电介质在强电场下的特性

电介质在强电场下的特性
电介质在强电场下的特性

绪论

一、绝缘受到各类电压

1、工频电压

3~220KV等级最高工作电压等级=1.15╳额定电压

330~500KV等级最高工作电压等级=1.1╳额定电压

2、暂时过电压(内部过电压)

工频电压升高,谐振过电压

3、操作过电压(内部过电压)

4、雷电过电压

二、外绝缘:利用空间作为介质的部分

(1)母线间,母线与杆塔间的空气间隙

(2)套管及支柱绝缘子表面

(3)隔离开关触点间

内绝缘:处在变压器或电器外壳内部或电缆外皮内部的绝缘,一般为组合绝缘。三、绝缘的击穿:高幅值过电压作用下,绝缘可能丧失其介质性能,对内外绝缘后果不一样。空气绝缘为自然恢复绝缘,会使供电短时中断,但一般不会使绝缘损坏;内绝缘的电气强度的破坏常常不可逆,导致贵重设备的损坏。

第一部分高电压绝缘及其试验

1.1 概述

1、气体:气体的场强超过某一临界值时,失去绝缘性能,出现导电或放电现象。

(1)均匀电场中,出现放电常导致间隙的短路并使间隙两端电压下降——称破坏性放电(绝缘的击穿)

a.在大气或更高的气压下表现为火花的形式,称火花放电

b.电源功率大,内阻小,出现电流大、温度高的电弧放电

上述放电均限制在带状狭窄通道中

(2)极不均匀电场中,只有部分间隙场强达到临界值——局部放电2、液体和固体

破坏性放电、击穿

闪络:破坏性放电沿固体介质表面

应用实例:在绝缘子的结构设计中,总要使其闪络电压低于固体介质的击穿电压以免在出现过电压时绝缘子破坏。

1.2 气体中带电质点的产生和消失

电离能:气体的电离所需的能量,随气体种类而不同(10~15eV)

一、高压过程

1、碰撞电离

2、光电离:光辐射的能量以不连续的光子的形式发出,光子的能

量与光的波长有关,波长越短,能量越大。例宇宙线,γ线,x线,

短波长紫外线具有较强的电离能量。

3、热电离:高温,例电弧

4、表面电离:(表面发射)

①逸出功:电极发射电子所需的能量,与电极材料及表面状态有关。1~5eV(1eV=1.602╳10-19 c·v=1.602╳10-19 J)逸出功小于气体电离能,说明阴极发射电子比在空间使气体分子电离容易。

②方式:加热电极,正离子对阴极的碰撞,短波光照射,场强作用。

二、去电离过程

带电粒子的扩散(高浓度区到低浓度区)、复合(正离子与负离子、正离子与电子、伴随光辐射(强烈的电离区通常也是强烈的负荷区,这个区的光亮度也就较高)),电子的附着作用(电子形成负离子,放出能量;电负性气体(氧、氯、氟、水蒸气和SF6))

1.3 气体的放电现象和电子崩的形成

1、自持放电:图1-2中,C点以后,不需外界电离因素,放电还能够持续下去。

2、非自持放电:图1-2中,C点以前,需外界电离因素,放电还能够持续下去。

3、电子崩:图1-2中,b点以后

设电子在电场方向走过单位距离时所产生的碰撞离子数dx

(电子的碰撞粒子系数),假设由于外界射线的作用,从阴极发出电子,

经过距离x 后增加到n ,在经过距离dx ,增加的电子数为dn .

dx n dn α=

n

dn =dx α 积分后, ?=x dx e n 0α

(式1-1)

若均匀电场,α为常数,e n =x α (式1-2)

若计及新产生的电子也参加电离过程,则电子数增加到e x α 例:若x α=10,则e x α =102.2?=4

α的性质:取决于两因数的乘积

1)电子在单位距离内产生的碰撞次数=λ1

(λ为平行自由行程) 2)每次碰撞产生电离的概率

电子与气体分子碰撞时产生电离的工作条件是:电子的动能至少应等于气体分子的电离能。

1.4 汤森的自持放电条件

在均匀电场中,自持放电的开始,即间隙的击穿。

汤森认为,电子崩的正离子,在返回阴极时,在阴极上产生的两次电离过程,是取得二次电子而使放电转为自持的关键。

起始电子——碰撞电离——电子数增为e

d α d 为相间距离 新产生的电子数或正离子数为

e d α-1

一个正离子返回阴极时,由于其具有的位能(电离能)及动能,从阴极上释放出λ个二次电子(λ<1)。(e

d α-1)个正离子,所释放的电子数λ(

e d α-1)个。若λ(e d α-1)≥1,原来的初始电子就可以得到接替,使后继电子崩不需依靠外界因素的作用就得到发展。

∴自持放电条件λ(e d α-1)≥1 (1-8) 而 e

d α》1 上式可写成λ(

e d α-1)=λe d α≥1 (1-9)

γ决定电极材料及其表面状况,以及气体种类。

汤森用电子的碰撞电离和正离子在阴极上释放二次电子来说明自持放电形成的理论。

适用:均匀电场,低气压小间隙

1、 稍不均匀电场,任何一处自持放电的条件,就是整个间隙击穿的条件。

2、 极不均匀电场,气隙某处发生局部自持放电,有可能被稳定地局限于该处附近的局部空间,而不会导致整个间隙的击穿。

1.5 均匀电场中间隙的击穿电压

一、自持放电条件:λe

d α ≥1

d α=ln λ1

一个电子经过极间距离所产生的碰撞电离数d α必须达到一定数值,ln λ1

才会开始自持放电。

二、决定条件:

1、)(0pd f U = (式1-11)间隙的击穿电压。

U 0是气压,p 与级间距离d 乘积的函数。见图1-4

2、考虑温度变化的影响。以气体的密度代替压力)(0d f U δ=(式1-12)

δ为空气的相对密度。

空气间隙的U 0最小值约为327V ,相应的d α值为10375.0-?em

∴大气压力或更高气压下间隙的d δ值要远大于上述值,

击穿在巴申曲线的右半部,即U 0随d δ的增大而升高。

1.6 流注放电理论

一、汤森不能解释

1、 从加上电压到放电形成所需要的空间,至少应等于正离子走过极间距离的时间,但实测的放电时间小得多。

2、 气体放电应在整个间隙中均匀连续的发展。

① 低气压下气体放电区域确实占据了整个电极空间,例放电管的辉光放电。

② 大气压力下气体击穿时出现的却是带有分支的明亮细通道。

二、流注理论:电子的碰撞电离和空间光游离是形成自持放电的主要因素,并强调空间电荷畸变电场的作用。

适应范围:均匀电场长间隙,不均匀电场。

过程:初始电子(由外界游离因素由阴极释放)→碰撞游离→初始电子崩→正离子(崩头密度最大)作为正空间电荷,使后面的电场

受到畸变和加强→放出光子→光游离→二次电子→二次崩→流注(充满正负带电离子的混合通道,发展方向与出崩相反)→大大加强了前方的电场→流注向前推进→击穿。

形成流注的条件:出崩头部的电荷达到一定的数量,使电场得到足够的畸变和加强并造成足够的空间光电离。一般认为α或。一旦形成流注,放电就可以转入自持,在均匀电=e d

20108

=

)

(

场中即导致间隙的击穿,在一定间隙距离下(球—球或球—板)击穿电压比较稳定。

1.7 不均匀电场中气隙的放电特性

最大场强E max出现在曲率半径小的电极表面附近。

极不均匀电场的特性:能够出现稳定电晕,从而电晕起始电压低于击穿电压。

稍不均匀电场:不能出现稳定电晕的电场。

过程:电晕(电压低时均匀的电子崩式,电压高时不均匀的流注式)

