
并及时地与同伴进行交流,消除一些错误的经验,体会随机现象的特点,学会计算概率的方法。
对于本章的学习应注意以下几点:1. 体会用事件发生的频率来估计事件发生的概率的大小;2. 用列表的方法求概率时要注意每一种可能出现结果的等可能性;3. 对于通过实验的方法估计一个事件发生的概率有难度时,通常也采用模拟实验的方法来估计该事件发生的概率,如学会用计算器产生随机数来模拟实验等。
三、典型例题例1. 袋中有红、黄、白色球各一个,它们除颜色外其余都相同,每次任取一个,又放回抽取两次。
求下列事件的概率。
(1)全红 (2)颜色全同 (3)无白 解:∴=P()全红19P()颜色全同=13P()无白=49说明:颜色全同包括都是红色或都是黄色或都是白色;无白指没有白色球。
例2. 一个密码保险柜的密码由6个数字组成,每个数字都是由0~9这十个数字中的一个,王叔叔忘记了其中最后面的两个数字,那么他一次就能打开保险柜的概率是多少?频率 概率 求简单事件的概率的方法估计概率的方法实验的方法 模拟实验的方法列表树状图估计解:他前面的4个数字都已知道只有最后两个数字忘记了,而最后两个数字每个数字出现的可能结果都有10种情况,那么组成两个数字的可能结果就有100种,因此正好是密码上的最后两个数字的概率是1001。
例3. 袋中有红色、黄色、蓝色、白色球若干个,小刚又放入5个黑球后,小颖通过多次摸球实验后,发现摸到红球、黄球、蓝球、白球及黑球的频率依次为25%,30%,30%,10%,5%,试估计袋中红色球、黄色球、蓝色球及白色球各有多少个?解:小刚放入5个黑球后摸到的黑色球的频率为5%,则可以由此估计出袋中共有球551001005%=个。
北师大版-数学-九年级上册-6.1 频率与概率 备课素材

初中-
数学-
打印版
初中-数学-打印版
第六章 频率与概率 §6.1 频率与概率 §6.1.1 频率与概率
在篮球比赛和足球比赛中,人们往往用抛硬币的方法决定由谁先来开球.那么抛硬币后,正面向上和反面向上的几率有多大呢?相等吗?下面我们来想办法解决这个问题.
首先想到的是实验方法.投掷硬币500次记录下正面向上的次数(如下表所示)
总抛出次数(次)
正面向上次数(次)
正面向上频率(…%)
500
225
?
我们得到的是硬币正面向上的频率的百分比.即硬币正面向上的频率. 其次我们又想到硬币的正、反面都没有什么特殊性,所以在落下时正面向上和反面向上的可能性相等.所以正面向上与反面向上都有2
1
的可能性,也就是说正面向上的概率是___________.
20选5第2003178期
中奖号码 05、12、15、16、17
一等奖 6注 18678元 二等奖 1214注 50元 三等奖 19202注
5元
本期销售额 548538元 出球顺序 05、15、12、16、17。
九年级数学上册 第6章频率与概率全章教案 北师大版

第六章频率与概率6.1频率与概率知识与技能目标:通过实验.理解当实验次数较大时实验频率稳定于理论概率,并据此估计某一事件发生的概率.过程与方法目标:经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.情感态度与价值观目标:1.积极参与数学活动.通过实验提高学生学习数学的兴趣.2.发展学生的辩证思维能力.重点、难点、关键:1.重点:掌握列表法计算简单事件发生的概率。
2.难点:实验中估计某一事件发生的概率。
3.关键:通过实验活动,探索规律。
教学过程:小组活动方法:准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2,从每组牌中各摸出一张,称为一次实验。
合作探究问题:(1)一次实验中两张牌的牌面数字和可能有哪些值?(2)每人做30次实验。
(3)根据数据,制作相应的频数分布直方图。
(4)你认为哪种情况的频率最大?(5)两张牌的牌面数字和等于3的频率是多少?(6)六个同学组成一个小组,分别汇总其中的两人、三人、四人、五人、六人的实验数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌的数字和等于3的频率。
并绘制相应的折线统计图。
议一议(1)在上面的实验中,你发现了什么?增加实验数据后须率渐趋于哪一个稳定值?(2)与其他小组交流所绘制的图表和发现的结论。
