浙教版数学七年级上册图形的初步认识试卷

合集下载

浙教版7年级上数学图形的初步认识试卷附答案

浙教版7年级上数学图形的初步认识试卷附答案

浙教版7年级上数学图形的初步认识试卷附答案浙教版7年级上数学图形的初步认识试卷附答案一、选择题1、下列各组对象能构成集合的是()。

A. 漂亮的人 B. 数学大国 C. 无穷小数 D. 中国的四大发明正确答案是:D. 中国的四大发明。

A 项中“漂亮的人”,B项中“数学大国”,C项中“无穷小数”均具有不确定性,不能构成集合,故排除。

D项中“中国的四大发明”具有确定性,可以构成集合,所以正确答案为D。

2、已知集合A={x|x=2k-1,k∈Z},B={x|x=2k,k∈Z},则集合A和B的关系是()。

A. A∪B=Z B. A∩B=∅ C. A⊇B D. A=B 正确答案是:A. A∪B=Z。

根据整数的分类知,奇数和偶数构成了全体整数,所以A∪B=Z,故选A。

3、实数x,y满足x>0,y>0且x≠y,则以下四个点中,在函数y=x2的图象上的是()。

A. (x,y) B. (xy,x) C. (xy,y) D. (x+y,y) 正确答案是:B. (xy,x)。

根据函数图象的定义可知,只要一个点的横坐标满足函数的解析式,那么纵坐标只要满足该点的横坐标所对应的函数值即可。

因此,只有选项B中的点(xy,x)满足函数y=x2的图象上点的坐标条件。

所以正确答案为B。

二、填空题1、一个圆把平面分成两部分,五个圆最多把平面分成______部分。

正确答案是:22。

根据题意可知,每增加一个圆,平面就会多分成2个部分,因此n个圆最多可以把平面分成n(n+1)+2(n≥1且n为整数)。

当n=1时,平面最多分成2部分;当n=2时,平面最多分成2+3×2=8部分;当n=3时,平面最多分成8+4×3=20部分;……当n=5时,平面最多分成2+3×2+4×3+5×4+6×5=22部分。

因此正确答案为22。

2、已知集合A={x|x=m+n√2,m,n∈Z},则下列结论正确的是()。

2019-2020浙教版初中数学七年级上册《图形的初步认识》专项测试(含答案) (34)

2019-2020浙教版初中数学七年级上册《图形的初步认识》专项测试(含答案) (34)

18.(2 分)比较两条线段的大小的方法有两种:一种是 19.(2 分)根据图形,把下列语句填写完整. (1)直线 a 、 b 相交于 ; (2)直线 c 由 两点所确定; (3)点 D 在直线 外,点 E 在直线 上.
;另一种是 .
20.(2 分)图中有线段 条.
条,分别是线段 、 、 、 、 、 .图中共有射线
14.(2 分)过一点 M 可以画 条直线,过两点 M,N 可以画 条直线. 15.(2 分)早上 8:15 分.钟面上的时针与分针所夹的角的度数是 . 16.(2 分)计算: (1)48°59′55″+67°28″= ; (2)90°-78°19′40″= . 17.(2 分)如图,AC=1.5 cm,BC=2.5 cm,那么 AB= + = .
A.56°
B.46°
C. 45°
D.44°'
2.(2 分)如图,直线 AB、CD 相交于点 O,OE 平分∠AOD,若∠BOC=80°,则∠AOE
的度数是( )
A.40°
B. 50°
C. 80°
D.100°
3.(2 分)如图,直线 AB、CD 相交于点 0,EO⊥AB 于点 0,则图中∠1 与∠2 的关系是
30.(7 分)在如图所示的立体图形中,它们分别有几个面?哪些面是平面?哪些面是曲面?面 面相交 的地方形成了几条线?这些线是直的还是曲的?
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.B 2.A 3.B 4.D 5.D 6.D 7.C 8.D
9.C 评卷人
得分
二、填空题
10.82.5°
7.(2 分)如果线段 AB=13 cm,MA+MB=17 cm,那么下面说法正确的是( ) A.M 点在线段 AB 上 B.M 点在直线 AB 上 C.M 点在直线 AB 外 D.M 点可以在直线 AB 上,也可以在直线 AB 外 8.(2 分)下列各直线的表示法中,正确的是( )

浙教版2022年七年级(上)数学期末复习必刷题:图形的初步认识(第二部分)(含解析)

浙教版2022年七年级(上)数学期末复习必刷题:图形的初步认识(第二部分)(含解析)