短间隙——流注贯通间隙——击穿

长间隙d >1m,增大了流注与对面电极间的电容,导致流注根部电流增长,使其温度升高到足以出现热电离的程度(具有热电离过程的通道称为先导通道)

先导通道中带电粒子的浓度——流注通道→电导大,压降小。

先导通道发展到接近对面电极时,↓

E,引起强烈的电离,

d

→↑

这一强烈电离区以极高的速度向相反方向传播(主放电)—主放电在

板间形成高电导通道,相当于间隙短路。

长时电压(工频为直流)作用下气隙的放电特性

1、当间隙距离增加到一定数值时,间隙中将由稍不均匀电场转变为极不均匀电场,这时将会在较低的电压下首先出现电晕,当电压进一步升高时发生击穿。

2、间隙的电晕起始电压,主要取决于电极的表面形状(即曲率半径),而与间隙距离关系不大,球径越小,电晕起始电压就越低。

3、随着间隙距离的增加,电厂不均匀程度逐渐增大,间隙的平均击穿场强也逐步由均匀电场中的30KV(峰值)/cm。

4、在极不均匀电场中,击穿电压主要决定于间隙距离,而与电极形状关系不大。

棒极为负的击穿电压>棒极为正的击穿电压

解释:1、棒极为负

正空间电荷削弱朝向极板方向的电场放电发展困难击穿电压高。

2、棒极为正

棒极附近形成电子崩电子迅速进入电极留下来的正空间电荷加强了朝阴极方向的电场有利于流注向间隙深处发展

工频电压下不同的击穿电压特性

棒—板<导线—杆塔<棒—棒<导线—导线

1.8 雷电冲击电压下气隙的击穿特性

标准雷电 波前时间us T 36.02.11±=

50/2.1 波长 us T 10502±=

放电时间t t 1

=(电压电容升到静态击穿电压U 0)+放电时延(式1-16) 放电时延=t s (统计时延 有效电子出现所需时间)+t f (放电形成时

延 从有效电子出现到间隙击穿完成)。t s 和t f 随间隙外施电压增高而

减少。

伏秒特性:冲击放电电压与放电时间的关系曲线

均匀电场平坦,不均匀电场陡

伏秒特性曲线作用:绝缘配合关系

①u %50击穿电压

冲击系数=静态电压冲击击穿电压

u %50

均匀稍不均匀:击穿电压分散性小,冲击系数=1,击穿在波前峰值附近。

极不均匀电场:击穿电压分散性大,冲击系数>1,击穿常在波尾。 ②u s 2冲击击穿电压

均匀稍不均匀:其值=u %50

极不均匀电场:其值≥u %50

棒—板间隙有明显的极性效应,棒—棒间隙也有不大的极性效应。 大地的影响,使不接地的棒极附近电场增强。

1.9 操作冲击电压下长空气间隙的击穿特性

新特点:波形对击穿电压有很大的影响;在一定的波形下,操作冲击击穿电压<工频击穿电压

标准波形:250/2500us

其他波形:100/2500us 500/2500us

衰减振荡电压

特点:

1、操作冲击电压的波前时间对间隙的u50 有很大影响。见图1-16 “U”型曲线,在某一波前时间(称为临界波前时间)下u50有极小值,其值可能比间隙的工频击穿电压还低,在正极性下更加明显。

间隙距离↑→临界波前时间↑

原因:

试验证明:流注区的平均梯度。Es=5kV/cm.而先导通道的平均梯度则

小的多

先导长度占间隙距离的百分比愈大,击穿电压就愈低。

操作冲击:

①电压波波前<临界波前时,先导发展的时间短→最后跳跃阶段先导的长度短→一定导致击穿据需较高的电压峰值。

②电压波波前<临界波前,电压升高陡度降低→空间电荷使电场受到

削弱→电导的发展具有间歇性→击穿电压略有提高

且分数性增大

雷电冲击 作用时间短,在最后跳跃阶段的开始时,先导通道来不

及显著发展

间隙的击穿场强约等于流注区的场强5kV/cm

3、 操作冲击电压下间隙击穿电压的特点二:分散性大

极不均匀电场50%击穿电压:操作下偏差(4~8)%

工频及雷电冲击3%

d=10cm 间隙操作电压平均击穿场 2kV

d=20cm 1.25kV

平均击穿场强随间隙距离↑而↑即击穿电压岁距离加大而出现“饱和”的现象

∵击穿前先导阶段能有较充分的时间发展。

工频电压下棒—板长间隙的击穿电压也有类似“饱和”现象(图1-10) 雷电冲击电压下无“饱和”现象

∵在最后的跳跃阶段的开始时先导通道来不及显著发展。

1.10 大气条件对空气间隙击穿电压的影响

我国规定的标准大气条件:

气压:p 0 =101.3kPa(=1013mbar=760mmHg)

温度:t 0=20℃

湿度:h 0=11g/m 3 U=U Kh Kd 0

(式1-20) Kd ——空气密度校正系数,Kh ——湿度校正系数

一、 对空气密度的校正 空气的相对密度t

KPa p +=273)(89.2δ (式1-21) 0.95<δ<1.05 Kd=δ 若不考虑湿度 则U U 0δ=(1mm 下间隙)

上式适用条件:间隙距离不大,电场比较均匀的球—球间隙。间隙距离虽大,间隙击穿电压随距离线性大。(如雷电条件下)

普通的公式:(p p

0)m )273273(0t

t ++?n (式1-22) 0.4

二、对湿度的校正

实验结果:

1、在均匀或稍不均匀电场中空气间隙的击穿电压随空气中湿度↑而略有增加,可忽略。

2、在极不均匀电场中,湿度↑→电子附着在水分子上形成负离子的比例增加→削弱电离过程→击穿电压↑

∵均匀电场击穿场强较高,电子速度大,∴湿度影响较小;极不均匀电场平均击穿场强较低,放电形式时延较长,∴湿度影响较大。 极不均匀电场,湿度校正系数:

)(K W Kn =

(式1-13)

K ——绝对湿度及电压形成的函数

W ——与电极形状、距离、电压形式、极性有关

三、海拔高度的影响

高度↑→密度↓→击穿电压↓

1041.11

-?-=H Ka

(式1-24)

1.11 提高气体间隙抗电强度的方法

一、改善电场分布

左间隙中与电场力线垂直的方向插入用薄片固体介质做成的“屏障”,在棒—板间隙中,电晕产生的与棒极同步的空间电荷→被屏蔽所阻遏而积聚其上→由于相互间的排斥力→均匀分布在屏障上→ ① 空间电荷削弱了棒极与屏障间的电场→抗电强度↑

② 空间电荷加强屏障与极板间的电场→电场均匀

带有屏障的间隙的击穿电压与屏障的位置有关(图1-17):屏障与棒极距离约等于间隙距离的1/5~1/6时击穿电压提高的最多。 棒极为正:击穿电压可达无屏蔽时的2—3倍

棒极为负:击穿电压可达无屏蔽时的1.3倍

1、工频电压下,击穿发生在棒极为正的半周内,设屏障后击穿电压的提高同直流下正棒极时一样。

2、雷电下,屏障效果较弱(∵来不及积聚起显著的空间电荷)

