第4章图形的初步认识教案
基本的平面图形-教案

第四章基本平面图形1.线段、射线、直线一、学生起点状况分析本节课是教材第四章的第一课时.学生在小学对本节内容已有初步认识,他们对生活中的线段、射线、直线现象也有一定的经验,但还没有从数学的角度去认识,研究这些几何元素.处于这一阶段的学生思维已具备了一定的符号感,但还不能完全脱离具体事物的支持,仍然是以形象思维为主,所以立足于学生实际,从他们的生活背景和已有经验出发,从现实生活中的具体实物抽象出这些基本的几何元素,通过具体问题的指引,鼓励他们积极参与,观察对比,动手实践,让他们充分列举生活中随处可见的实例来解释数学问题,让学生动手画图,亲自操作,同时借助计算机演示,有利于学生对线段、射线、直线有较深刻的理解和掌握,从而达成教学目标.二、教学任务分析本课时的教学内容安排,首先提供了几个生活中所熟知的情景,激发学生的兴趣,让学生充分感受生活中所蕴含的三种基本的几何图形,并提出定义和表示方法.然后通过辨析线段、射线、直线的联系与区别,让学生充分动手实践,合作交流探寻出直线的性质.最后运用所学知识解释和解决实际问题.本节内容是图形认识中非常重要的内容.从知识上讲,直线、射线、线段是最简单、最基本的图形,是研究复杂图形如三角形、四边形等的基础.从本节开始出现的几何图形的表示方法、几何语言等,也是今后系统学习几何所必需的知识.本节课的学习起着奠基的作用,重点训练学生动手操作及学会用规范的几何语言边实践边叙述的能力,逐步适应几何的学习及研究方法,从思想方法上讲,直线的得出经历了由感性到理性,由具体到抽象的思维过程,同时线段、射线的表示方法是由直线类比得到,渗透了类比的数学思想.根据以上分析,确定本节课的教学目标如下:1.在现实情境中了解线段、射线、直线的描述性定义和表示方法,理解直线的性质,充分感受生活中所蕴含的丰富多彩的几何图形.(知识与技能)2.通过识图、辨析、观察、猜测、验证等数学探究过程,发展几何意识、合情推理和探究意识.(过程与方法)3.在解决问题的过程中发展类比、联想、猜想等思维能力,培养解决问题的积极性和主动性.(情感与态度)三、教学过程设计本节课由六个教学环节组成,它们是:①创设情景,引入新课;②师生互动,学习新知;③巩固练习,深化概念;④动手操作,再探新知;⑤思维拓展,知识升华;⑥归纳小结,布置作业.其具体教学过程与分析如下:第一环节创设情景,引入新课内容:1.老师用多媒体展示一组生活中的图片,有绷紧的琴弦、筷子图、手电光束、城市夜景射灯图,笔直铁轨、延伸的公路等,让学生观察,并提问:你们能从中找出我们所熟知的几何图形吗?(图片来自教材或全景网站)2.学生自由发言.3.教师点明课题.(板书课题:线段、射线、直线)目的:利用生活中熟知的情境,使学生感受到数学与生活的紧密联系,让学生经历从实际问题中抽象几何图形的过程,激发学生的学习热情.效果:在呈现生活中的图片,请学生从中寻找熟悉的几何图形时,由于生活中的素材和几何中抽象的概念有差别,因此学生的回答,有时不完全是教师想要的线段、射线和直线,可能会出现一些其它的词汇,如长方形等,教师要予以肯定.学生回答完毕后,教师可用一些过渡的语言将课题带回,如:“同学们从图片中发现了大量的几何图形,我们今天的研究和学习就从其中最简单的图形——线段、射线、直线开始”.第二环节师生互动,学习新知内容:1.讲明线段、射线、直线的描述性概念,并指明端点.2.学生讨论交流:(1)生活中,有哪些物体可以近似的看作线段、射线、直线?(2)线段、射线、直线的区别和联系.(教师用多媒体演示)3.教师借助图形,讲明线段、射线、直线的表示方法.4.教师利用表格,帮助学生辨析线段、射线、直线之间的区别与联系.目的:经过老师讲解,师生交流,目的在于让学生从数学的角度了解线段、射线、直线的概念,掌握线段、射线、直线的规范性表示方法,并加深对线段、射线、直线的本质性的理解.效果:作为平面几何的第一节课,介绍相关概念和它们的表示方法,对学生而言尤为基础.同样的两个字母A、B,当在前面加上不同的词汇时,它的意义就发生了变化,如线段AB、射线AB、直线AB,借助具体的图形,学生可以获得较好的理解.第三环节巩固练习,深化概念内容:1.请表示出下图中的线段、射线、和直线:2.判断下列说法是否正确: (1)直线、射线、线段都有两个端点;( )(2)直线和射线可以延伸,线段不能延伸; ( )请观察图形作出判断:(3)直线AB 和直线AC 表示的不是同一条直线; ( )(4)线段BC 和线段CB 表示的是同一条线段; ( )(5)射线AC 和射线CA 表示的是同一条射线. ( )3.比一比看谁画的好.已知平面上四个点A 、B 、C 、D ,读下列语句,并画出相应的图形:(1)画线段AC ;(2)画直线AB ;(3)画射线AD 、DC 、CB.目的:本环节设计了一组练习,目的是为了帮助学生理解线段、射线、直线的概念,联系和区别,同时巩固对其表示方法的掌握.题目设置的出发点在于检测本节课所学,所以鼓励学生独立完成、鼓励他们独自接受挑战的信心,期望能达到80—90%.效果:练习的结果表明通过前面环节的学习与辨析,学生掌握情况比较好,突出了本节课的重点.第四环节 动手操作,探索新知内容:1.动手操作:(1)过一点O 可以画几条直线?(2)过两点A 、B 可以画几条直线?2.归纳:(1)经过一点有无数条直线;(2)经过两点有一条直线,并且只有一条直线.教师应鼓励学生自己描述从实际动手操作中得到的结论.3.应用:(1)教师拿出一根木条和几颗钉子和相关工具,要求用尽可能少的钉子把木条固定在木板上,问至少要几颗?A C D(2)建筑工人在砌墙时,为了使每行砖在同一水平线上,经常在两个墙角分别立一根标志杆,在两根标志杆的同一高度处拉一根绳,沿这根绳就可以砌出直的墙.