浙教版2022年七年级(上)数学期末复习必刷题图形的初步认识(第二部分)一、选择题 1.(2021·浙江嵊州·七年级期末)下列图中是对顶角的为( )A .B .C .D .2.(2021·浙江仙居·七年级期末)如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .若∠BOD =42°,则∠EOD 的度数为( )A .96°B .94°C .104°D .106°3.(2020·浙江杭州·七年级期末)已知2A B ∠=∠,下列选项正确的是( ) A .若A ∠是锐角,则B 是钝角 B .若A ∠是钝角,则B 是锐角 C .若B 是锐角,则A ∠是锐角D .若B 是锐角,则A ∠是钝角4.(2020·浙江浙江·七年级期中)比较16.30,1630160,.3'︒︒︒大小,正确的是( ) A .163016.3016.03'︒>︒>︒ B .16.30163016.03'︒>︒>︒ C .16.3016.031630'︒>︒>︒D .无法比较5.(2020·浙江杭州·七年级期末)如图,点O 在直线AB 上,射线OC ,射线OD ,射线OE 在直线AB 同侧,若OC OD ⊥,OE 平分AOC ∠,则( )A .DOE BOC ∠=∠B .3DOE BOD ∠=∠C .DOC COE BOD AOE ∠-∠=∠+∠D .DOC COE BOD AOE ∠+∠=∠+∠二、填空题 6.(2021·浙江仙居·七年级期末)如图,三角形ABC 中,AC ⊥BC ,则边AC 与边AB 的大小关系是________,依据是________.7.(2020·浙江杭州·模拟预测)1.471︒=︒_______分_________秒.8.(2021·浙江嵊州·七年级期末)已知25α∠=︒,则α∠的余角=_______________.三、解答题 9.(2021·浙江·杭州市公益中学七年级月考)如图,将∠AOB 绕点O 逆时针旋转θ角,得到∠A ′OB ′. (1)若∠AOB =90°,且∠A ′OB =32°,求∠AOB ′的度数.(2)若∠AOB ′=160°,且∠A ′OB :∠BOB ′=2:3,求θ角的度数.10.(2020·浙江杭州·七年级期中)计算:1081856.5'︒-︒11.(2021·浙江浙江·七年级期中)已知:如图,直线AB CD 、相交于点O ,EO CD ⊥于O .(1)若:2:7BOD BOC ∠∠=,求AOE ∠的度数;(2)在(1)的条件下,请你过点O 画直线MN AB ⊥,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出EOF ∠的度数.12.(2021·浙江浙江·七年级期末)已知同一平面上以O 为端点有三条射线,,OA OB OC ; ①若80,20AOB BOC ∠=︒∠=︒,求AOC ∠的度数;②若,AOB BOC αβ∠=∠∠=∠,(,αβ∠∠均为锐角),求AOC ∠的度数(用,αβ∠∠表示).13.(2018·浙江镇海·七年级期末)已知O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图①,若30AOC ∠=︒,求DOE ∠的度数;(2)在图①中,若AOC α∠=,直接写出DOE ∠的度数(用含α的代数式表示); (3)在(1)问前提下COD ∠绕顶点O 顺时针旋转一周.①当旋转至图②的位置,写出AOC ∠和DOE ∠的度数之间的关系,并说明理由; ②若旋转的速度为每秒10︒,几秒后30BOD ∠=︒?(直接写出答案)14.(2020·浙江·金华市南苑中学七年级月考)如果两个锐角的和等于90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1-∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,0为直线AB 上一点,OC 丄AB 于点O ,OE ⊥OD 于点O ,请写出图中所有互为垂角的角有_____________; (2)如果有一个角的互为垂角等于这个角的补角的45,求这个角的度数.15.(2017·浙江嵊州·七年级期末)点A,O,B依次在直线MN上,如图1,现将射线OA绕点O顺时针方向以每秒10°的速度旋转,同时射线OB绕着点O按逆时针方向以每秒15°的速度旋转,直线MN保持不动,如图2,设旋转时间为t秒(t≤12).(1)在旋转过程中,当t=2时,求∠AOB的度数.(2)在旋转过程中,当∠AOB=105°时,求t的值.(3)在旋转过程中,当OA或OB是某一个角(小于180°)的角平分线时,求t的值.一、单选题1.(2021·浙江嵊州·七年级期末)下列图中是对顶角的为()A.B.C.D.【答案】D【分析】根据对顶角的定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,据此判断即可.【详解】解:根据对顶角的定义可知,为对顶角的只有D,故选:D.【点睛】本题考查了对顶角的定义,熟知定义是解本题的关键.2.(2021·浙江仙居·七年级期末)如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A .96°B .94°C .104°D .106°【答案】A【分析】根据对顶角相等可得∠AOC =∠BOD =42°,由于OA 平分∠COE ,可得∠AOE 的度数,再由平角的定义可求出∠EOD 的度数.【详解】解:∵∠AOC =∠BOD ,∠BOD =42°, ∴∠AOC =42°, ∵OA 平分∠EOC , ∴∠AOE =∠AOC =42°,∴∠EOD =180°−(∠AOE +∠BOD )=180°−(42°+42°)=96°. 故选:A .【点睛】本题考查了角平分线的定义和对顶角的性质.解决本题的关键是熟记对顶角相等. 3.(2020·浙江杭州·七年级期末)已知2A B ∠=∠,下列选项正确的是( ) A .若A ∠是锐角,则B 是钝角 B .若A ∠是钝角,则B 是锐角 C .若B 是锐角,则A ∠是锐角 D .若B 是锐角,则A ∠是钝角【答案】B【分析】根据锐角、钝角的定义推理或举反例判断即可.【详解】A.根据∠A=2∠B ,可知∠B=12∠A ,所以∠A 是锐角时,∠B 一定是锐角,故选项错误;B.若∠A 是钝角,则90°<∠A <180°,那么12∠A 一定小于90°,即∠B 一定小于90°,所以∠B 一定是锐角,故选项正确;C.若∠B=80°,根据∠A=2∠B ,可知∠A=160°>90°,所以∠B 为锐角时,∠A 不一定为锐角,故选项错误;D.若∠B=30°,根据∠A=2∠B ,可知∠A=60°<90°,所以∠B 为锐角时,∠A 不一定为钝角,故选项错误. 故选:B.【点睛】本题考查锐角和钝角,掌握锐角、钝角定义是解题关键.4.