二、高气压及高抗电强度气体的采用

1、某些电气设备(例高压标准电容器等)采用压缩空气作为内绝缘

可减小尺寸

2、高抗电强度气体 SF6 CCl2F2

常压下,它的介质强度=2.5空气的介质强度

气压↑,它的介质强度≥一般的液体或固体绝缘的介质强度随气压的增加,气体的击穿电压会出现不遵循巴申定律所估计的低

三、高真空的采用:真空间隙的击穿电压∝间隙距离的平方根

试验证明:放电时真空中仍有一定的粒子流存在。

1、强电场下由阴极发射的电子自由飞过间隙,积累起足够的能量撞

击阳极,使阳极物质粒子受热蒸发或之间引起正离子发射。

2、正离子运动到阴极,阴极产生二次电子,如此循环,放电便得到

维持。

3、电极或器壁吸附的气体在高真空时释放出来,也会造成微弱的空

间电离

1.12 输电线上的电晕放电

可利用:电晕削弱输电线上雷电冲击电压波的幅值和陡度,也可使操作过电压衰减。

一、电晕的效应

1、蓝色的晕光丝丝的电晕噪声热

2、化学反应 03NO→HNO3 SO2→H2SO4 对金属腐蚀

3、耗能 对500~750kV,好天气时100kW/km

4、通讯干扰;特别是工频下的电晕,不断发射电磁波,最严重的无线电干扰源来自正半周时的流注放电特别是表面粗糙或有水滴附着。

5、在尖端或电极的突出外形成电风。

6、噪声。

二、电晕等效起始场强Ec

与空气相对及导线半径有关,当导线表面粗糙时,Uc ↓→Ec ↓ 电晕起始电压kV r

D r Uc

E C ln =(峰值)(式1-27) P 为导线的几何均距 D D D D 132312=

在交流输电线的情况下,空间电荷的运动造成的电晕电流>绝缘的泄露电流

空间电荷的运动需能量,这构成了输电线路电晕损耗的主要部分。

三、其放电电流由一系列短促的陡脉冲组成

1、与电离的间歇性质有关

电离后产生的与导线同步的空间电荷削弱了它们与导线间电场→电离止→电荷向外扩散→电场↑→电离再次爆发。

2、电压较高时流注的不断形成,熄灭,重新爆发。

四、导线表面场强E ∝n (式1-28)

降低的方法;

1、

增大线间距离D 。将导致杆塔造价↑→线路电抗↑ 2、 增大导线半径r ,为经济→分裂相导线。

1.13 沿绝缘子表面的气体放电(沿面放电)

闪络——放电发展到使整个极间发生沿面击穿时

沿面闪络电压<纯空气间隙的击穿电压

绝缘子在设计制造时要求使其固体介质的击穿电压大于沿面闪络电压约50%

一、不同绝缘子结构的沿面放电特性

1、固体介质在均匀电场它的表面//电力线

沿面闪络电压<纯空气间隙的击穿电压

∵介质表面吸附的水分以及存在的微气隙等使电场分布发生改变。2、极不均匀电场介质表面电场 Et(切线)>>En(法线)例支柱绝缘子

∵电晕→O3NO对介质作用对聚合物绝缘危险(特别是电晕是流注形成的),聚合物分解并产生导电的碳化痕迹,导致绝缘闪络并使其永远丧失绝缘能力。

方法:屏障电极,内屏蔽

3、极不均匀电场 Et<

流注通道紧贴在固体介质的表面上→绝缘强度最低

在一定的电压下,电流↑温度↑→热电离

滑闪放电(外观上和放电机理上都类似的长空气间隙中的先导放电)—细线状的电晕流注转为淡紫色树枝状闪烁不定的明亮火花。

提高套管闪络电压方法:

(1)增大套管在法兰附近的直径,以减小引芯线的表面电容

(2)靠近法兰外涂半导体漆、釉,减小表面电阻,使电压分布均匀直流电压下,沿面闪络电压接近于纯气隙的击穿电压。

二、悬式绝缘子串的电压分布及闪络特性

图1-24 C绝缘子本身电容50~70PF C1对地电容4~5PF C2对导线电容0.5~1PF

图1-24 层式绝缘子串等值电路电压分布均压环的作用:加大绝缘子对导线侧的电容C2(330kV级以上)

①绝缘子串不长时,湿闪电压(电压分布均匀)<<干闪电压(电压分布不均匀)。干闪络梯度随绝缘子串长度增加而下降;按绝缘子串长度或个数线性增加。

②随绝缘子串长度↑其湿度电压将会逐渐接近以致超过干闪电压

三、绝缘子表面污染时的沿面放电

1、闪络机理

泄漏电流使污层加热→加热不平衡→干外电阻↑→沿面电压分布改变→电压降在电阻大区域→火花放电通道,局部电弧→①∵火花通道的电阻<原来干燥部分的电阻;②局部电弧根部菌迅速变干

①→泄露电流↑→进一步干燥→泄流电流↓

②→电弧伸长→进一步干燥→泄流电流↑

雷电冲击电压下,绝缘子表面对闪络电压无影响,干燥时,潮湿时闪络电压一样。

2、爬电比距—绝缘子每1kV额定线电压的平均爬电距离来估计

绝缘子的耐污性能,无污染地区最小爬电比距16mm/kV(额定线电压)

3、措施:

(1)定期对绝缘子清扫或带电水冲洗

(2)憎水性涂料

(3)加强绝缘子和使用防污绝缘子

(4)半导体釉绝缘子

电介质物理基础孙目珍版最完整课后习

第一章 电介质的极化 1.什么是电介质的极化?表征介质极化的宏观参数是什么? 若两平行板之间充满均匀的电介质,在外电场作用下,电介质的内部将感应出偶极矩,在与外电场垂直的电介质表面上出现与极板上电荷反号的极化电荷,即束缚电荷σˊ。这种在外电场作用下,电介质内部沿电场方向产生感应偶极矩,在电介质表面出现极化电荷的现象称为电介质极化。 为了计及电介质极化对电容器容量变化的影响,我们定义电容器充以电介质时的 电容量C 与真空时的电容量C0的比值为该电介质的介电系数,即 0r C C = ε,它是一个大于1、无量纲的常数,是综合反映电介质极化行为的宏观物理量。 2.什么叫退极化电场?如何用一个极化强度P 表示一个相对介电常数为r ε的平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电电荷产生的电 场。 电介质极化以后,电介质表面的极化电荷将削弱极板上的自由电荷所形成的电场,所以,由极化电荷产生的场强被称为退极化电场。 退极化电场:0 0εεσP E d -='- = 平行宏观电场:)1(0-= r P E εε 充电电荷产生的电场:) 1()1(0000000-= +-=+=== +=r r r d P P P P E D E E E εεεεεεεεεεσ 3.氧离子的半径为m 101032.1-?,计算氧原子的电子位移极化率 按式304r πεα=代入相应的数据进行计算。 240310121056.2)1032.1()1085.8(14.34m F ??≈?????=---α 4.在标准状态下,氖的电子位移极化率为2101043.0m F ??-。试求出氖的相对介电常数。 单位体积粒子数253 23 1073.24 .221010023.6?=??=N e r N αεε=-)1(0 12 40 250 1085.81043.01073.211--????+=+ =∴εαεe r N 5.试写出洛伦兹有效电场的表达式。适合洛伦兹有效电场时,电介质的介电系数 r ε和极化率α有什么关系?其介电系数的温度系数的关系式又如何表示。