你能说出其中的道理吗?(3)植树时,怎么样才能使所种的树在同一条直线上?目的:让学生自己在动手操作中去真实的感受“两点确定一条直线”的事实,并在探索中发现结论、说出发现,鼓励学生相互协作、猜想验证.几何事实的应用充分的展现了数学与生活的紧密联系,体现了数学的价值.效果:在活动和实践中获得相应的结论,对学生而言是很有意义的学习形式,学生对知识的产生体验深刻,理解深刻,课堂气氛达到高潮.第五环节思维拓展,知识升华内容:1.三条直线两两相交,有多少个交点?四条支线两两相交呢?n条直线呢?2.中国地域辽阔,有很多纵横交错的铁路线.其中某条线路上有重庆—宜昌—武汉—上海四站,已知每两站之间的票价不同(两站之间往返票价相同),请问有多少种票价?目的:本环节为学有余力的学生设置了稍具难度和有创新思维的问题,以满足不同学生在数学发展方面的需要.效果:问题1需要让学生经历从特殊到一般的过程,总结规律;问题2实质上需要数出线段的条数,对于初学几何的七年级学生,需要教师进行恰当、适时的引导和帮助.第六环节归纳小结,布置作业1.请学生说出这节课自己的收获.学生在教师的引导下畅言所学所获所感.2.美图欣赏(书上p136),教师用计算机演示形成过程.3.布置作业.目的:师生交流、归纳小结的目的是让学生学习表述自己的收获,培养及时归纳知识的习惯和归纳总结的能力.美图欣赏让同学们感受基本的线条在构图中的魅力.效果:全部利用“直的”线,可以画出“曲的”效果,让学生兴奋不已,大大激发了学生的学习兴趣.四、教学设计反思《线段、射线、直线》是新世纪教科书(北师大版)七年级上学期的内容,本节课的教学设计力图突出教学中学生的主动探究地位,并展现知识的发生、发展和形成过程,并体现大众数学中“所有人学习有价值的数学、不同的人在数学上获得不同的发展|”的价值理念.从创设学生熟知的生活情境中提出问题,自然的就把实际问题转化为数学问题;教师和学生一起抽象出数学问题后让学生交流讨论生活中基本图形大量存在的事实,让学生体验生活和数学的紧密相接;教师引导对线段、射线、直线作进一步的研究;接着用一组辨析问题让学生加深理解;在让学生反复动手操作去主动获得直线性质,并学习用语言描述出事实结论;小结交流所学所获所感.整节课呈现一种层层推进的节奏,环环相扣的衔接,也让学生经历了“情景导入-建立模型-解释运用与拓广”的数学过程.整节课的设计中既注重了平面几何的起步,立足于学生的知识经验水平,降低起点,让学生从生活实际出发,去认识存在我们生活中的简单几何图形,让学生在简单的又不可替代的动手操作中去发现几何事实,并试着说出结论等等是照顾到学生现有的知识水平,以及平面几何刚刚起步的基础性工作,做好中小学的衔接教育.整节课的设计中同时又注重了思维水平的发展与提升,比如练习中规律性的问题探究,并注重学生的数学语言的强化表达等等.反思整节课的设计亮点,第一,不拘泥于教材,广泛挖掘生活中的背景素材,由“生活原型—抽象几何图形—操作探究—解释运用”这条主线贯穿始终,过渡自然,衔接自如流畅.第二,问题设计合理,易调动学生.比如让学生广泛挖掘生活中蕴含基本图形的例子、让学生动手操作“钉木条”,让学生交流运用性质的例子,以及练习题和反馈题组的设计.学生都能主动积极参与,自觉应用数学知识解决问题.第三,在设计中关注学生的人文价值和情感态度.强调知识的主动获得,鼓励学生的积极参与与探究信心的扶植,照顾到学生的年龄特点和已有经验水平.2. 比较线段的长短一、学生起点状况分析本节课是教材第四章的第二节,是平面图形的重要的基础知识。
七年级数学上册 第四章 几何图形初步复习教案 (新版)新人教版

几何图形初步一、教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.二、教学重点与难点重点:理解本章的知识结构,掌握本章的全部定理和公理;难点:理解本章的数学思想方法;三、教学方法启发式教学,结合多媒体和学案实施教学.四、学法指导引导——活动——讨论五、教学准备教师:多媒体课件、学案等;六、教学过程1、温故知新【多媒体展示】回顾课本,思考以下问题:1.本章学习了哪些内容?2.它们之间的联系是什么?请列出知识结构图.学生独立完成,最后交流知识结构图,点明知识要点和其中联系。
2、问题探究【多媒体展示】问题1:在本章中,从哪些方面反映了立体图形与平面图形的关系?学生小组讨论、交流,得到结论,教师补充:展开图、三视图、运动问题等。
3、典例分析【多媒体展示】例1:在下列图形中(每个小四边形皆为相同的正方形),可以是一个正方体表面展开图的是()例2:如图,从正面看A、B、C、D四个立体图形,可以得到a、b、c、d四个平面图形,把上下两行相对应的立体图形与平面图形用线连接起来.学生自主作答,教师个别提问,检查知识掌握情况。
4、问题探究【多媒体展示】问题2:与以前相比,你对直线、射线、线段和角有什么新的认识?在解决有关线段和角的问题中,常用到哪些数学思想方法?学生小组讨论、交流,得到结论,教师补充:分类讨论,转化等思想.5、典例分析【多媒体展示】例3:点A,B,C 在同一条直线上,AB=3 cm,BC=1 cm.求AC的长.例4:已知∠α和∠β互为补角,并且∠β的一半比∠α小30°,求∠α、∠β.学生自主作答,教师个别提问,检查知识掌握情况。