做一做(1)将各组的数据集中起来,求出两张牌的牌面数字和等于3的频率,它与你们的估计相近吗?(2)计算两张牌的牌面数字和等于3的概率。
想一想两张牌的牌面数字和等于3的和车与两张牌的牌面过字和等于3的概率有什么关系?结论:当实验次数很大时,两张用的用面数字和等于3的频数而定在相应的概率附近,因此可以通过多次实验,用一个事件发生的频率来估计这一事件发生的概率。
随堂练习:课本随堂练习1、2。
课堂小结:通过本节课学习达到如下要求:(1)活动中促进知识学习,发展学生合作交流的意识和能力。
(2)在实验中体会频率的稳定性,想象实验频率与理论概率之间的关系,形成对杨年的全面理解.(3)借助大量重复实验发现:实验频率并不一定等于理论概率,虽然多次实验的频率逐步稳定于理论概率,但也可能会发现,无论做多少次实验,实验概率仍仅是理论概率的一个近似值,而不能等同于理论概率.作业:课本习题6.16.2投针实验知识与技能目标:能用实验的方法估计一些复杂的随机事件发生的概率.过程与方法目标:经历实验、统计等活动过程,在活动中进一步发展学生的合作交流的意识和能力.情感态度与价值观目标:1.激发学生实事求是的科学态度.2.亲历实验,提高学生学习数学的兴趣.重点、难点、关键:1.重点:掌握实验方法估计一些复杂的随机事件发生的概率。
2014届九年级数学上册6.1《频率与概率》教案(一)北师大版

实验中估计某一事件发生的概率。
教学方法
自主探究法
教具
三角尺
教学内容及过程
பைடு நூலகம்备注
一、分组实验、探索规律
小组活动方法:准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2,从每组牌中各摸出一张,称为一次实验。
合作探究问题:
(1)一次实验中两张牌的牌面数字和可能有哪些值?
(2)每人做30次实验,根据实验结果填写下面表格:
做一做
(1)将各组的数据集中起来,求出两张牌的牌面数字和等于3的频率,它与你们的估计相近吗?
(2)计算两张牌的牌面数字和等于3的概率。
学生小组合作实验,发现规律。
想一想
两张牌的牌面数字和等于3的频率与两张牌的牌面数字和等于3的概率有什么关系?
学生归纳、小结规律。
结论:当实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近,因此可以通过多次实验,用一个事件发生的频率来估计这一事件发生的概率。
实验次数
60
90
120
150
180
两张牌的牌面数字和等于3的频数
两张牌的牌面数字和等于3的频率
学生合作探讨,小组实验,发现规律。
二、巩固深化、拓展思维
议一议
(1)在上面的实验中,你发现了什么?增加实验数据后频率渐趋于哪一个稳定值?
(2)与其他小组交流所绘制的图表和发现的结论。
学生小组合作与全班性合作相结合,积极探究。
三、随堂练习课本随堂练习
四、课堂总结学生自我小结。
五、布置作业课本习题6.1
板书设计:
课后反思:
6.1频率与概率(一)
课题
6.1频率与概率(一)
课型
§6、1频率与概率(第3课时)配紫色游戏[上学期]北师大版
![§6、1频率与概率(第3课时)配紫色游戏[上学期]北师大版](https://img.taocdn.com/s3/m/70d20e38551810a6f42486ab.png)
想一想 真知灼见源于实践
概率的等可能性
事实上,在一次试验时,不 管摸得第一张牌的牌面数字为 几,摸索第二张牌时,摸得牌面 数字为1和平友好的可能性是相 同的.
想一想 真知灼见源于实践
频率的等可能性如何表示
对于前面的摸牌游戏,一次试验中会出现哪些 可能的结果?每种结果出现的可能性相同吗?
会出现三种可能: 牌面数字和为2, 牌面数字和为3, 牌面数字和为4;
我能行
1 一个家庭有两个孩子,从出生的先后 顺序和性别上来分,所有可能出现的情 况( C )
(A)男女 ,男男,女男 (B)男女 ,女男
(C)男女 ,男男,女男,女女, (D)男男,女女
随堂练习 用实际行动来证明
我能行
2.小明是个小马虎,晚上睡觉 时将两双不同的袜子放在床头, 早上起床没看清随便穿了两只 就去上学,问小明正好穿的是 相同的一双袜子的概率是多少?