电介质的电学性能及测试方法

电介质材料的电性包括介电性、压电性、铁电性和热释电性等。 1介电性、 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中) 的比值即为相对介电常数,又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。 介电常数又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对介电常数越小即某介质下的电容率越小,应该更不绝缘。来个极限假设,假设该介质为导体,此时电容就联通了,也就没有电容,电容率最小。介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。 科标检测介电常数检测标准如下: GB11297.11-1989热释电材料介电常数的测试方法 GB11310-1989压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 GB/T12636-1990微波介质基片复介电常数带状线测试方法 GB/T1693-2007硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T2951.51-2008电缆和光缆绝缘和护套材料通用试验方法第51部分:填充膏专用 试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直 流电阻率 GB/T5597-1999固体电介质微波复介电常数的测试方法 GB/T7265.1-1987固体电介质微波复介电常数的测试方法微扰法 GB7265.2-1987固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T10142-1991电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T10143-1991固体电介质微波复介电常数测试方法重入腔法 SJ/T11043-1996电子玻璃高频介质损耗和介电常数的测试方法 SJ/T1147-1993电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ20512-1995微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T6528-2002岩样介电常数测量方法 服务范围:老化测试、物理性能、电气性能、可靠性测试、阻燃检测等 介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负 电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化(electronic polarization,1015Hz),离子极化(ionic polarization,1012~1013Hz),转向极化(orientation polarization,1011~1012Hz)和 空间电荷极化(space charge polarization,103Hz)。这些极化的基本形式又分为位 移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立

电气绝缘用玻璃的特性

电气绝缘用玻璃的特性 1、机械性质:玻璃的破坏用由于拉伸应力从表画破裂,与其他显示脆性破坏的物质一样,其强度测定值的分散性一般都较大。例如,属于同一族的板玻璃试样的弯曲破坏强度为700一1600kgf/cm2。显示这样大分散性的玻璃强度,若着眼于其平均值时,则出于试样的尺寸、表面状态(有无伤痕)、热处理条件、化学处理条件、测定条件等不同而有很大的变动。因而一般来说,讨论玻璃的实用强度是非常困难的。 一般玻璃的实用强度、考虑要在其理论强度的1/100以下左右,有关其原因,格里菲恩(Griffith)认为,是由于在玻璃的表面上分布有细微的缺陷,在拉伸应力下,该缺陷会产生应力集中的缘故。这种GriffitL的裂纹理论用来说明玻璃的实用强度与理论强度的差,以及说明实用强度的尺寸效果是极其有效的。此外,由于空气冷却钢化,在玻璃的表层部分产生压缩应力后,施加外力时,由于其对产生的拉伸应力起抵消的作用,并带来防止玻璃表面Griffith裂纹的扩大的效果,例如纳钙玻璃的实用强度(拉伸强度)150kBgf/cm2,通过空气冷却钢化处理可使其强度提高到950 kgf/cm2左右。 2.电气性质:玻璃是典型的离子传导性物质,离了依电压而流动并传导电。通常,这种离于为—价的形成玻璃的氧化物离子.特别是Na+离子。例如,在玻璃中加Na2o,因Na+离子的移动度非常大,会产生介质损耗的增大和电阻率降低等现象。 一般,若引入碱的成分时,会看到与Na2O一样的特性变化,其变化程度Na2O是最显著的。这样,玻璃的介电特性和电阻率可以认为是大致决定于玻璃的成分。例如,为获得介电特性和电阻率均优异的玻璃,要像无碱玻璃那样,必须避免引入碱成分。 包括玻璃在内,一般绝缘物的绝缘击穿破坏即使在同一种物质中,往往既有基于热的原因,也有基于电子的原因。一般可认为玻璃完全是热的原因引起的。即由于加电压促使玻璃个电流流动而导致焦耳热加热,电阻率降低,再增加电流则由于产生发热的这种机制而使玻璃引起局部的热击穿。因而,一般介电特性处良好的,则电阻率接大的玻璃,有绝缘强度越高的趋向。又依试件的形状、尺寸

电介质的电气特性及放电理论-高电压技术考点复习讲义和题库

考点1:电介质的电气特性及放电理论 (一)气体电介质的击穿过程 气体放电可以分非自持放电和自持放电两种。20世纪Townsend在均匀电场,低气压,短间隙的条件下进行了放电试验,提出了比较系统的理论和计算公式,解释了整个间隙的放电过程和击穿条件。 1、汤逊放电理论的适用范围: 汤逊理论的核心是: (1)电离的主要因素是电子的空间碰撞电离和正离子碰撞阴极产生表面电离; (2)自持放电是气体间隙击穿的必要条件。 汤逊理论是在低气压、Pd值较小的条件下进行的放电实验的基础上建立起来的,这一放电理论能较好的解释低气压短间隙中的放电现象。因此,汤逊理论的适用范围是低气压短间隙(Pd<26 66kPa.cm)。在高气压、长气隙中的放电现象 无法用汤逊理论加以解释,两者间的主要差异表现在以下几方面: (1) 放电外形根据汤逊理论,气体放电应在整个间隙中均匀连续地发展。 低气压下气体放电发光区确实占据了整个间隙空间,如辉光放电。但在大气压下气体击穿时出现的却是带有分支的明亮细通道。 (2) 放电时间根据汤逊理论,闻隙完成击穿,需要好几次循环:形成电子崩,正离子到达阴极产生二次电子,又形成更多的电子崩。完成击穿需要一定的时间。但实测到的在大气压下气体的放电时间要短得多。 (3) 击穿电压当Pd值较小时,根据汤逊自持放电条件计算的击穿电压与实测值比较一致;但当Pd值很大时,击穿电压计算值与实测值有很大出入。 (4) 阴极材料的影响根据汤逊理论,阴极材料的性质在击穿过程中应起一定作用。实验表明,低气压下阴极材料对击穿电压有一定影响,但大气压下空气中实测到的击穿电压却与阴极材料无关。

由此可见汤逊理论只适用于一定的Pd范围,当Pd>26 66kPa. cm后,击穿过程就将发生改变,不能用汤逊理论来解释了。 2、流注理论 利用流注理论可以很好地解释高气压、长间隙情况下出现的一系列放电现象。 (1) 放电外形 流注通道电流密度很大,电导很大,故其中电场强度很小。 因此流注出现后,将减弱其周围空间内的电场,加强了流注前方的电场,并且这一作用伴随着其向前发展而更为增强。因而电子崩形成流注后,当某个流注由于偶然原因发展更快时,它就将抑制其它流注的形成和发展,这种作用随着流注向; 前推进将越来越强,开始时流注很短可能有三个,随后减为两个,最后只剩下一个流注贯通整个间隙了,所以放电是具有通道形式的。 (2) 放电时间 根据流注理论,二次电子崩的起始电子由光电离形成,而光子的速度远比电子的大,二次电子崩又是在加强了的电场中,所以流注发展更迅速,击穿时间比由汤逊理论推算的小的多。 (3) 阴极材料的影响 根据流注理论,大气条件下气体放电的发展不是依靠芷离子使阴极表面电离形成的二次电子维持的,而是靠空间光电离产生电子维持的,故阴极材料对气体击穿电压没有影响。 在Pd值较小的情况下,起始电子不可能在穿越极间距离后完成足够多的碰撞电离次数,因而难 e≥108所要求的电子数,这样就不可能出现流注,放电的自持只能依靠阴极上的 过程。以聚积到ad 因此汤逊理论和流注理论适用于一定条件下的放电过程,不能用一种理论来取代另一种理论,它们互相补充,可以说明广阔的Pd范围内的放电现象。 ‘ 3、不均匀电场中气体的击穿 稍不均匀电场中放电达到自持条件时发生击穿现象,此时气隙中平均电场强度比均匀电场气隙的要小,因此在同样极间距离时稍不均匀场气隙的击穿电压比均匀气隙的要低,在极不均匀场气隙中自持放电条件即是电晕起始条件,由发生电晕至击穿的过程还必须增高电压才能完成。 极不均匀电场有如下特征: (1) 极不均匀电场的击穿电压比均匀电场低;