6、能力拓展【多媒体展示】例:如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN,求∠NEM的度数.学生小组内交流解答过程,教师做好指导工作.7、收获小结:1.本节课学到哪些知识?2.本节课有哪些疑惑?8、布置作业:课本练习题;七、板书设计:几何图形初步1.几何图形:(1)分类:立体图形和平面图形;(2)展开图和三视图;2.直线、射线和线段:(1)表示方法:(2)性质:3.角:(1)定义:(2)表示方法:(3)度量:4.余角和补角:(1)定义;(2)性质;。
教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形

教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形《多姿多彩——几何图形》教案设计【教材分析】多姿多彩的图形中的几何图形,是人教版教材《数学》七年级上册第四章第一节的第一课时。
所含内容在小学阶段学生已有了感性认识,本课时以现实背景为素材,让学生亲自经历将实际问题抽象成数学模型的过程,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对空间图形的认识和感受。
本节课的知识是进一步学习平面几何以及立体几何的基础,具有承上启下的作用。
本节课是学习空间与图形的第一课时需要在情感上激发学生兴趣,培养学生学习数学的热情。
【教学目标】知识与技能:通过观察生活中的大量图片或实物,能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能认识一些简单几何体,能用语言描述它们的基本特性,并能对它们进行简单的分类;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.过程与方法:经历探索平面图形与立体图形之间的关系,发展空间观念,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对几何图形的感性认识;培养动手操作能力,培养观察、抽象、归纳、概括、判断等思维能力以及分类的数学思想。
情感态度与价值观:经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩;激发对学习空间与图形的兴趣;通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识。
【教学重点】简单几何体的识别与分类。
【教学难点】从具体实物中抽象出几何图形及常见几何体的分类。
【教学关键】从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键。
【教学方法】情境教学、实践探究、多媒体演示相结合。
【教学资源】多媒体辅助教学;圆柱、圆锥、正方体、长方体、棱柱、棱锥等简单几何体的实物和模型;三角形、正方形、长方形、正六边形纸片;牙签、胶泥等。
【教学过程】(一)创设情景,设疑导入师:同学们,我们的世界是五彩缤纷、绚丽多彩的。
新人教版初中数学七年级上册《第四章几何图形初步:4.3角》公开课教案_2

四、教学方法及教学思路
本人在农村中学任教,面对的都是乡土气息浓厚的农村孩子。由于诸多方面的原因,造成这样的现状:绝大多数学生基础薄弱,没有学习习惯,学习品质、竞争意识差,更没有学习中知难而上的信心和毅力。所以面对这样的教育主体,我们在激发学生的学习兴趣、引导探究发现的同时,一定要注意学生的听课状态,降低难度,干启不发时,直接入主题。同时不能过分强调和主张学生课后的自主学习,因为绝大多数学生没有自主学习的习惯和能力。所以很多技能需在课上培养、训练和提高。我这里的教学,接近“一对一”的教,“手把手”的学。很多问题课前就有预见,准备好解决策略和途径。
中学数学(角)
一、教案背景
课时:1课时
二、教学课题
1.教养方面:
通过系统学习,进一步认识角。
通过实物和具体模型,了解从物体外形抽象出来的平面图形。
初步认识图形,培养学生对学习图形与几何的兴趣,建立数学来源于生产、生活,服务于生产、生活的理念。
2.教育方面:
通过模型理解角的两种描述方法。
经历角的画法,进一步理解、认识角,提高画图技能,增强对图形的理解,为今后几何的学习做好准备。
能准确找出和表示简单至复杂图形中的角。
通过强化、重复训练,夯实角的认识,提高学习几何的信心。
三、教材分析
人教版七年级数学(上)《第四章 图形认识初步》第三部分的第一节 《角》的第一课时。
本章是图形与几何的起始章,是图形学习的第三学段。在本章,要进一步丰富学生对几何图形的感性认识,还要引导学生逐步认识一些基本图形的特征和性质。但这并不意味着要用严格的逻辑推理方式来展开学习,还是要强调在实际背景中直观理解图形的概念和特征,经历探索图形性质的过程。
大悟县第六中学七年级数学上册第4章图形的认识4.1几何图形教案新版湘教版

第4章图形的认识4.1 几何图形【知识与技能】1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形.2.能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.【过程与方法】经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力.【情感态度】积极参与教学活动,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感.【教学重点】从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点.【教学难点】立体图形与平面图形之间的转化是难点.一、情景导入,初步认知1.观察下列图片,你能抽象出哪些图形?2.观察教师四周,看看有哪些你熟悉的图形?