(2020·浙江浙江·七年级期中)比较16.30,1630160,.3'︒︒︒大小,正确的是( ) A .163016.3016.03'︒>︒>︒ B .16.30163016.03'︒>︒>︒ C .16.3016.031630'︒>︒>︒ D .无法比较【答案】A【分析】先把1630'︒化成只有度的单位,统一单位后再比较角的大小,选出正确答案即可. 【详解】解:∵1630=16.5'︒︒ 比较16.30︒,16.5︒,16.03︒,16.516.3016.03︒>︒>︒,∴163016.3016.03'︒>︒>︒. 故选:A .【点睛】本题考查了角度单位的换算,角的度数大小比较,统一角度单位后再进行比较是解题关键.5.(2020·浙江杭州·七年级期末)如图,点O 在直线AB 上,射线OC ,射线OD ,射线OE 在直线AB 同侧,若OC OD ⊥,OE 平分AOC ∠,则( )A .DOE BOC ∠=∠B .3DOE BOD ∠=∠C .DOC COE BOD AOE ∠-∠=∠+∠ D .DOC COE BOD AOE ∠+∠=∠+∠【答案】C【分析】根据条件及角度之间的关系逐项进行判断即可. 【详解】由OC ⊥OD 可知,∠DOC=90°,∠AOC+∠BOD=90°, 由OE 平分∠AOC 可得,∠COE=∠AOE=12∠AOC ,A.∵∠DOE=∠DOC+∠COE=90°+∠COE ,∠BOC=∠DOC+∠BOD=90°+∠BOD , ∠COE≠∠BOD ,∴∠DOE≠∠BOC ,故本选项错误; B.∵∠DOE=∠DOC+∠COE=90°+12∠AOC=90°+12(90°-∠BOD)=135°-12∠BOD , ∴∠DOE≠3∠BOD ,故本选项错误; C.∵∠BOD+∠AOC=90°, ∴∠BOD+∠AOE+∠COE=90°,∴∠BOD+∠AOE=90°-∠COE=∠DOC -∠COE ,故本选项正确; D.∵∠COE=∠AOE ,∠DOC≠∠BOD ,∴∠DOC+∠COE≠∠BOD+∠AOE ,故本选项错误, 故选:C.【点睛】本题考查角的计算,正确找出角之间的关系是解题的关键.二、填空题6.(2021·浙江仙居·七年级期末)如图,三角形ABC 中,AC ⊥BC ,则边AC 与边AB 的大小关系是________,依据是________.【答案】AC <AB 垂线段最短【分析】点到直线的距离也是点到直线的垂线段,是最短的;据此解答 【详解】AC 小于AB ,因为垂线段最短故答案为①AC <AB ②垂线段最短【点睛】本题考查两点之间垂线段最短,掌握这一点就能正确解题. 7.(2020·浙江杭州·模拟预测)1.471︒=︒_______分_________秒. 【答案】28 12【分析】度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.依此即可求解. 【详解】解:1.47°=1°28分12秒, 故答案为:28,12.【点睛】本题考查了度分秒的换算,具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.8.(2021·浙江嵊州·七年级期末)已知25α∠=︒,则α∠的余角=_______________. 【答案】65︒【分析】根据互为余角的两个角的和是90度,用90α︒-∠即可得解; 【详解】∵25α∠=︒,∴α∠的余角90902565α=︒-∠=︒-︒=︒; 故答案是:65︒.【点睛】本题主要考查了余角的计算,准确计算是解题的关键.三、解答题 9.(2021·浙江·杭州市公益中学七年级月考)如图,将∠AOB 绕点O 逆时针旋转θ角,得到∠A ′OB ′. (1)若∠AOB =90°,且∠A ′OB =32°,求∠AOB ′的度数.(2)若∠AOB ′=160°,且∠A ′OB :∠BOB ′=2:3,求θ角的度数.【答案】(1)∠AOB ′=148°;(2)θ=60°【分析】(1)由旋转可知:∠AOB =∠A ′OB ′,可得∠AOB ﹣∠A ′OB =∠A ′OB ′﹣∠A ′OB ,即∠AOA ′=∠BOB ′,求得∠AOA ′,结论可求;(2)利用(1)中的结论∠AOA ′=∠BOB ′,设∠A ′OB =2x °,则∠BOB ′=3x °,依题意列出方程,结论可求. 【详解】解:(1)∵将∠AOB 绕点O 逆时针旋转θ角,得到∠A ′OB ′, ∴∠AOB =∠A ′OB ′.∴∠AOB ﹣∠A ′OB =∠A ′OB ′﹣∠A ′OB . 即∠AOA ′=∠BOB ′.∵∠AOB =90°,∠A ′OB =32°, ∴∠AOA ′=90°﹣32°=58°.∴∠AOB ′=∠AOB +∠BOB ′=90°+58°=148°. (2)由(1)知:∠AOA ′=∠BOB ′. ∵∠A ′OB :∠BOB ′=2:3,∴设∠A ′OB =2x °,则∠AOA ′=∠BOB ′=3x °. ∵∠AOB ′=160°,∴∠AOA ′+∠A ′OB +∠BOB ′=160°. ∴3x +2x +3x =160. ∴x =20.∵将∠AOB 绕点O 逆时针旋转θ角,得到∠A ′OB ′, ∴θ=∠AOA ′=3x =60°.【点睛】本题主要考查了角度计算.利用旋转不变性得到:∠AOB =∠A ′OB ′是解题的关键. 10.(2020·浙江杭州·七年级期中)计算:1081856.5'︒-︒【答案】5148︒′【分析】先把度的形式化为度,分,秒的形式,进而即可求解. 【详解】原式=108185630'︒-︒′=5148︒′.【点睛】本题主要考查有理数的混合运算以及角度的运算,熟练掌握角度的单位换算,是解题的关键. 11.(2021·浙江浙江·七年级期中)已知:如图,直线AB CD 、相交于点O ,EO CD ⊥于O .(1)若:2:7BOD BOC ∠∠=,求AOE ∠的度数;(2)在(1)的条件下,请你过点O 画直线MN AB ⊥,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出EOF ∠的度数.【答案】(1)130°;(2)40°或140°【分析】(1)依据平角的定义以及垂线的定义,即可得到∠AOE 的度数;(2)分两种情况:若F 在射线OM 上,则∠EOF =∠BOD =40°;若F '在射线ON 上,则∠EOF '=∠DOE +∠BON -∠BOD =140°. 【详解】解:(1)∵∠BOD :∠BOC =2:7, ∴∠BOD =29∠COD =40°, ∴∠AOC =40°, 又∵EO ⊥CD ,∴∠AOE =90°+40°=130°; (2)分两种情况: 若F 在射线OM 上, ∵∠EOD =∠BOF =90°, ∴∠EOF =∠BOD =40°; 若F '在射线ON 上,则∠EOF '=∠DOE +∠BON -∠BOD =140°;综上所述,∠EOF 的度数为40°或140°.