电介质物理必考汇总(必考))

第一章 一节 电偶极子:两个大小相等的正、负电荷(+q 和-q ),相距为L ,L 较讨论中所涉及到的距离小得多。这一电荷系统就称为电偶极子。 电量q 与矢径L 的乘积定义为电矩,电矩是矢量,用μ表示,即μ=q ·L μ的单位是C ·m 。 二节 电介质极化:在外电场作用下,电介质内部沿电场方向产生感应偶极矩,在电介质表面出现极化电荷的现象称为电介质的极化。 束缚电荷(极化电荷):在与外电场垂直的电介质表面上出现的与极板上电荷反号的电荷。束缚电荷面密度记为。 退极化电场Ed :由极化电荷所产生的场强。 它是一个大于1、无量纲的常数,是综合反映电介质极化行为的宏观物理量。 有效电场:实际上引起电介质产生感应偶极矩的电场称为有效电场或者真实电场,用E e 表示。感应偶极矩与有效电场E e 成正比,即 极化强度P :单位体积中电介质感应偶极矩的矢量和,即极化强度P 描述电介质极化行为的宏观参数: 描述电介质极化行为的微观参数: 宏、微观参数的联系——克劳休斯方程: 三节 宏观平均场强E 是指极板上的自由电荷以及电介质中所有极化粒子形成的偶极矩共同的作用场强。对于平板介质电容器,满足:①电介质连续均匀,②介电系数不随电场强度的改变发生变化。电位移D 的一般定义式。 有效电场:是指作用在某一极化粒子上的局部电场。它应为极板上的自由电荷以及除这一被考察的极化粒子以外其他所有的极化粒子形成的偶极矩在该点产生的电场。 洛伦兹有效电场的计算模型:电介质被一个假想的空球分成两部分,极化粒子孤立的处在它的球腔中心。要求:①球的半径应比极化粒子的间距大,这样可以视球外介电系数为ε的电介质为连续均匀的介质,球外极化粒子的影响可以用宏观方法处理;②球的半径又必须比两极板间距小得多,以保证球外电介质中的电场不因空球的存在而发生畸变。所以近似认为球内球外的电场都是均匀的。 洛伦兹有效电场的适用范围:气体电介质、非极性电介 质(非极性和弱极性液体电介质、非极性固体电介质)、高对称性的立方点阵原子、离子晶体。不适用范围:极性液体电介质和固体电介质。 五节 一、电子位移极化:在外电场作用下,电子云重心相对于原子核重心发生位移,因而产生感应偶极矩。这种极化称为电子位移极化。 由 的结果得出的一些结论:(1)在化学元素周期表中,同一族元素的电子位移极化率自上而下地增加。(2)在同一周期中,元素由左向右,电子位移极化率的变化有两种可能性。其一,随轨道上的电子数的增加,产生电子位移极化的电子数增加,电子位移极化率也增加;其二,电子轨道半径也可能减小,电子位移极化率将会下降。(3)离子的电子位移极化率的变化规律与原子的大致相同,随离子半径及价电子数的增加而增加。(4)由P=Nαe E e ,当原子或离子半径r 减小时,单位体积内的粒子数N 将增加,P 也较大。(5)电子位移极化率与温度无关,温度的改变只影响电介质组成粒子的热运动,对原子或离子的半径影响不大。(6)电子位移 极化完成的时间非常短,在10 -14-10-15 s 之间。(7)电子位移极化发生在所有的介质中。 二、离子位移极化:在离子晶体中,除存在电子位移极化以外,在电场作用下,还会发生正、负离子沿相反方向位移形成的极化叫离子位移极化。 结论:⑴离子位移极化完成的时间约为10-12--10-13s ,因此,在交变电场中,电场频率低于红外光频率时,离子位移极化便可以进行。⑵离子位移极化率与电子位移极化率有相同的数量级,约为10-40F·m 2。⑶随着温度升高,离子间的距离增大,它们之间的相互作用减弱,也就是弹性联系系数K 变小,所以离子位移极化率随温度升高而增加,但增加很小。⑷离子位移极化只发生在离子键构成的晶体,如TiO 2、CaTiO 3等,或者陶瓷电介质中的结晶相内,而不会发生于气体或液体之中。 三、偶极子转向极化:在外电场作用下,因极性电介质分子的固有偶极矩沿电场方向的转向而产生的极化,称为偶极子的转向极化。 结论:⑴偶极子的转向极化建立的时间约为10-2-10-6s 或更长,所以在不高的频率乃至工频的交变电场中,就可能发生极化跟不上电场变化的情况:出现介电系数减小,介质损耗角正切增大。⑵偶极子的转向极化存在于极性电介质中。⑶偶极子转向极化率与温度有关,温度升高,a d 下降。 四、热离子松弛极化: 在电介质内,弱联系的带电质点

电介质物理实验讲义

电介质物理实验讲义 哈尔滨理工大学 电气与电子工程学院实验中心

实验一固体电介质体积电导率温度特性 电介质具有很小的电导率,电导率大小由载流子浓度、载流子电荷、载流子迁移率决定,即 γ=nqμ 一般来说,在低电场,高温下离子电导占主要部分,特别是在高温下离子电导显著增加,因为离子迁移率与温度有指数规律,所以,高温下电介质电导按指数规律增加。这一规律,对于许多绝缘材料,在很宽的温度范围内被实验所证实。 一、实验目的 1、自己设计测量线路,设计测量电极系统,本实验给出二电极和三电极两种类型 2、掌握绝缘体积电导率的温度变化规律,且能够由实验曲线计算出电介质的电导 活化能 二、实验用仪器 本实验使用的主要仪器是ZC36型高阻计,整套仪器由直流放大器、高压直流电源及电极夹具组成,其简化线路如下图所示。 1、直流高压电源经整流后得到的直流高压,经分压器分为10,100,250,500,1000伏五档,根据被试物选择适当的测试电压,对于薄膜介质,注意不致在测试电压下发生击穿; 2、开关K 1有两个可调位置, 即“放电”和“测量”的两个 位置,K1置于“测量”位置时, 试样与整个线路接通,处于测 量状态,测试完毕后应将K1置 于“放电”位置,将充电电荷 放掉。 3、R0、R1、R2,…等是一组标准电阻,在仪器面板上是用倍率开关K3调节,其中R0是用来调节仪器的“满度”的,调节时K1置于“放电”位置,K3置于“满度”位置(即R0),若此时指示仪表不偏转到满刻度则调节满度旋钮使其指示满刻度(即调节Rp),其它标准电阻都是用来改变测量电阻量程的,使用应由小到大依次调节,使之得到准确读数。 其它有关部分在试验方法中加以介绍。 三、测试原理 由高阻计原理接线图可以看出,当在试样上施加直流电压U时,试样中的电流Ix 在标准电阻Rs(R1或R2,…)两端产生电压e g经直流放大器放大后,由微安表A测出输出电流Ip,则

高电压工程答案(清华大学版)