【教学说明】通过图片展示,激发学生的学习兴趣,引领学生步入丰富的几何世界.二、思考探究,获取新知1.前面同学们列举出了一些我们常见的图形,这些图形都是什么图形呢?【归纳结论】从物体外形中抽象出来的图形称为几何图形.各部分不在同一平面内的几何图形叫做立体图形.2.观察下面的图形.这些图形与下面的哪个立体图形对应?【教学说明】能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富对几何形状的感性认识.3.想一想:长方形、正方形、三角形、圆等图形有什么共同特点呢?这些图形是什么图形呢?【归纳结论】各部分都在同一平面内的几何图形是平面图形.4.观察下列交通标志,这些标志中含有哪些平面图形呢?虽然立体图形和平面图形是两类不同的几何图形,但它们是相互联系的,立体图形中某些部分是平面图形,如正方体的每个侧面都是正方形.从不同方向观察立体图形,往往会看到不同形状的平面图形.如图,整体上看,我们看到的是长方体;看不同侧面,看到的是长方形或正方形;从长方形或正方形中,我们还可以看到点、线段.有些立体图形是由一些平面图形围成的,将它们的表面适当断开,可以展开成平面图形(如图所示).由此,我们可以发现虽然立体图形与平面图形是两类不同的几何图形,但它们是相互联系的.立体图形中某些部分是平面图形.5.观察下列长方体.(1)从不同方向看,然后说出得到的各种平面图形.(2)你能从这个立体图形中得到哪些平面图形.【教学说明】教师启发,引导,帮助学生完成.6.操作:将一个正方体沿着它的棱剪开,但不剪断,你能得到一个什么形状的平面图形.请相互交流.【归纳结论】有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,展开后是一个平面图形.【教学说明】培养了学生参与意识和合作交流的意识.三、运用新知,深化理解1.下列各组图形都是平面图形的一组是(C)A.三角形、圆、球、圆锥B.线段、角、梯形、长方体C.角、三角形、四边形、圆D.直线、圆柱、长方形、圆2.如图的圆锥是下面(B)平面图形绕轴旋转一周得到的.3.生活中有许多立体图形,想象下列物体分别与哪些图形相类似?(1)易拉罐;(2)铅笔盒;(3)一堆沙子;(4)足球;(5)螺母;(6)金字塔.答案:(1)圆柱(2)长方体(3)圆锥(4)球体(5)棱柱(6)棱锥4.如下图所示,把下面几何体的标号分别写在相对应的括号里面.长方体:{ };棱柱体:{ };圆柱体:{ };球体:{ };圆锥体:{ }.答案:长方体:{②⑤⑧};棱柱体:{②④⑤⑧};圆柱体:{①③⑥};球体:{⑦⑨};圆锥体:{⑩}.【教学说明】巩固提高.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题4.1”中第1、2、4题.通过本节课的学习使我感触很深,我认真的备课,制作课件,设计教学活动,使同学们在轻松愉快的氛围下学习,学生反应热烈,学习效果很好.不足之处是自己的语言不够简练.第4章直线与角【知识与技能】对本章的内容进行回顾和总结,熟练掌握线段、角的概念和表示方法,能运用线段、角的相关性质解决问题.【过程与方法】釆用讨论法、练习法、尝试指导法,反思线段、角的概念、性质和基本事实,培养学生应用数学知识的意识,训练和增强学生运用新知识解决实际问题的能力.【情感态度】通过教师、学生双边的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.通过本章知识的学习,进一步发展学生的几何直观能力和合情推理的能力.【教学重点】回顾本章知识,构建知识体系.【教学难点】利用性质求线段与角.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识框图,使学生系统了解本章知识及它们之间的关系.教学时,边回顾边建立知识框图.二、释疑解惑,加深理解1.对于本章概念的理解:(1)对于线段、射线和直线概念的理解可以从端点的个数,是否能测量和表示方法对比进行记忆.(2)角从静态可以看成是由两条有共同端点的射线组成的图形,从动态可以看成是一条射线绕端点旋转所成的图形.2.性质的说明:(1)线段的中点和角的平分线:是说明线段与线段、角与角的关系的依据.(2)两个基本事实:两点确定一条直线,连接两点的所有线中线段最短.在实际生活中的应用很广泛.(3)补(余)角的性质:同角(或等角)的补角相等,同角(或等角)的余角相等,是说明角相等的依据.3.关于本章的数学方法:本章初步认识图形,使学生经历把事物体抽象出几何图形的过程,体验了数学的抽象,渗透了逻辑的思想,发展了推理能力,知道了归纳方法的作用.三、典例精析,复习新知例1下列说法中,正确的是()A.画出A、B两点间的距离B.连接两点之间的直线的长度叫做这两点之间的距离C.线段的大小关系与它们的长度的大小关系是一致的D.若AC=BC,则点C必定是线段AB的中点【分析】A项错在误将两点间的距离看成是线段本身,距离是指线段的长度而不是线段本身,所以是画不出来的;D项忽略线段的中点必须首先在线段上这一条件.如图所示,当AC=BC时,C却不是线段AB的中点.【答案】C例2如图所示,以O点为端点的5条射线OA,OB,OC,OD,OE一共组成______个角.【分析】每条射线都能与其它4条射线组成4个角,共能组成4×5=20个角,其中有12是重复的,所以这5条射线能组成10个角.【答案】10【点评】确定有公共端点的射线所组成角的个数,与线段上的点分线段的条数的问题解法类似.例3如图所示,线段AD=10cm,点B,C都是线段AD上的点,且AC=7 cm,BD=4 cm,若E,F分别是AB,CD的中点,求线段E,F.