【点睛】本题考查了角的计算,对顶角,垂线等知识点的应用,关键是分类讨论思想的运用. 12.(2021·浙江浙江·七年级期末)已知同一平面上以O 为端点有三条射线,,OA OB OC ; ①若80,20AOB BOC ∠=︒∠=︒,求AOC ∠的度数;②若,AOB BOC αβ∠=∠∠=∠,(,αβ∠∠均为锐角),求AOC ∠的度数(用,αβ∠∠表示). 【答案】①100°或60°;②∠α+∠β或∠β-∠α或∠α-∠β【分析】①分两种情况讨论,①若OC 在∠AOB 外部时,②OC 在∠AOB 内部时,分别计算出∠AOC 的度数即可; ②1)、∠α≥∠β,OC 在∠AOB 外部时;2)∠α≥∠β,OC 在∠AOB 内部时,3)∠α<∠β,当OC 均在∠AOB 外部,依次计算即可.【详解】解:①若OC 在∠AOB 外部时,∠AOC =80°+20°=100°;若OC 在∠AOB 内部时,∠AOC =80°-20°=60°; ∴∠AOC =100°或60°.②1)、若∠α≥∠β时,当OC 在∠AOB 外部时,∠AOC =∠α+∠β, 2)、若∠α≥∠β时,若OC 在∠AOB 内部时,∠AOC =∠α-∠β, 3)、若∠α<∠β时,OC 均在∠AOB 外部,∠AOC =∠α+∠β,或∠AOC =∠β-∠α, 故∠AOC =∠α+∠β或∠β-∠α或∠α-∠β.【点睛】此题考查了余角和补角的知识,解题的关键是分类讨论,难点在于比较容易漏解. 13.(2018·浙江镇海·七年级期末)已知O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图①,若30AOC ∠=︒,求DOE ∠的度数;(2)在图①中,若AOC α∠=,直接写出DOE ∠的度数(用含α的代数式表示); (3)在(1)问前提下COD ∠绕顶点O 顺时针旋转一周.①当旋转至图②的位置,写出AOC ∠和DOE ∠的度数之间的关系,并说明理由; ②若旋转的速度为每秒10︒,几秒后30BOD ∠=︒?(直接写出答案)【答案】(1)DOE ∠=15︒;(2)12DOE α∠=;(3)①2AOC DOE ∠=∠,见解析,②3t s =或9t s =.【分析】利用∠COD 及∠AOC 的度数不难求出∠BOD 的度数,再结合∠COD 是直角可进一步求出∠BOC 的度数; 接下来根据角平分线的定义即可求出∠BOE 的度数,观察图形可知∠DOE=∠BOE-∠BOD ,据此,即可(1); (2),参照(1)的方法即可用含a 的代数式表示出∠DOE 的度数;(3),把∠AOC 当作已知数即可求出∠BOC ,此时利用角平分线的定义可求出∠BOE ;接下来再结合∠DOC 是直角,可表示出∠BOD ,由图形可知∠DOE=∠BOE+∠BOD ,据此即可得到∠AOC 和∠DOE 的度数之间的关系了. 【详解】解:(1)由题意得180150BOC AOC ∠=︒-∠=︒,又∵COD ∠是直角,OE 平分BOC ∠, ∴12DOE COD COE COD BOC ∠=∠-∠=∠-∠ 190150152=︒-⨯︒=︒.(2)12DOE α∠=.(3)①2AOC DOE ∠=∠.∵COD ∠是直角,OE 平分BOC ∠,∴90COE BOE DOE ∠=∠=︒-∠,∴1801802AOC BOC COE ∠=︒-∠=︒-∠ ()1802902DOE DOE =︒-︒-∠=∠.②3t s =或9t s =【点睛】本题考查角的运算 ,角平分线的定义,掌握角度间的转化是解题关键.14.(2020·浙江·金华市南苑中学七年级月考)如果两个锐角的和等于90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1-∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,0为直线AB 上一点,OC 丄AB 于点O ,OE ⊥OD 于点O ,请写出图中所有互为垂角的角有_____________;(2)如果有一个角的互为垂角等于这个角的补角的45,求这个角的度数.【答案】(1)∠EOB 和∠DOB ;∠EOB 和∠EOC ;∠A0D 和∠COD ;∠A0D 和∠AOE;(2)30°或130°. 试题分析:(1)根据互为垂角定义,可得: ∠EOB 和∠DOB ,∠EOB 和∠EOC ,∠AOD 和∠COD ,∠AOD 和∠AOE ;(2)设这个角为x,则它的互为垂角为(x -90°)和(x +90°),这个角的补角的45为:()4 1805x ︒-,根据题意可列方程即可求解. 试题解析: (1)根据互为垂角定义,可得:∠EOB 和∠DOB ,∠EOB 和∠EOC ,∠AOD 和∠COD ,∠AOD 和∠AOE ;(2)设这个角为x ,则它的互为垂角为(x -90°)和(x +90°),这个角的补角的45为:()4 1805x ︒-,根据题意可得: (x -90°)=()4 1805x ︒-和(x +90°)=()4 1805x ︒-, 解得: 1x =30°和x =30°. 15.(2017·浙江嵊州·七年级期末)点A ,O ,B 依次在直线MN 上,如图1,现将射线OA 绕点O 顺时针方向以每秒10°的速度旋转,同时射线OB 绕着点O 按逆时针方向以每秒15°的速度旋转,直线MN 保持不动,如图2,设旋转时间为t 秒(t≤12).(1)在旋转过程中,当t=2时,求∠AOB 的度数.(2)在旋转过程中,当∠AOB=105°时,求t 的值.(3)在旋转过程中,当OA或OB是某一个角(小于180°)的角平分线时,求t的值.【答案】(1) 130°;(2)t=3或11.4;(3)t=4.5或367或9或727【分析】(1)分别求出∠AOM和∠BON的度数,即可得出答案;(2)分为两种情况,得出方程10t+15t=180-105或10t+15t=180+105,求出方程的解即可;(3)分为四种情况,列出方程,求出方程的解即可.【详解】(1)当t=2时,∠AOM=10°t=20°,∠BON=15°t=30°,所以∠AOB=180°﹣∠AOM﹣∠BON=130°;(2)当∠AOB=105°时,有两种情况:①10t+15t=180﹣105,解得:t=3;②10t+15t=180+105,解得:t=11.4;(3)①当OB是∠AON的角平分线时,10t+15t+15t=180,解得:t=4.5;②当OA是∠BOM的角平分线时,10t+10t+15t=180,解得:t=367;③当OB是∠AOM的角平分线时,5t+15t=180,解得:t=9;④当OA是∠BON的角平分线时,10t+7.5t=180,解得:t=727.【点睛】本题考查了角平分线的定义和邻补角的定义,能求出符合的所有情况是解此题的关键.。