高电压工程课后答案 1.1空气作为绝缘的优缺点如何? 答:优点:空气从大气中取得,制取方便,廉价,简易,具有较强的自恢复能力。缺点:空气比重较大,摩擦损失大,导热散热能力差。空气污染大,易使绝缘物脏污,且空气是助燃物当仿生电流时,易烧毁绝缘,电晕放电时有臭氧生成,对绝缘有破坏作用。 1.2为什么碰撞电离主要是由电子而不是离子引起? 答:由于电子质量极小,在和气体分子发生弹性碰撞时,几乎不损失动能,从而在电场中继续积累动能,此外,一旦和分子碰撞,无论电离与否均将损失动能,和电子相比,离子积累足够造成碰撞电离能量的可能性很小。 1.5负离子怎样形成,对气体放电有何作用? 答:在气体放电过程中,有时电子和气体分子碰撞,非但没有电离出新电子,碰撞电子反而别分子吸附形成了负离子,离子的电离能力不如电子,电子为分子俘获而形成负离子后电离能力大减,因此在气体放电过程中,负离子的形成起着阻碍放电的作用。 1.7非自持放电和自持放电主要差别是什么? 答:非自持放电必须要有光照,且外施电压要小于击穿电压,自持放电是一种不依赖外界电离条件,仅由外施电压作用即可维持的一种气体放电。 1.13电晕会产生哪些效应,工程上常用哪些防晕措施? 答:电晕放电时能够听到嘶嘶声,还可以看到导线周围有紫色晕光,会产生热效应,放出电流,也会产生化学反应,造成臭氧。 工程上常用消除电晕的方法是改进电极的形状,增大电极的曲率半径。 1.14比较长间隙放电击穿过程与短间隙放电放电击穿过程各有什么主要特点? 答:长时间放电分为先导放电和主放电两个阶段,在先导放电阶段中包括电子崩和流注的形成和发展过程,短间隙的放电没有先导放电阶段,只分为电子崩流注和主放电阶段。 2.1雷电放电可分为那几个主要阶段? 答:主要分为先导放电过程,主放电过程,余光放电过程。 2.4气隙常见伏秒特性是怎样制定的?如何应用伏秒特性? 答:制定的前提条件是①同一间隙②同一波形电压③上升电压幅值。当电压较低时击穿发生在波尾,取击穿时刻t1作垂线与此时峰值电压横轴的交点为1,当电压升高时,击穿也发生在峰值,取击穿时刻的值t2作垂线与此时峰值电压横轴的交点为2,当电压进一步升高时,击穿发生在波前,取此时击穿时刻t3作垂线与击穿电压交点为3,连接123 应用:伏秒特性对于比较不同设备绝缘的冲击击穿特性有重要意义,如果一个电压同时作用于两个并联气隙s1和s2上,若某一个气隙先击穿了,则电压被短接截断,另一个气隙就不会击穿。 2.7为什么高真空和高压力都能提高间隙的击穿电压?简述各自运用的局限性? 答:在高气压条件下,气压增加会使气体密度增大,电子的自由行程缩短,削弱电离工程从而提高击穿电压,但高气压适用于均匀电场的条件下而且要改进电极形状,点击应仔细加工光洁,气体要过滤,滤去尘埃和水分 在高真空条件下虽然电子的自由行程变得很大,但间隙中已无气体分子可供碰撞,故电离过程无从发展,从而可以显著提高间隙的击穿电压,但是在电气设备中气固液等几种绝缘材料往往并存,而固体液体绝缘材料在高真空下会逐渐释放出气体,因此在电气设备中只有在真空断路器等特殊场合下才采用高真空作为绝缘。 2.8什么是细线效应?

固体电介质的电起性能

固体电介质的电气性能 一、电介质:能在其中持久建立静电场的物质。 二、分类:非极性及弱极性电介质、偶极性电介质和离子性电介质。 三、电介质的极化:电子位移化、离子位移化、转向极化、夹层介质界面极化和空间电荷极化。 四、固体介电常数:非极性及弱极性固体电介质(介点常数:2.0~2.7)、偶极性固体电介质(介点常数: 3~6)、离子性电介质(介点常数:5~8)。 五、固体电介质的电导 体积电导 微观上是由电介质或杂质的离子造成电导,宏观上由于纤维材料或多孔性材料易吸水,电阻率较低。 表面电导 干燥清洁的固体介质的表面电导很小,主要是由表面吸附的水分和污物引起的,介质吸附水分的能力与自身结构有关,是介质本身固有的性质。 固体介质可按水滴在介质表面的浸润情况分为憎水性和亲水性两大类,如下图1所示。如果水滴 的内聚力大于水和介质表面的亲和力,则表现为水滴的接触角大于90。, 即该固体材料为憎水性材料。憎水性材料的表面电导小,表面电导受环境湿度的影响较小。非极性和弱极性介质材料如石蜡、硅橡胶、硅树脂等都属于憎水性材料。如果水滴的内聚力小于水和介质表面的亲和力,则表现为水滴的接触角小于90。,即该固体材料为亲水性材料。亲水性材料的表面电导大,且表面电导受环境湿度的影响大,偶极性和离子性介质材料都属于亲水性材料。 采取使介质表面洁净、干燥或涂敷石蜡、有机硅、绝缘漆等措施,可以降低介质表面电导。 图 1 六、电介质的能量损耗 在交流电压作用下介质的能量损耗除漏导损失,还有极化损失。 图2为介质在交流电压作用下,流过介质的电流U 和I 间的向量图。 由于存在损耗,U 和I 之间的夹角不再是90度,Ic 代表流过介质总 的无功电流,Ir 代表流过介质总的有功电流,Ir 包括了漏导损失和 极化损失。从直观上看,若Ir 大,则损失大,因此用介质损失角正 切值tan δ代表在交流电压下的损耗。

【干货】电气设备绝缘的特性和缺陷

【干货】电气设备绝缘的特性和缺陷 电气设备绝缘的特性和缺陷电气设备绝缘预防性 试验是保证设备安全运行的重要措施,本文从四种试验方法分析讨论测量电气设备绝缘的各种特性,从而判断其绝缘内部的缺陷。 1绝缘电阻的测量 最基本而常用的非破坏性试验方法:就是用兆欧表测量绝缘电阻。通常,电气设备的绝缘都是多层的,这些多层绝缘体,在外施直流电压下,就有吸收现象,即电流逐渐减小,而趋于某一恒定值(泄漏电流)。因为通过介质的电流与介质电阻的测量值成反比,故如被试品绝缘状况愈好,吸收过程进行得愈慢,吸收现象便愈明显,如被试品严重受潮或其中有集中性导电通道,由于绝缘电阻显著降低,泄漏电流增大,吸收过程快,这样流过绝缘的电流便迅速变为一较大的泄漏电流。因此可根据被试品的电流变化情况来判断被试品的绝缘状况。 当被试品绝缘中存在贯穿的集中性缺陷时,反映泄漏电流的绝缘电阻明显下降,用兆欧表检查时便发现。例如:变电站中的针式绝缘子最常见的缺陷是瓷质开裂,开裂后绝缘电阻明显下降,一般就可用兆欧表检测出来;而发电机的绝缘往往变动甚大,它和被试品的体积、尺寸、空气状况等有