【点评】结合图形,利用线段的中点解决问题.例4如图所示,已知OC是∠AOD的平分线,OE是∠BOD的平分线.(1)请你猜想∠COE与∠AOB的关系并说明道理;(2)当∠AOB是平角时,请你判断∠DOE与∠DOC关系.【分析】观察图形,结合图形猜测出∠COE与∠AOB的关系,利用角平分线的性质推理.【点评】利用第(1)题的结论来说明第(2)题.【教学说明】这一环节是本节课重点所在,这4个例题层次递进,对本章重要知识点进行有效复习和巩固,强化学生对本章重点知识理解与运用.四、复习训练,巩固提高1.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么六条直线最多有()交点A.21个B.18个C.15个D.10个2.已知∠A=65°,则∠A的补角等于()A.125°B.105°C.115°D.95°3.在8:30时,时钟上的时针和分针之间的夹角为()A.85°B.75°C.70°D.60°4.线段AB=14cm,C是AB上一点,且AC=9cm,O为AB中点,求线段OC的长度.5.如下图,从直线AB上任一点引一条射线,已知OD平分∠BOC,若∠EOD=90°,那么OE 一定是∠AOC的平分线,请说明理由.【答案】1.C 2.C 3.B 4.2 cm5.解:∵AB是直线,∴∠1+∠2+∠3+∠4=180°.∵OD平分∠BOC,∴∠3=∠4∵∠EOD=∠2+∠3=90°∴∠1+∠4=180°-∠EOD=90°=∠2+∠3.∴∠1=∠2.即OE平分∠AOC.五、师生互动,课堂小结本堂课你能系统地回顾本章所学有关线与角的知识吗?你会求线段或角吗?你还有哪些困惑与疑问?【教学说明】教师引导学生回顾本章知识,尽可能让学生自主交流与反思,对于学生的困惑与疑问,教师应予以补充和点评.1.布置作业:从教材第158、159页“复习题”中选取.2.完成同步练习册中本课时的练习.本节复习是首先通过知识框图整体把握,引导学生对本章知识点梳理,构建本章知识体系,通过典型例题探究加深学生对主要思想方法的理解,掌握常用解题方法.在教学中,关注学生是否认真思考,相互交流与合作,以及学生对问题的理解情况,使学生在反思和交流的基础上构建合理的知识体系.通过典型例题强化图形中的相关运算,训练学生的计算能力和分析解决问题的能力,从而提高他们应用数学的意识.第六章实数6.1 平方根课时2 用计算器求一个正数的算术平方根1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.理解算术平方根的概念.根据算术平方根的概念正确求出非负数的算术平方根.教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.教师归纳出新定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a,读作“根号a”,a叫作被开方数.规定:0的算术平方根是0.例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时, 2a =0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a 结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?从教材“习题6.1”中选取.。
2014年 七年级数学上册同步教案--图形认识+同步练习16页

知识点: 三视图: 、 、 直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。 直线的基本性质:经过两点有一条直线,并且只有一条直线。简述为, 。 直线的特征:① ; ② ; ③ ; ④ 。 射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线” ;② 用一个小写字母表示。 射线的性质:① ; ② ; ③ ; ④ 。 线段: 。 线段的特点: 。 线段的表示方法:①用两个端点的大写字母表示;②用一个小写字母表示。 线段的基本性质:两点的所有连线中,线段最短。简称, 。 两点的距离: 叫做这两点的距离。 线段的中点: ,叫做线段的中点。 线段大小的比较方法: (1) ; (2) ; (3) 。 若线段上有 n 个点(含两个端点) ,则共有 条线段。 若线段内有 n 个点(不含端点) ,则共有 条线段。
6.天河宾馆在重新装修后,准备在大厅的主楼道上铺设某种红色地毯,已知这种地毯每平方米售价 30 元,主楼道宽 2 米,其侧面如图所示。问购买这种地毯至少需要 元。
7.线段 AB=9cm,C 是直线 AB 上的一点,BC=4cm,则 AC=______ 8.如图,点 B、C 在线段 AD 上,M 是 AB 的中点,N 是 CD 的中点,若 MN=a,BC=b,则 AD 的长是 9.如图是一些小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请画出 这个几何体的主视图和左视图: 主视图 左视图
15.已知线段 AB,延长线段 AB 到 C,使 BC=2AB,反向延长 AB 到 D,使 AD=AB,则 AC=___AB;DC=__AC。 16.有一个正方体,在它的各个面上分别涂着红、黄、蓝、绿、紫、黑六种颜色,小明、小颖和小刚三 位同学从三个不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的颜色对面各是 什么颜色?