猜一猜 用表格表示概率
牌面数字和 黑桃
所有可能结果
1
2
3
4
5
红桃
1
2
3 4
5
猜一猜 用表格表示概率
牌面数字和 黑桃
所有可能结果
1
2
3
4
5
红桃
1
2
3
4
5
6
2
3
4
5
6
7
3
45
6
7
8
4
5
6
7
8
9
5
6
7
8
9 10
因为牌面数字和为6的概率最大,所以弟弟
赢的可能性大。
随堂练习P163
是真是假
理性的结论 源于实践操作
北师大版九年级上册第三章概率的进一步认识知识点归纳及例题含答案
北师大版九年级上册第三章概率的进一步认识知识归纳及例题【学习目标】1.进一步认识频率与概率的关系,加深对概率的理解;2.会用列表和画树状图等方法计算简单事件发生的概率;3.能利用重复试验的频率估计随机事件的概率;4.学会运用概率知识解决简单的实际问题. 【知识点梳理】要点一、用树状图或表格求概率 1.树状图当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 知识点诠释:(1)树形图法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同. 2.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 知识点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题; (2)列表法适用于涉及两步试验的随机事件发生的概率. 3.用列举法求概率的一般步骤(1)列举(列表、画树状图)事件所有可能出现的结果,并判断每个结果发生的可能性是否都相等; (2)如果都相等,再确定所有可能出现的结果的个数n 和其中出现所求事件A 的结果个数m ; (3)用公式计算所求事件A 的概率.即P (A )=. 知识点二、用频率估计概率 1.频率与概率的定义频率:在相同条件下重复n 次试验,事件A 发生的次数m 与试验总次数n 的比值.概率:事件A 的频率接近与某个常数,这时就把这个常数叫做事件A 的概率,记作P (A ). 2.频率与概率的关系事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值. 知识点诠释:(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量nm nm重复试验的条件下可以近似地作为这个事件的概率;(2)频率和概率在试验中可以非常接近,但不一定相等;(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的. 3.利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.知识点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.类型一、用树状图或表格求概率1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( )A .B .C .D .【答案】B.【解析】可能性有(正,正),(正,反),(反,正),(反,反)4种,正面都同时向上的占1种,所以概率为. 【总结升华】利用树状图法列出所有的可能,看符合题意的占多少. 举一反三:【变式1】袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是( ) A .B .C .D .【答案】C.【变式2】随机地掷两次骰子,两次掷得的点数相同的概率是( ). A .BC D【答案】 D.2. (2016•大庆)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( ) A .B .C .D .【思路点拨】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.13141234141312143413【答案】C.【解析】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况, ∴取到的是一个红球、一个白球的概率为:=.故选C .【总结升华】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.举一反三:【变式1】从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为( )A .B .C .D . 【答案】D.【变式2】如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_____.【答案】P (停在阴影部分)=. 类型二、频率与概率3.关于频率和概率的关系,下列说法正确的是( ) A. 频率等于概率 B. 当试验次数很大时,频率稳定在概率附近 C. 当试验次数很大时,概率稳定在频率附近 D. 试验得到的频率与概率不可能相等【思路点拨】对于某个确定的事件来说,其发生的概率是固定不变的,而频率是随着试验次数的变化而变化的. 【答案】B.【解析】事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近. 【总结升华】概率是频率的稳定值,而频率是概率的近似值.1918291323类型三、利用频率估计概率4. 