关,往往难以给出一定的绝缘电阻值的判断标准。通常把处于同一运行条件下不同相的绝缘电阻进行比较,或是把这一测量的绝缘电阻和过去对它曾测得的绝缘电阻值进行比较 来发现问题;对于容量较大的设备如电机、变压器、电容器等可利用吸收现象来测量它们的绝缘电阻(即绝缘电阻测量值)随时间的变化以判断绝缘状况。吸收试验反映B级绝缘和B级浸胶绝缘的局部缺陷和受潮程度比较灵敏。发电机定子绝缘的吸收现象是十分明显的,通常用吸收比K来表示(即60s时兆欧表读数与15s时的读数之比)。由于K值是两个绝缘电阻之比故与设备尺寸无关,可有利于反映绝缘状态,完好干燥的绝缘,吸收现象明显,吸收比K常较大(大于1.3);绝缘受潮时,吸收现象不明显,吸收比较小(接近于1)。 需要注意的是,有时当某些集中性缺陷虽已发展得很严重,以致在耐压实验中被击穿,但耐压试验前测出的绝缘电阻值和吸收比均很高,这是因为这些缺陷虽然严重,但还没有贯穿的缘故。因此只凭绝缘电阻的测量来判断绝缘状况是不可能的,还需要选择其它方法进行试验。 2泄漏电流试验 泄漏电流试验与绝缘电阻测量原理相同,只是前者在较高电压下进行(高于10kV),通常是测量出试品在不同试验电压下的泄漏电流,做出泄漏电流I与试验电压U的关系曲线,

变压器绝缘材料电气性能的四个基本参数

变压器绝缘材料电气性能的四个基本参数 变压器绝缘材料电气性能的四个基本参数包括绝缘电阻、介电系数、介质损耗因数和绝缘强度。 绝缘电阻 绝缘电阻的概念:绝缘材料的电阻是指绝缘材料在直流电压的作用下,加压时间较长,且使线路上的充电电流和吸收电流消失,只有漏电电流通过时的电阻值/一般规定为电压加上一分钟后,所测得的电阻值即绝缘电阻值。对于高电压大容量的变压器,测量绝缘电阻时规定为加压10分钟。 温度与绝缘电阻的关系 随着温度的升高,电阻率呈指数下降,这是因为当温度升高时,分子热运动加剧,分子得平均动能增大,使分子动能达到活化能得几率增加,离子容易转移。 湿度与绝缘电阻得关系 水分浸入电介质中,增加了导电离子,又能促进杂质及极性分子离解。因此绝缘材料随着湿度增大而下降,尤其是绝缘纸或绝缘纸板得绝缘电阻下降的幅度更大。 电介质表面水分对其表面电阻影响很灵敏,离子晶体极性材料等亲水物资对水的吸引力大于水分子间的内聚力,表面连续的水层降低表面电阻。因此电器设备由于受潮引起绝缘电阻降低,造成漏电电流过大而损坏设备。

杂质与绝缘电阻的关系电介质的杂质直接增加了导电离子,使电阻下降,杂质又容易混入极性材料中,促进极性分子离解使导电离子更多。 电介质表面受杂质污染,并吸附水分会使表面电阻率迅速下降、绝缘材料的绝缘电阻是反映材料中杂质多少的最灵敏的参数之一。在绝缘材料的标准中常常用测量体积电阻率的方法来衡量绝缘材料的 杂质含量,为了保证绝缘材料的绝缘水平,绝缘材料厂必须严格地控制生产环境的洁净度。 电场强度与绝缘电阻的关系 在电场强度不太高的情况下,电场强度对离子的转移能力和对电阻率的影响都很小。当电场强度增高时,离子的迁移能力随电场强度升高而增加,使电阻率下降,当电场强度升高到使电介质临近击穿时,由于出现大量电子迁移,使电阻率呈指数下降。 电介质损耗 在交流电压作用下,电介质中部分电能将转变为热能,这部分能量叫做介质损耗,它主要是由导电和缓慢松弛极化引起的,它又是导致电介质发生电击穿的根源。

电气性能检测法

电气性能检测 一般衡量电气性能的指标有以下几个方面: 介电强度,在连续升高的电压下电极间试样被击穿时电压与试样厚度之比,单位KV/mm(2) 介电常数,以塑料为介质时的电容与以真空为介质的电容之比 介电损耗,表征该绝缘材料在交流电场下能量损耗的一个参量,是外施电压与通过试样的电流之间的余角正切。 体积电阻系数和表面电阻系数 耐电弧性,表示塑料对电弧,电火花的抵抗能力,塑料的耐电弧性常以烧焦的时间(s)表示 塑料材料、橡胶材料、涂料涂层、绝缘漆、建筑材料、金属材料、电线电缆、电子电器、陶瓷材料等。 GB 11297.11-1989热释电材料介电常数的测试方法 GB 11310-1989 压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 GB/T 12636-1990 微波介质基片复介电常数带状线测试方法 GB/T 1693-2007 硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T 2951.51-2008 电缆和光缆绝缘和护套材料通用试验方法第51部分:填充膏专用试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直流电阻率 GB/T 5597-1999 固体电介质微波复介电常数的测试方法 GB/T 7265.1-1987 固体电介质微波复介电常数的测试方法微扰法 GB 7265.2-1987 固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T 10142-1991 电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T 10143-1991 固体电介质微波复介电常数测试方法重入腔法 SJ/T 11043-1996 电子玻璃高频介质损耗和介电常数的测试方法 SJ/T 1147-1993 电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ 20512-1995 微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T 6528-2002 岩样介电常数测量方法 GB/T 3333-1999 电缆纸工频击穿电压试验方法 GB/T 3789.17-1991发射管电性能测试方法电气强度的测试方法 GB/T 507-2002 绝缘油击穿电压测定法 GB 7752-1987 绝缘胶粘带工频击穿强度试验方法 SH/T 0101-1991 石油蜡和石油脂介电强度测定法 GB/T 1424-1996 贵金属及其合金材料电阻系数测试方法 GB/T 351-1995 金属材料电阻系数测量方法 HG/T 3331-1978 绝缘漆漆膜体积电阻系数和表面电阻系数测定法(原HG/T 2-59-78) HG 3332-1978 绝缘漆耐电弧性测定法 HG/T 3332-1980 耐电弧漆耐电弧性测定法

电介质物理基础习题问题详解

参考答案 第一章 1. 电介质在电场作用下,在介质部感应出偶极矩、介质表面出现束缚电荷的现象称为 电介质的极化。其宏观参数是介电系数ε。 2. 在电场作用下平板介质电容器的介质表面上的束缚电荷所产生的、与外电场方向相反的电场,起削弱外电场的作用,所以称为退极化电场。 退极化电场: 平均宏观电场: 充电电荷产生的电场: 3. 计算氧的电子位移极化率:按式代入相应的数据进行计算。 4.氖的相对介电系数: 单位体积的粒子数:,而 所以: 5.洛伦兹有效电场: εr与α的关系为: 介电系数的温度系数为: 6.时,洛伦兹有效电场可表示为: 7. 克----莫方程赖以成立的条件:E”=0。其应用围:体心立方、面心立方,氯化钠型以 及金刚石型结构的晶体;非极性及弱极性液体介质。 8.按洛伦兹有效电场计算模型可得: E”=0 时, 所以 9. 温度变化1度时, 介电系数的相对变化率称为介电系数的温度系数.