2022年人教版七年级数学上册第四章几何图形初步教案 直线、射线、线段(第1课时)

第四章几何图形初步4.2 直线、射线、线段第1课时一、教学目标【知识与技能】1.知道直线的两个基本特征,会用两种方法表示一条直线.2.知道点和直线的两种位置关系,会按照语句画出点和直线位置关系的图形.3.知道两条直线相交及交点的意义,会按照语句画出直线相交的图形.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度与价值观】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】射线,线段的概念及表示法.【教学难点】射线的表示法和直线,射线,线段之间的区别与联系.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规、铅笔。
六、教学过程(一)导入新课同学们,你们注意过吗,建筑工人在砌墙时经常会在墙的两头分别固定两根木桩,然后在木桩之间拉一条细绳,沿着细绳砌砖.这样做有什么道理呢?(出示课件2)(二)探索新知1.师生互动,探究直线、线段、射线的概念教师问1:过一点O可以画几条直线?过两点A,B可以画几条直线?(出示课件4)学生回答:过一点可以画无数条直线;过两点只能画一条直线.教师讲解:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线.教师问2:如果你想将一根木条固定在墙上并使其不能转动,至少需要几个钉子?你知道这样做的依据是什么吗?学生回答:至少需要两个钉子;依据;两点确定一条直线。
教师问3:如图,有哪些方法可以表示下列直线?(出示课件9)师生共同探究:我们可以用一条直线上的两点来表示这条直线.譬如,直线上一点是点C,直线上另一点是点E,这条直线可以记作直线CE或者直线EC.需要强调的是,点必须用大写字母表示,所以这里的A、B都是大写字母.教师问4:表示直线还有第二种方法.如何表示呢?师生共同解答如下:在这条直线的旁边写上小写字母m,这条直线可以记作直线m。
《认识图形》优秀教案(通用8篇)

《认识图形》优秀教案(通用8篇)《认识图形》优秀教案篇1教学目标①通过观测、操作,使同学初步认识长方体、正方体、圆柱体、球。
初步感知其特征。
会辨别这几种外形的物体和图形。
②培育同学动手操作和观测事物的技能,初步建立空间观念。
③通过数学活动,培育同学用数学进行沟通,合作探究和创新意识。
④使同学感受到数学与现实生活的亲密联系,渗透美育和德育教育。
教学重难点:学会辩认和区分长方体、正方体、圆柱和球。
教学预备:多媒体课件,外形为长方体、正方体。
圆柱和球的生活用具,学习用具和玩具、图形卡片。
教学过程一、设景与激趣课程类型:综合探究教学目标:1、了解图形标识、常识。
2、通过绘画、表演等多种形式了解图形标识、常识,懂得要遵守公共规章。
3、要留意安全,遵守交通规章,做一名文明的小市民。
教具预备:课件:常见的图形标识图片教学过程一、组织教学,做好课前预备检查同学学具预备状况,稳定同学心情。
二、导入新课1、说一说:在公路上、杂志里、电视里你都见到过哪些图形标识。
2、同学们看几幅交通标识图。
提问:谁能说出这些标识在哪里见过?它们是什么意思?3、出更多的图形标识——斑马线、禁止鸣喇叭、单行道等要求:让同学自由选择画其中的图形标识。
4、每一个同学找一个伙伴,协作他画的标识,表演其含义。
剪一剪:让同学们剪下画好的图形标识相互辨别是什么标记?活动演一演:谁能当交警〔1〕扮演交警的可以戴上大盖帽。
〔2〕也可以利用手中的标识进行表演。
三、作业要求画一组或一幅生活中常见的标识。
四、同学作业同学作业,老师巡回指导。
速度快的同学画完标识之后可以相互沟通自己画完的交通标识。
课堂延展:可以画想象中的汽车,可以自己设计汽车。
五、课堂小结通过这节课的学习,同学们认识、了解了各种图形标识、常识,今后同学们肯定要遵守公共规章,遵守社会公德,做一名文明的小市民。
《认识图形》优秀教案篇2教学目标1、通过操作活动,使同学体会所学平面图形的特征,并能用自己的语言描述长方形、正方形边的特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章图形的初步认识课程内容标准1.直观认识立体图形、视图和展开图,使学生了解研究立体图形的方法,同时也为平面图形的引入做准备.2.通过观察、操作,直观认识平面图形,使学生了解图形的分割和组合,在此基础上了解点和线,并探索点和线的性质.3.正确理解两点间距离的含义.4.逐步掌握点、线段、直线、射线的表示方法.5.结合图形认识线段间的数量关系,学会比较线段的大小,理解“线段的和差也是线段”这一事实.6.理解角的两种定义,尤其是旋转定义.使学生明确“角”的本质特征.7.结合图形认识角与角之间的数量关系,学会比较角的大小,理解角的和差,理解角平分线的概念.8.学会用圆规和直尺准确地画出一条线段、一个角,使其分别等于已知线段与已知角.9.认识互为余角和补角的概念,认识对顶角的概念。