浙教版七年级数学上册《图形的初步认识》单元练习检测试卷及答案解析

浙教版七年级数学上册《图形的初步认识》单元练习检测试卷及答案解析

浙教版七年级数学上册《图形的初步认识》单元练习检测试卷及答案解析一、选择题1、如图,从A到B有①,②,③三条路线,最短的路线是①的理由是:()A.因为它最直 B.两点确定一条直线C.两点的距离的概念 D.两点之间,线段最短2、下列说法正确的个数是().①角是由两条射线组成的图形;②角的大小与边的长短无关,只与两条边张开的角度有关;③角的两边是两条射线,④把一个角放到一个放大10倍的放大镜下观看,角度数也扩大10倍.A.1个B.2个C.3个D.4个3、下列说法正确的是().A.平角是一条直线B.反向延长射线OA,就得到一个平角C.周角是一条射线D.画一条射线就是一个周角4、如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50°B.60°C.65°D.70°5、如图,点C为线段AB的中点,点D为线段AC的中点、已知AB=8,则BD=()A.2 B.4 C.6 D.86、如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°7、如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°8、点P为线段MN上一点,点Q为NP中点.若MQ=6,则MP+MN=()A.10 B.8 C.12 D.以上答案都不对9、如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q10、将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°二、填空题11、如图,以图中的A、B、C、D为端点的线段共有___条.12、已知直线l上有三点A、B、C,且AB=6,BC=4,M、N分别是线段AB、BC的中点,则MN= .13、度分秒的换算(1)36.27°=________度________分________秒;(2)40°43′30″=________度.14、计算(1)131°28′﹣51°32′15″=________.(2)58°38′27″+47°42′40″=________.15、时钟表面9点20分时,时针与分针所夹角的度数是__________.16、已知与互余,且,则为.17、如果∠1与∠2互余,∠3与∠2互余,∠1=35°,那么∠3 = _______度.18、已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.19、在△ABC中,∠A+∠B=90°,且∠A:∠B=1:2,则∠A= °.20、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′,C′的位置,若∠AED′=50°,则∠DEF等于.三、计算题21、计算:(1)22°18′×5 (2)90°﹣57°23′27″22、计算(1)(2)77°53′26"+33.3°23、计算:(1)﹣3﹣(﹣10)+(﹣14)(2)÷(﹣)+(﹣2)2×(﹣2)(3)100°﹣12°17′×6.四、解答题24、一个角的补角比它的余角的4倍少,求这个角的度数.25、如图,在直线l上顺次取A,B,C三点,使得AB=4cm,BC=3cm,如果O为线段AC的中点,M为线段AB的中点,N为线段BC的中点.(1)求线段MN的长度;(2)求线段OB的长度.26、如图,AB交CD于O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.参考答案1、D.2、B3、B4、D5、C6、B7、C8、C9、C10、B.11、612、5或1.13、36 16 12 40.72514、79°55′45″106°21′7″15、.16、50°17、3518、6cm.19、3020、65°.21、(1)111°30′;(2)32°36′33″.22、(1)-2;(2)111°11′26″.23、(1)﹣7;(2)﹣9;(3)26°18′.24、这个角的度数是.25、(1)MN =cm;(2)OB=cm.26、(1)、70°;(2)、30°【解析】1、试题分析:两点之间,线段最短.故选D.考点:线段的性质.2、①角是有公共端点的两条射线所构成的图形,错误;②角的大小与边的长短无关,只与两条边张开的角度有关,正确;③角的两边是两条射线,正确;④把一个角放到一个放大10倍的放大镜下观看,两条边张开的角度不变,故角的度数不变,错误.所以正确的有2个.故选B.3、由一点引出的两条射线所围成的图形,叫做角,故角需有一公共端点和两条射线组成,故角不可能是直线或射线,故A、C、D错误;B中,反向延长射线OA,就得到由一点引出的两条射线所围成的图形,就得到一个平角,故B正确.故选B.4、试题解析:∵OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°,∴∠BOC=∠AOB=40°,∠COD=∠COE=×60°=30°,∴∠BOD=∠BOC+∠COD=40°+30°=70°.故选D.考点:1.角的计算;2.角平分线的定义.5、试题分析:根据两中点进行解答.解:∵点C为线段AB的中点,AB=8,则BC=AC=4.点D为线段AC的中点,则AD=DC=2.∴BD=CD+BC=6.故选C.考点:比较线段的长短.6、试题分析:本题根据互余和互补的概念计算即可.解:180°﹣150°=30°,那么这个角的余角的度数是90°﹣30°=60°.故选B.7、试题分析:因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.考点:对顶角、邻补角.8、如图所示:∵点Q为NP中点,∴PQ=QN,∴MP+PQ=MP+QN,∴MN+MP=2MQ=12.故选:C.9、试题分析:先根据相反数确定原点的位置,再根据点的位置确定绝对值最小的数即可.解:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.10、试题分析:∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.故选B.考点:直角三角形的性质.11、图中的线段有:线段AB,线段AC,线段AD,线段BC,线段BD,线段CD,所以共有6条,故答案为:6.12、试题分析:本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.解:①如图1:∵M为AB的中点,AB=6,∴MB=AB=3,∵N为BC在中点,AB=4,∴NB=BC=2,∴MN=MB+NB=5.②如图2:∵M为AB的中点,AB=6,∴MB=AB=3,∵N为BC的中点,AB=4,∴NB=BC=2,∴MN=MB﹣NB=1.故答案为:5或1.考点:两点间的距离.13、(1)∵0.27×60=16.2,0.2×60=12,∴36.27°=36°16′12″;(2)∵30÷60=0.5,(43+0.5)÷60=0.725,∴40°43′30″=40.725°.点睛:1°=60′,1′=60″,角的度、分、秒是60进制的.14、解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=105°80′67″=106°21′7″.点睛:当进行减法计算时,按先秒再分最后度的运算顺序,当不够时向前一位借1;当进行加法计算时,度、分、秒分别计算即可.运算最后都要化简,使分和秒小于60.15、试题分析:因为钟表上的刻度是把一个圆等分成12份,每一份是,“4”和“9”的夹角为,时针偏离“9”的度数为.时针与分针的夹角为考点:钟面角.16、∵∠与∠互余,∴∠+∠=90°,又∵∠=40°,∴∠=90°-40°=50°.17、因为∠1与∠2互余,∠3与∠2互余,所以∠1+∠2=∠3+∠2=90°,所以∠3=∠1=35°.故答案为:35°.18、试题分析:因为BC=AB,AB=9cm,可求出BC的长,从而求出AC的长,又因为D为AC的中点,继而求出答案.解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.考点:比较线段的长短.19、试题分析:根据三角形的内角和定理列式计算即可得解.解:设∠A为x,∠B为2x,可得:x+2x=90°,解得:x=30°,故答案为:30考点:三角形内角和定理.20、试题分析:根据平角的定义计算出∠DED′=130°,再根据折叠的性质得∠DEF=∠D′EF,即可求出结果.解:∵∠AED′=50°,∴∠DED′=180°﹣∠AED′=180°﹣50°=130°,∵长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,∴∠DEF=∠D′EF,∴∠DEF=∠DED′=×130°=65°.故答案为65°.考点:角的计算;翻折变换(折叠问题).21、试题分析:(1)先让度、分、秒分别乘5,秒的结果若满60,转换为1分;分的结果若满60,则转化为1度.相同单位相加,满60,向前进1即可.(2)此题是度数的减法运算,注意1°=60′即可.解:(1)22°18′×5=110°90′=111°30′;(2)90°﹣57°23′27″=32°36′33″.22、试题分析:(1)先算乘方,再算括号里面的运算,再算乘法,最后算减法;(2)把33.3°换算成33°18′,再进一步相加即可.试题解析:(1)原式=-1-×[-3+9]=-1-1=-2;(2)原式=77°53′26″+33°18′=111°11′26″.考点:1.有理数的混合运算;2.度分秒的换算.23、试题分析:(1)先去括号,再从左到右依次计算即可;(2)先算乘方,再算乘除,最后算加减即可;(3)先算乘法,再算加减即可.解:(1)原式=﹣3+10﹣14=7﹣14=﹣7;(2)原式=﹣1+4×(﹣2)=﹣1﹣8=﹣9;(3)原式=100°﹣73°42′=26°18′.考点:有理数的混合运算;度分秒的换算.24、分析:设这个角为x,根据互为补角的两个角的和等于180°表示出它的补角,互为余角的两个两个角的和等于90°表示出它的余角,然后列方程求解即可.详解:设这个角为x,由题意得,,解得,答:这个角的度数是.点睛:本题主要考查了余角和补角,熟记概念并列出方程时解题的关键.25、试题分析:(1)可先求出MB、BN,继而根据MN=MB+BN即可得出答案;(2)先求出OC的长度,然后根据OB=OC-BC可得出答案.试题分析:(1)因为AB=4cm,BC=3cm,M为线段AB的中点,N为线段BC的中点,所以MB=AB=2cm,BN= BC=cm,故可得MN=MB+BN=cm.(2)因为O为线段AC的中点,AC=AB+BC=7cm,所以OC=AC=cm,故可得:OB=OC-BC=cm.26、试题分析:(1)、首先根据垂直得出∠AOE=90°,根据∠AOC=180°-∠AOE-∠EOD得出答案;(2)、首先设∠AOC=x,则∠BOC=2x,根据平角的性质得出x的值,根据∠EOD=180°-AOE-∠AOC得出答案.试题解析:(1)、∵OE⊥AB,∴∠AOE=90°,∵∠EOD=20°,∴∠AOC=180°﹣90°﹣20°=70°;(2)、设∠AOC=x,则∠BOC=2x,∵∠AOC+∠BOC=180°,∴x+2x=180°,解得:x=60°,∴∠AOC=60°,∴∠EOD=180°﹣90°﹣60°=30°.考点:角度的计算。