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)计算并完成表格:落在“铅笔”的频率(2)请估计,当很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到 1°)【答案与解析】(1) 0.68、0.74、0.68、0.69、0.6825、0.701;(2) 0.70;(3) 由(1)的频率值可以得出P(获得铅笔)=0.70;(4) 0.70×360°=252°.【总结升华】(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.5.(2015春•泰兴市期末)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).【思路点拨】(1)根据频率估计概率,可得到摸到红球的概率为20%,然后利用概率公式计算a的值;(2)根据概率公式分别计算出摸出一个球是红球或白球或蓝球的概率,然后根据概率的大小判断这三个事件发生的可能性的大小.【答案与解析】解:(1)a=4÷20%=20;(2)在一个暗箱里放有20个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,蓝求有6个,所以从中任意摸出一个球,该球是红球的概率=20%;该球是白球的概率==50%;该球是蓝球的概率==30%,所以可能性从小到大排序为:①③②.【总结升华】用频率估计概率,强调“同样条件,大量试验”. 举一反三:【变式1】为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条. 【答案】条 .【变式2】一只箱子里原有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出两个球,用树状图或列表法列举出所有可能并求两次摸出球的都是白球的概率. (2)若从箱子中任意摸出一个球是红球的概率为,则需要再加入几个红球? 【答案】类型四、概率的简单应用6. 把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当张牌面数字相同时,小王胜;当张牌面数字不相同时,小李胜.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.【思路点拨】(1)问属于古典概型;(2)问可以采用列表法或树状图法列出所有的可能,计算小王和小李各自取胜的概率,再去做判断. 【答案与解析】(1)P (抽到牌面数字4)=;(2)游戏规则对双方不公平,理由如下:53一共有9种可能的结果,每种结果发生的可能性相等,∴P(牌面数字相同)=;P(牌面数字不相同)=,∴小李胜的概率要大,游戏不公平.【总结升华】列表法可以不重不漏地列出所有可能的结果.举一反三:【变式】(2015•漳州)在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.【答案】解:(1)根据题意画图如下:∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种,∵P(小明获胜)==;(2)∵P(小明获胜)=,∵P(小东获胜)=1﹣=,∵这个游戏不公平.23。
数学61频率与概率(第1课时)教案(北师大版九年级上)
6.1频率与概率本节通过一个课堂实验活动,让学生逐步计算一个随机事件发生的实验频率,并观察其规律性,从而归纳出实验频率趋近于理论概率这一规律性,同时进一步介绍一种计算概率的方法——列表法.实验频率稳定于理沦概率是本节乃至本章的教学重点及难点之一,第二个重点那么为能运用树状图或列表法计算简单事件发生的概率.因此在教学过程中应注意:(1)注重学生的合作和交流活动,在活动中促进知识的学习,并进一步开展学生的合作交流意识和能力.这是社会迅猛开展的要求.同时.在本节中.要归纳出实验频率稳定于理论概率这一规律,必须借助于大量重复实验,而课堂时间是有限的,靠一个学生完成实验次数自然不可能.因此必须综合多个学生甚至全班学生的实验数据,这就需要全班学生合作交流来完成.(2)注重引导学生积极参加实验活动,在实验中体会频率的稳定性,感受实验频率与理论概率之间的关系,并形成对概率的全面理解.开展学生的初步辩证思维能力,突破实验频率稳定于理论概率这一难点,进一步体会概率是描述随机现象的数学模型.(3)关注学生对知识技能的理解和应用,借助列表和树状图计算简单事件发生的概率.6.1频率与概率(一)教学目标(一)教学知识点通过实验.理解当实验次数较大时实验频率稳定于理论概率,并据此估计某一事件发生的概率.(二)能力训练要求经历实验、统计等活动过程,在活动中进一步开展学生合作交流的意识和能力.(三)情感与价值观要求1.积极参与数学活动.通过实验提高学生学习数学的兴趣.2.开展学生的辩证思维能力.教学重点1.通过实验.理解当实验次数较大时。
实验频率稳定于理论概率.并据此估计某一事件发生的概率. 2.在活动中开展学生的合作交流意识和能力.教学难点教学方法实验——交流合作法.教具准备每组准备两组相同的牌,每组牌都有两张;教学过程Ⅰ.创设问题情境,引入新课[师]我们在七年级时,曾用掷硬币的方法决定小明和小丽谁去看周末的电影:任意掷一枚均匀的硬币.如果正面朝上,小丽去;如果反面朝上,小明去.这样决定对双方公平吗[生]公平!因为我们做过这样的试验,历史上的数学家也做过掷硬币的实验,经过实验发现当次数很大时,任意掷一枚硬币.会出现两种可能的结果:正面朝上、反面朝上. 这两种结果出现的可能性相同.都是21[师]很好!我们再来看一个问题:任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).“6”朝上的概率是多少[生]任意掷一枚均匀的小立方体,所有可能出现的结果有6种:“1”朝上,“2”朝上。