理解互为余角和互为补角主要反映了角的数量关系,而对顶角主要反映角的一种位置关系.10.理解垂线的概念,会用三角尺、量角器过一点画一条直线的垂线. 理解点到直线的距离的概念,并会度量点到直线的距离.11.了解同位角、内错角和同旁内角的概念.12.理解平行线的概念,会用三角尺和直尺过已知直线外一点画这条已知直线的平行线.13.认识平行线的特征,会识别实际生活与数学图形中的平行线.会根据图形中的已知条件,通过简单说理,得出欲求结果.单元教学思路本章的特点是强调直观和操作,在观察中学会分析、在操作中体验变换.教材的编排以生活中的物体--立体图形--面--点线为序,淡化概念识记,强调图形的区分. 教材给学生提供了大量的丰富的空间、平面图形,让学生通过直观感知、操作确认等实践活动,丰富对图形的认识和感受.教材注意了变化思想和数学说理的渗透,让学生初步体验一些变换思想、初步学会数学说理;.本章中涉及的概念,一般都结合具体图形,给出描述性的说法,让学生根据图形理解、认识,学会初步的运用;淡化概念的纯文字表述,只要求会识别.如:棱(圆)柱、棱(圆)锥;角;对顶角;同位角、内错角、同旁内角等;视图与展开图仅限于简单的常见的立体图形;注意图形与几何语言的转换,重视规范几何语言的训练.如:“直线AB、CD相交于点O”等;注意渗透变换与说理.“图形的初步认识”一章,其思路是体、面、点与线,首先结合学生所看到的、接触到的空间物体,认识简单的立体图形,然后运用视图和展开图描述立体图形,进入平面图形,最后是组成图形的基本元素—点和线. 这一部分几节课时的教学中,务必把握程度与要求,如对视图和展开图的要求是,认识到立体图形可以用平面图形加以描述,知道是一些什么样的图形,涉及的也是较为简单的立体图形,或几个长方体的组合. 教学中可以充分利用多媒体技术,可以让学生参与探索、合作交流。
更为明确地体现教材中有关几何内容的整体设想,将初中阶段通过直观感知、操作确认的合情推理,和数学中的演绎推理两者更好地有机结合。
这一册教材引入推理符号和简单格式,让学生对于演绎推理有所体会,初步养成言必有据的良好习惯,在后面的各册中逐渐加强。
让合情推理和演绎推理这两种思维方式真正做到互相渗透,互相补充。
课时分配本章的教学时间为17课时,分配如下:§4.1 生活中的立体图形------------1课时§4.2 画立体图形------------------2课时§4.3 立体图形的展开图------------1课时§4.4 平面图形--------------------1课时§4.5 最基本的图形—点和线---------2课时§4.6 角--------------------------3课时§4.7 相交线----------------------2课时§4.8 平行线----------------------3课时复习----------------------------2课时第1课时教学内容:§4.1 生活中的立体图形教学目的:1、通过学习能认识常见的图形,并能对常见的图形进行分类、分辨;2、能够对实际中的物体进行抽象化为图形;3、能了解多面体中的欧拉公式。
教学分析:重点:基本图形的认识与分辨;难点:欧拉公式的应用与认识。
教具准备:每个小组准备相关的立体图形及实际生活物品。
教学设想:强调几何学与实际生活的理论联系实际。
教学后记第2课时教学内容:§4.2 画立体图形——由立体图形到视图教学目的:1、通过学习使学生能知道物体是有多个方面,从不同方面来观察物体是不一样的;2、能画出简单立体图形的三视图。
教学分析:重点:如何确定物体的三视图;难点:转化思想的培养。
教具准备:各小组与老师都准备一些简单的立体图形。
教学设想:以学生的独立思考,老师的启发为主。
教学后记第3课时教学内容:§4.2 画立体图形——由视图到立体图形教学目的:1、通过学习使学生继续感受数学的转化思想,认识事物的不一定性,使学生能充分分析不同的情况;2、使学生能利用三视图来描述出实际的立体图形。
教学分析:重点:如何概括三视图画出正确的立体图;难点:如何认识到实际立体图形的不唯一性。
教具准备:准备一些常见的立体图形及一些可组合的正方体。
教学设想:充分运用启发性教学,培养学生的发散性思维。
教学后记第4课时教学内容:§4.3 立体图形的展开图——教学目的:1、让学生通过直观感知、操作等实践活动,丰富立体图形的认知和感受,进一步认识立体图形与平面图形的关系;2、会判断所给定的平面图形能否折成立体图形(多面体)3、给出一些多面体的展开图,能说出相应多面体的名称;4、会判断给定的平面图形是否某多面体的展开图,并会把一个简单的多面体展开成平面图形;5、培养学生的观察、实践操作能力和空间想象能力。