浙教版初中数学七年级上册第六单元《图形的初步认识》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级上册第六单元《图形的初步认识》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级上册第六单元《图形的初步认识》单元测试卷考试范围:第六章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下图中的长方体是由下面A、B、C、D的四个小几何体拼成的,那么图中第四部分对应的几何体是( )A.B.C.D.2.如图,图1是一个三阶金字塔魔方,它是由若干个小三棱锥堆成的一个大三棱锥(图2),把大三棱锥的四个面都涂上颜色.若把其中1个面涂色的小三棱锥叫中心块,2个面涂色的叫棱块,3个面涂色的叫角块,则三阶金字塔魔方中“(棱块数)+(角块数)−(中心块数)”得( )A. 2B. −2C. 0D. 43.下列作图语句中,正确的是( )A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点4.已知:线段AB,点P是直线AB上一点,直线..上共有3条线段:AB,PA和PB,若其中有一条线段的长度是另一条线段长度的两倍,则称点P是线段AB的“中南点”,线段AB的“中南点”的个数是( )A. 3B. 6C. 8D. 95.对于线段的中点,有以下几种说法:①若AM=MB,则M是AB的中点;②若AM=BM=1 2AB,则M是AB的中点;③若AM=12AB,则M是AB的中点;④若A,M,B在一条直线上,且AM=MB,则M是AB的中点,其中正确的是( )A. ②④B. ①④C. ①②④D. ①②③④6.下列说法中,不正确的是A. 若点C在线段BA的延长线上,则BA=AC−BCB. 若点C在线段AB上,则AB=AC+BCC. 若AC+BC>AB,则点C一定在线段BA外D. 若A,B,C三点不在同一条直线上,则AB<AC+BC7.如图,下列描述正确的是( )A. 射线OA的方向是北偏东方向B. 射线OB的方向是北偏西650C. 射线OC的方向是东南方向D. 射线OD的方向是西偏南1508.已知∠1=25∘12′,∠2=25.12∘,∠3=25.2∘,下列说法正确的是( )A. ∠1=∠3B. ∠3=∠2C. ∠1=∠2D. 三个角互不相等9.借助一副三角尺不能画出的角是( )A. 95°B. 105°C. 120°D. 135°10.如图,O为直线AB上一点,OC⊥OD,OE平分∠AOC,OG平分∠BOC,OF平分∠BOD,下列结论:①∠DOG+∠BOE=180°;②∠AOE−∠DOF=45°;③∠EOD+∠COG=180°;④∠AOE+∠DOF=90°.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个11.α与β的度数分别是2m−19和77−m,且α与β都是γ的补角,那么α与β的关系是( )A. 不互余且不相等B. 不互余但相等C. 互为余角但不相等D. 互为余角且相等12.如图,∠BAC=90∘,AD⊥BC,垂足为D,则下面的结论中正确的个数为( )①AB与AC互相垂直;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④线段CD是C点到AD的距离。

2019年秋浙教版初中数学七年级上册《图形的初步认识》单元测试(含答案) (269)

2019年秋浙教版初中数学七年级上册《图形的初步认识》单元测试(含答案) (269)

浙教版初中数学试卷2019-2020年七年级数学上册《图形的初步认识》精选试题学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)如图,图中共有()A.9个角和 7条线段B.10个角和 8条线段C.11个角和 9条线段D.12个角和10条线段2.(2分)已知一条射线OA,若从点O再引两条射线OB和OC,使∠AOB=80°,∠BOC=40°,则∠AOC等于()A.40 °B.60°或120°C.120°D.120°或40°3.(2分)一个角的余角比它的补角的12少20°,则这个角为()A.30 °B.40°C.60°D.75°4.(2分)经过任意三点中的两点共可以画出的直线条数是()A.一条或三条B.三条C.两条D.一条5.(2分)已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB 之比为()A.3:4 B.2:3 C.3:5 D.1:26.(2分)如图,在长方体中,与棱AB平行的棱有()A.1条B.2条C.3条D.4条7.(2分)点A为直线l外一点,点B在直线l上,若AB=5 cm,则点A到直线l的距离为()A.等于5cm B.大于5 cm C.小于5 cm D.最多为5 cm8.(2分)过线段AB的中点画直线l⊥AB,若AB=2 cm,则点A到直线l的距离是()A.1 cm B.3.2 cm C.4 cm D.无法计算9.(2分)以下四种说法:①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角不相等;④不相等的两个角,不是对顶角.其中正确的有()A.1个B.2个C.3个D.4个10.(2分)对角的表示方法理解错误的是()A.角可用三个大写字母表示,顶点字母写在中间,每边上的点的字母写在两旁B.任何角都可用一个顶点字母表示C.记角有时可在靠近顶点处加上弧线,注上数字来表示D.记角有时可在靠近顶点处加上弧线,注上希腊字母表示11.(2分)有A、B、C三座城市,已知A、B两市的距离为50 km,B、C两市的距离是30 km,那么 A.C两市问的距离是()A.80 km B.20 km C.40 km D.介于20 km至80 km之间12.(2分)如图,l0条20 cm长的线条首尾粘合成一个纸圈,每个粘合部分的长度为1.5 cm,则纸圈的周长是()A.200 cm B.198.5 cm C.186.5 cm D.185 cm评卷人得分二、填空题13.(2分)如图.点P是直线l外一点.过点P画直线P A、PB、PC、……交l于点A、B、C、……,请你用量角器量∠1、∠2、∠3的度数,并量PA、PB、Pc的长度.你发现的规律是.14.(2分)如图,0C⊥AB于点0,OC平分∠DOE,若∠1=63°,则∠3= .15.(2分)55°18′的角的余角等于,34°56′的角的补角等于.评卷人得分三、解答题16.(7分)如图,一个4×2的矩形可以用不同的方式分割成2或5或8个小正方形,那么一个5×3的矩形用不同的方式可以分割成多少个小正方形?简要画出图形并说明理由.17.(7分)已知一个角的补角比它的余角的2倍多100,求这个角的度数.18.(7分)某风景区的旅游路线示意图如图,B、D、C、E为风景点,F为两条路的交叉点,图中数据为相应两点间的路程(单位:km),一位同学从A处出发,以3 km/h的速度步行游览,每个景点的逗留时间均为0.5 h.(1)当他沿着路线A→D→C→F→E→A游览回到A处时,共用了3.5 h,求路程CF的长;(2)若此同学打算从A处出发后,步行速度与在景点的逗留时间保持不变,游览完B、D、C、E中的任意三个景点后,仍返回A处,使时间小于3.5 h,请你为他设计一条步行路线.并说明这样设计的理由(不考虑其它因素).19.(7分)平面上有5条直线,无任何三条交于一点,欲使它们出现9个交点,有可能吗?请作图验证.20.(7分)观察“工”“田”“土”等汉字,我们能找到直线与直线的哪几种位置关系?请你再举几个这样的汉字?21.(7分)如图,AC为一直线,0是AC上一点,且∠AOB=120°,0E、OF分别平分∠AOB和∠BOC.(1)求∠EOF的大小;(2)当OB绕点O旋转时,OE、OF为∠AOB和∠BOC的角平分线,问:OE、OF有怎样的位置关系?说明理由.22.(7分)如图,两条直线相交有1个交点,三条直线相交有l个交点或3个交点.。

第6章 图形的初步知识单元测试卷(标准难度 含答案)

第6章 图形的初步知识单元测试卷(标准难度 含答案)

浙教版初中数学七年级上册第六单元《图形的初步认识》单元测试卷考试范围:第六单元;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.。