教学分析:重点:根据多面体研究其展开图和根据展开图判别多面体;难点:研究一个简单多面体的展开图。
教学设想:启发式地教学,促进学生的实践能力。
教学后记第5课时教学内容:§4.4 平面图形教学目的:1、通过学习能使学生认识形形色色的平面图形;2、使学生能理解多边形可由三角形组合而成,并认识到点、线、面、体之间的关系。
教学分析:重点:认识到多边形是由三角组合而成的。
教具准备:各小组各准备一些平面图形。
教学设想:主要以“展示”结合实际的讲授法。
教学过程:教学后记第6课时教学内容:§4.5 最基本的图形——点和线教学目的:1、使学生掌握直线、射线、线段的区别与联系,并能初步三种线的一些性质;2、能从线段长度的角度来分析两点间的距离;3、能初步理解直线与线段的两个重要性质(公理)。
教学分析:重点:三种线的性质特点、直线与线段的公理;难点:对几何图形的本质特征的正确认识。
教具准备:要求学生准备好的一条绳子和一条硬纸条。
教学设想:运用层层推进,采取列表比较的方法进行学习。
教学过程:教学后记第7课时教学内容:§4.5 最基本的图形——点与线——线段的长短比较教学目的:1、使学生掌握分别用测量与重叠来比较线段大小的方法;2、使学生充分理解两条线段大小比较所隐含的意义,能从“量”与“形”上进行转化;3、线段中点的性质及其简单运算。
教学分析:重点:线段大小比较的方法及其原理;难点:如何引导学生从“数量”的角度,引入到从“形”的角度来分析两条线段的大小比较。
教具准备:每个学生与老师各准备两条相等的硬纸皮。
教学设想:以学生的讨论与自我动手为主。
教学过程:教学后记第8课时教学内容:§4.6 角教学目的:1、使学生认识到角的美感及角的有关知识;2、掌握有关角的单位的换算;3、掌握有关方向角的初步知识。
教学分析:重点:角的单位的换算及角的表示法;难点:角的定义的理解。
教具准备:每位同学各准备一个变换度数的角,量角器教学设想:以实际生活中的相关实例来启发学生的思维并结合学生的动手操作。
教学后记第9课时教学内容:§4.6 角的比较和运算教学目的:1、使学生掌握分别用测量与重叠来比较角大小的方法;2、能学生充分理解两个角大小比较所隐含的意义,能从“量”与“形”上进行转化;3、角平分线的性质及其简单运算。
教学分析:重点:运用叠合法来比较两个角的大小;难点:如何引导学生从“数量”的角度,引入到从“形”的角度来分析两个角的大小比较。
教具准备:师生各准备一个用硬纸皮做的可活动的角,准备好作的图的工具(一幅三角板、圆规)。
教学设想:通过学生自己动手比较从而得到结论性的东西,并能在操作中得到动手的乐趣。
教学过程:教学后记第10课时教学内容:§4.6 角的特殊关系教学目的:1、通过学习,使学生明白余角与补角的定义与它们的性质及简单应用;2、能初步了解两直线相交所形成的对顶角与邻补角。
教学分析:重点:余角与补角、对顶角的知识应用;难点:对顶角的意义的理解。
教具准备:准备好的两条相交硬纸皮,一个剪开的直角。
教学设想:主要以启发与类比的学习方向来引导学习。
教学过程:教学后记第11课时教学内容:§4.7 相交线——垂线教学目的:1、使学生你理解垂线的含义与垂线的画法;2、能理解点到直线的距离,理解垂线段的意义;3、能在学习中了解几何的不同情况下的分类,以及能在一个三角形作出三角形的高。
教学分析:重点:如何确定点到直线的距离以及垂直的公理;难点:如何在教学中渗透变换的思想。
教具准备:一个可以转化角度的两直线相交模型,一个硬纸皮三角形。
教学设想:在教学中充分考虑学生的接受能力,注意渗透变换的思想。
教学过程:教学后记第12课时教学内容:§4.7 相交线——相交线中的角教学目的:1、通过学习使学习能从“三线八角”中认识有关“同位角”、“内错角”、“同旁内角”的有关定义;2、能从一些变形的图形中找到符合题意的对应角。
教学分析:重点:能从适当的图形中找到相关的角;难点:如何正确地认识图形。
教学设想:讲角中主要抓住学生对图形的认识。
教学后记第13课时教学内容:§4.8 平行线教学目的:1、使学生通过学习认识到平行线的美;2、通过学习使学习能掌握平行线的定义,并能据此来画相关的平行线,并能对平行线的公理进行理解记忆。
教学分析:重点:对平行线的认识;难点:平行线公理的理解及应用。
教具准备:准备一个可以转动的“三线八角”教学设想:主要在学生的动手理解为主,充分考虑学生学习的主动性,努力创造条件使学生能发现一些规律性的东西。
教学过程:教学后记第14课时教学内容:§4.8 平行线的识别教学目的:1、使学生通过学习能掌握运用同位角相等、内错角相等、同旁内角互补来说明两条直线平行;2、使学生通过对三种判定方法的学习,能灵活地利用平行线的三个识别方法解决问题。