在每小题列出的选项中,选出符合题目的一项)1.将一个正方形纸片对折后对折再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )A. B. C. D.2.如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm23.下列说法中正确的个数为( )(1)4a一定是偶数;(2)单项式3xy27的系数是37,次数是3;(3)小数都是有理数;(4)多项式3x3−2xy2+25是五次三项式;(5)连接两点的线段叫做这两点的距离;(6)射线比直线小一半.A. 1个B. 2个C. 3个D. 4个4.下列说法中正确的是( )A. 射线EF和射线FE是同一条射线B. 延长线段EF和延长线段FE的含义是相同的C. 经过两点可以画一条直线,并且只能画一条直线D. 延长直线EF5.已知线段AB=10cm,有下列说法:①不存在到A,B两点的距离之和小于10cm的点;②线段AB上存在无数个到A,B两点的距离之和等于10cm的点;③线段AB外存在无数个到A,B两点的距离之和大于10cm的点.其中正确的是( )A. ①②B. ①③C. ②③D. ①②③6.已知线段AB,以下作图不可能的是( )A. 在AB上取一点C,使AC=BCB. 在AB的延长线上取一点C,使BC=ABC. 在BA的延长线上取一点C,使BC=ABD. 在BA的延长线上取一点C,使BC=2AB7.已知线段AB=10cm,点C为直线AB上一点,且AC=2cm,点D为线段BC的中点,则线段AD的长为( )A. 4cmB. 6cmC. 4cm或5cmD. 4cm或6cm8.如图,从4点钟开始,过了40分钟后,分针与时针所夹角的度数是( )A. 90°B. 100°C. 110°D. 120°9.(对标目标9)如图,在4×4的正方形网格中,记∠ABF=α,∠FCH=β,∠DGE=γ,则( )A.β<α<γB. β<γ<αC. α<γ<βD. α<β<γ10.将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=16°,则∠EAF的度数为( )A. 40°B. 45°C. 56°D. 37°11.(对应目标12)已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β−∠γ的度数为( )A. 45°B. 60°C. 90°D. 180°12.如图,EO⊥CD,垂足为O,OA平分∠EOD,则∠BOD的度数为( )A. 120°B. 130°C. 135°D. 140°第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.请你算一算如图所示(单位:米)“粮仓”的容积为______立方米.(V圆柱=πr2ℎ,V圆锥=13πr2ℎ)14.根据下图填空:(1)有个小于平角的角.(2)分别填出下列角的另一种表示方法:∠α即,∠ABC即,∠ACE即,∠1即,∠ACD即,∠3即.15.以∠AOB的顶点O为端点引射线OP,使∠AOP:∠BOP=3:2,若∠AOB=17∘,∠AOP的度数为.16.如图,直线CD,EF相交于点O,OA⊥OB,且OE平分∠AOC.若∠EOC=60∘,则∠BOF的度数是.三、解答题(本大题共9小题,共72分。

2019年秋浙教版初中数学七年级上册《图形的初步认识》单元测试(含答案) (328)

2019年秋浙教版初中数学七年级上册《图形的初步认识》单元测试(含答案) (328)

浙教版初中数学试卷2019-2020年七年级数学上册《图形的初步认识》精选试题学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)如图,直线AB、CD相交于点O,OM⊥AB,若∠COB=135°,则∠MOD等于()A.45°B.35°C.25°D.15°2.(2分)已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB 之比为()A.3:4 B.2:3 C.3:5 D.1:23.(2分)如图,直线AB、CD相交于点0,EO⊥AB于点0,则图中∠1与∠2的关系是()A.相等B.互余C.互补D.没有关系4.(2分)如果一个角等于它的余角的2倍,那么这个角是它补角的()A.2倍B.12C.5倍D.155.(2分)A、B是平面上两点,AB=10 cm,P为平面上一点,若PA+PB=20 cm,则P点()A.只能在直线AB外 B.只能在直线AB上C.不能在直线AB上 D.不能在线段AB上6.(2分)如图,四边形ABCD、AFCE都-是平行四边形,则图中平行线的组是()A.2组B.3组C.4组D.5组7.(2分)下列语句中正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线只有一条C.在同一平面内的两条线段,若它们不相交,则一定互相平行D.在同一平面内,两条不相交的直线叫做平行线8.(2分)如图,∠AOC=∠BOD=90°,下列结论中正确的个数是()①∠AOB=∠COD;②∠AOD=3∠B0C;③∠AOD+∠BOC=∠AOC+∠BODA.0个B.l个C.2个D.3个9.(2分)下列四个图中,能表示线段x=a+c-b的是()A. B.C. D.10.(2分)如图所示,直线l、线段a以及射线OA,能相交的图形是()A.①③④B.①④⑥C.①④⑤D.②③⑥11.(2分)下列语句中正确表达图中特点的个数为()①直线l经过C、D两点,不经过A点;②点C、点D在直线l上,点A在直线l外;③l是C、D两点确定的直线,A点不在直线上;④l是一条直线,C、D是直线上的任意两点,A是直线外的任意一点.A.4个B.3个C.2个D.1个评卷人得分二、填空题12.(2分)已知在同一平面内,直线a∥b,而直线b和直线c相交,则直线a和直线c的位置关系是 .13.(2分)如图中的图案均是用长度相同的小木棒按一定的规律拼搭而戍,拼搭第1个图案需 4根小木棒,拼搭第2个图案需10根小木棒……依此规律,拼搭第8个图案需根小木棒.14.(2分)若∠1的对顶角是∠2,∠2的补角是∠3,且∠3=54°,则∠l= .15.(2分)如图,∠1=30°,∠2=40°,则∠EOB= ,∠AOF= .16.(2分)如图,0C是平角∠AOB的平分线,0D、OE是∠AOC和∠BOC的平分线,图中和∠COD互余的角有个.17.(2分)看图填空.(A、0、B在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C平分∠AOD,0E平分∠BOD,则∠AOD=2 =2 .∠BOE= =12.18.(2分)(1)用度、分、秒表示:①123.38°= ;②(3154)°= ;(2)用度表示:①51°25′48″= ;②128°20′42″= .19.(2分)如图,AC=1.5 cm,BC=2.5 cm,那么AB= + = .20.(2分)根据图形,把下列语句填写完整.(1)直线a、b相交于;(2)直线c由两点所确定;(3)点D在直线外,点E在直线上.21.(2分)如图,几何体有m个面,n个顶点,l条棱,则m n l+−= .22.(2分)如图①是棱长为a的小正方体,图②、图③由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,……,第n层.第n层的小正方体的个数为.(用含行的代数式表示).当层数为l0时,第10层小正方体的个数为.评卷人得分三、解答题23.(7分)(1)如图,已知∠AOB=Rt∠,∠BOC=40°,0M平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;(3)你能从(1)、(2)的结果中发现什么规律?24.(7分)如图,点C是直线AB上的一点,已知∠BCD=30°,∠ACE=2∠BCD,请判别断CD与CE的位置关系,并说明理由.25.(7分)考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45,某∠的度数.考室B位于O点南偏东60,请在右图中画出射线OA,OB,并计算AOB26.(7分)平面上有5条直线,无任何三条交于一点,欲使它们出现9个交点,有可能吗?请作图验证.27.(7分)如图,如何比较两个三角形的周长?请你设计出一种方法,写出比较结果.28.(7分)A市辖区内的B、C、D、E四县市正被日益严重的水污染所困扰,居民的饮用水长期达不到较高的标准.为了人民的身体健康,该市与四个县市的领导、专家多次研究,计划从A市某水库引水,供给四县市的城市居民.五个市县间的距离如图所示(单位:km).已知铺设引水管道需费用14500元/km如果不考虑其它因素,请你设计出几种不同的引水管道铺设方案.并指出哪种铺设方案最经济.29.(7分)如图所示,两个完全相同的长方体的长、宽、高分别为5 cm、4 cm、3 cm.把它们叠放在一起组成一个新长方体,在这个新长方体中,表面积最大是多少?30.(7分)请根据几何图形举出生活中的对应实例【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.A3.B4.B5.D6.B7.D8.C9.D10.C11.A二、填空题12.相交13.8814.126°15.110°,ll0°16.317.(1)∠AOC,∠COD,∠DOE (2)∠BOC (3)∠DOE (4)∠COB (5)∠AOC,∠COD,∠DOE,∠BOD18.(1)①123°22′48″②l5°45′ (2)①51.43°②l28.345°19.AC,BC,4cm20.(1)E (2)C、D (3)a,a或b21.222.1(1)2n n+;55三、解答题23.(1)45°;(2)12α;(3)∠MON的度数是∠AOB度数的一半,即∠MON=12∠AOB 24.CD⊥CE25.图略,180(4560)75AOB =−+=∠.26.有可能,图略27.画线段,分别等于两个三角形的周长,再比较28.方案一:A →B →C →D →E ,W 1=(30+30+45+30)×14500=1.9575×106(元) 方案二:W 2=(55+30+45+30)×14500=2.32×106(元) 方案三:W 3=(50+30+45+30)×14500=2.2475×106(元) 方案四:W 4=(30+50+30+45)×14500=2.24755×106(元) 方案五:W 5=(354-55+45+30)×14500=2.3925×106(元) 方案六:W 6=(30+55+50+35)×14500=2.465×106(元) 方案七:A →E →D →C →B ,W 7=(35+30+45+30)×14500=2.03×106(元) 方案八:W8=(30+30+35+30)×14500=1.8125×106(元)通过以上八个方案的比较,铺设方案八即从最经济,总费用只需181.25万元.29.164 cm230.略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版7年级上数学图形的初步认识试卷
一.选择题(共13小题)
1.如图所示,将平面图形绕轴旋转一周,得到的几何体是()
A.球B.圆柱C.半球D.圆锥
2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,
能解释这一实际应用的数学知识是()
A.两点确定一条直线
B.两点之间线段最短
C.垂线段最短
D.在同一平面内,过一点有且只有一条直线与已知直线垂直
3.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.
A.6B.12 C.15 D.30
4.经过任意三点中的两点共可以画出的直线条数是()
A.一条或三条B.三条C.两条D.一条
5.手电筒发射出来的光线,给我们的感觉是()
A.线段B.射线C.直线D.折线
6.延长线段AB到C,下列说法正确的是()
A.点C在线段AB上B.点C在直线AB上
C.点C不在直线AB上D.点C在直线BA的延长线上
7.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,
则AD的长为()
8.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC
9.已知线段AB=16cm,O是线段AB上一点,M是AO的中点,N是BO的中点,则MN=
()
A.10cm B.6cm C.8cm D.9cm
10.如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC
的长度是()
A.3cm B.3.5cm C.4cm D.4.5cm 11.如果延长线段AB到C,使得,那么AC:AB等于()
A.2:1 B.2:3 C.3:1 D.3:2
12.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为
()
A.C D=2AC B.C D=3AC C.C D=4BD D.不能确定
13.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC
的长等于()
A.3cm B.6cm C.11cm D.14cm
二.填空题(共13小题)
14.如图,数轴上A、B两点之间的距离为_________.
15.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC=_________
cm.
16.已知,点C是线段AB的中点,且AB=20cm,则AC=_________cm.
17.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是_________.
18.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=12,AC=8,则CD=
_________.
19.已知点C是线段AB的中点,AB=2,则BC=_________.
20.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=10,AC=6,则CD= _________.
21.如图,C是线段AB上的一点,且AB=13,CB=5,M、N分别是AB、CB的中点,则线段MN的长是_________.
22.已知A、B、C三点在同一条直线上,M、N分别为线段AB、BC的中点,且AB=60,BC=40,则MN的长为_________.
23.线段AB=4cm,在线段AB上截取BC=1cm,则AC=_________cm.
24.如图,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的_________倍.
25.如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于_________°.
26.计算:50°﹣15°30′=_________.
三.解答题(共4小题)
27.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的
长.
28.直线上有两点A,B,再在该直线上取点C,使BC=AB,D是AC的中点,若BD=6cm,求线段AB的长.
29.已知M、N两点把线段AB分成比例1:4:5的三个部分,C是AN的中点,已知CB=12,求:
(1)AC的长;
(2)MC:CN.
30.已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间的距离是14cm,求BD和AC的长.
参考答案
一.选择题(共13小题)
1.A
2.A
3.D
4.A
5.B
6. B.
7.B
8.D
9.C
10.C
11.D(
12.B
13.B(
二.填空题(共13小题)
14.4.
15.5或11cm.
16.10cm.
17.两点之间线段最短.
18.2.
19.1.
20.2.
21.4.
22.10或50.
23.3cm.
24.3
25.135°.
26.34°30′.
三.解答题(共4小题)
27。

解:∵P是MB中点
∴MB=2MP=6cm
又AM=MB=6cm
∴AP=AM+MP=6+3=9cm.
28.解:如图1所示,
∵BC=AB,D是AC的中点,
∴设CD=x,则BC=2x,
∴BD=CD+BC=x+2x=3x=6cm,解得x=2cm,
∴AB=AC+BC=2x+2x=4x=8cm;
如图2所示,
设BC=x,
∵BC=AB,
∴AB=2x,
∴AC=AB+BC=2x+x=3x.
∵D是AC的中点,
∴DC=AC=x,
∵BD=6cm,
∴BD=DC﹣BC=x﹣x=6cm,
∴x=12cm,
∴AB=2x=24cm.
综上所述,线段AB的长为8cm或24cm.
由线段的和差,得
CB=CN+BN=AM+5AM=12.
解得AM=.
AC=AM=×=4;
(2)由线段的和差,得
MC=AC﹣AM=AM﹣AM=AM=×=,
CN=AC=4,
MC:CN=:4=3:5.
30.解:如图,设BD=x,则AB=4x,CD=5x,
∵E、F分别为线段AB、CD的中点,
∴AE=BE=AB=2x,DF=CF=CD=2.5x,
∴DE=BE﹣BD=2x﹣x=x,
∴EF=DE+DF=x+2.5x=3.5x,即3.5x=14,解得x=4,
∴BD=4,
AC=AE+DE+CD=2x+x+5x=8x=32.
初中数学试卷。

相关文档
最新文档