10. 如高铝瓷, 其主要存在电子和离子的位移极化, 而掺杂的金红石和钛酸钙瓷除了 含有电子和离子的位移极化以外, 还存在电子和离子的松弛极化。极性介质在光频区将会出现电子和离子的位移极化, 在无线电频率区可出现松弛极化、偶极子转向极化和空间电荷极化。 11. 极化完成的时间在光频围的电子、离子位移极化都称为瞬间极化。而在无线电频率 围的松弛极化、自发式极化都称为缓慢式极化。电子、离子的位移极化的极化完成的时间非常短,在秒的围,当外电场的频率在光频围时,极化能跟得上外电场交变频率的变化,不会产生极化损耗;而松弛极化的完成所需时间比较长,当外电场的频率比较高时,极化将跟不上交变电场的频率变化,产生极化滞后的现象,出现松弛极化损耗。 12.参照书中简原子结构模型中关于电子位移极化率的推导方法。 13. “-”表示了E ji的方向性。 14.参考有效电场一节。 15.求温度对介电系数的影响,可利用,对温度求导得出: 。由上式可知,由于电介质的密度减小,使得电子位移极化率及离子位移极化率所贡献的极化强度都减小,第一项为负值;但温度升高又使离子晶体的弹性联系减弱,离子位移极化加强,即第二项为正值;然而第二项又与第一项相差不多。所以氯化钠型离子晶体的介电系数是随温度的上升而增加,只是增加得非常慢。 16.串联时: 由以上关系可得到: 并联时:

高电压工程答案(清华大学版)

高电压工程课后答案 空气作为绝缘的优缺点如何 答:优点:空气从大气中取得,制取方便,廉价,简易,具有较强的自恢复能力。缺点:空气比重较大,摩擦损失大,导热散热能力差。空气污染大,易使绝缘物脏污,且空气是助燃物当仿生电流时,易烧毁绝缘,电晕放电时有臭氧生成,对绝缘有破坏作用。 为什么碰撞电离主要是由电子而不是离子引起 答:由于电子质量极小,在和气体分子发生弹性碰撞时,几乎不损失动能,从而在电场中继续积累动能,此外,一旦和分子碰撞,无论电离与否均将损失动能,和电子相比,离子积累足够造成碰撞电离能量的可能性很小。 负离子怎样形成,对气体放电有何作用 答:在气体放电过程中,有时电子和气体分子碰撞,非但没有电离出新电子,碰撞电子反而别分子吸附形成了负离子,离子的电离能力不如电子,电子为分子俘获而形成负离子后电离能力大减,因此在气体放电过程中,负离子的形成起着阻碍放电的作用。 非自持放电和自持放电主要差别是什么 答:非自持放电必须要有光照,且外施电压要小于击穿电压,自持放电是一种不依赖外界电离条件,仅由外施电压作用即可维持的一种气体放电。 电晕会产生哪些效应,工程上常用哪些防晕措施 答:电晕放电时能够听到嘶嘶声,还可以看到导线周围有紫色晕光,会产生热效应,放出电流,也会产生化学反应,造成臭氧。 工程上常用消除电晕的方法是改进电极的形状,增大电极的曲率半径。 比较长间隙放电击穿过程与短间隙放电放电击穿过程各有什么主要特点 答:长时间放电分为先导放电和主放电两个阶段,在先导放电阶段中包括电子崩和流注的形成和发展过程,短间隙的放电没有先导放电阶段,只分为电子崩流注和主放电阶段。 雷电放电可分为那几个主要阶段 答:主要分为先导放电过程,主放电过程,余光放电过程。 气隙常见伏秒特性是怎样制定的如何应用伏秒特性 答:制定的前提条件是①同一间隙②同一波形电压③上升电压幅值。当电压较低时击穿发生在波尾,取击穿时刻t1作垂线与此时峰值电压横轴的交点为1,当电压升高时,击穿也发生在峰值,取击穿时刻的值t2作垂线与此时峰值电压横轴的交点为2,当电压进一步升高时,击穿发生在波前,取此时击穿时刻t3作垂线与击穿电压交点为3,连接123 应用:伏秒特性对于比较不同设备绝缘的冲击击穿特性有重要意义,如果一个电压同时作用于两个并联气隙s1和s2上,若某一个气隙先击穿了,则电压被短接截断,另一个气隙就不会击穿。 为什么高真空和高压力都能提高间隙的击穿电压简述各自运用的局限性 答:在高气压条件下,气压增加会使气体密度增大,电子的自由行程缩短,削弱电离工程从而提高击穿电压,但高气压适用于均匀电场的条件下而且要改进电极形状,点击应仔细加工光洁,气体要过滤,滤去尘埃和水分 在高真空条件下虽然电子的自由行程变得很大,但间隙中已无气体分子可供碰撞,故电离过程无从发展,从而可以显着提高间隙的击穿电压,但是在电气设备中气固液等几种绝缘材料往往并存,而固体液体绝缘材料在高真空下会逐渐释放出气体,因此在电气设备中只有在真空断路器等特殊场合下才采用高真空作为绝缘。 什么是细线效应 答;当导线直径很小时,导线周围容易形成比较均匀的电晕层,电压增加,电晕层逐渐扩大,

电气设备的绝缘等级和防护等级

电器的绝缘等级和防护等级 电器的绝缘等级和防护等级 一、 1、电机绝缘等级划分依据是按电动机所用绝缘材料的允许极限温度划分的。有Y、A、E、B、F、H、C等几个等级,各级的允许极限温度如下表。所谓允许极限温度是指电机绝缘材料的允许最高工作温度,它反应绝缘材料的耐热性能。 2、表:绝缘材料的绝缘等级允许极限温度 绝缘材料按耐热能力分为Y、A、E、B、F、H、C 7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。 所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。所以电机在运行中,温度是寿命的主要因素之一。 二、 IP防护等级IP(INTERNATIONAL PROTECTION)防护等级系统是由IEC(INTERNATIONAL ELECTROTECHNICAL COMMISSION)所起草。将灯具依其防尘防湿气之特性加以分级。这里所指的外物含工具,人的手指等均不可接触到灯具内之带电部分,以免触电。IP防护等级是由两个数字所组成,第1个数字表示灯具离尘、防止外物侵入的等级,第2个数字表示灯具防湿气、防水侵入的密闭程度,数字越大表示其防护等级越高,两个标示数字所表示的防护等级如表一及表二。 表一:第一个标示特性号码(数字)所指的防护程度[-S第一个标示数字防护等级定义 0 没有防护对外界的人或物无特殊防护 1 防止大于50mm的固体物体侵入防止人体(如手掌)因意外而接触到灯具内部的零件。防止较大尺寸(直径大于50mm)的外物侵入。 2 防止大于12mm的固体物体侵入防止人的手指接触到灯具内部的零件防止中等尺寸(直径大12mm)的外物侵入。 3 防止大于2.5mm的固体物体侵入防止直径或厚度大于2.5mm的工具、电线或类似的细节小外物侵入而接触到灯具内部的零件。 4 防止大于1.0mm的固体物体侵入防止直径或厚度大于1.0mm的工具、电线或类似的细节小外物侵入而接触到灯具内部的零件。

为什么要严格要求电气设备的绝缘性能

四川蜀电集团有限公司兴源送变电分公司 送变电工程及供用电工程的设计、施工、调试、维修作业 为什么要严格要求电气设备的绝缘性 能 电气设备绝缘性能的好坏直接影响到电力系统的安全、可靠运行。为了保证电力系统长期安全、稳定运行,所有供、用电设备都必须做到在长期运行电压下有足够的绝缘强度,不发生绝缘故障而直接导致电力系统停电;同时要保证在电力系统中出现的各种过电压作用下,具有足够的绝缘强度,不会发生有害的放电导致绝缘破坏,从而保证电力系统的安全可靠支行。为此,所有供、用电设备都必须经过严格的绝缘试验。在生产制造过程中,必须通过各种型式试验,以考验设备绝缘是否达到设计要求,检验设备对于工频过电压、雷电冲击波电压、操作冲击波电压等是否具有规定水平以上的绝缘强度。同时,要进行各种绝缘特性的测试,发现生产工艺中出现的缺陷。电力设备运输到使用现场之后,必须经过一系列交接试验来检查设备经过运输过程、安装过程有否发生异常,以及绝缘特性恶化的迹象。在设备投入运行之后,根据不同设备的特点,要进行定期或不定期的各种绝缘试验,检查其绝缘是否受潮、老化以及发生局部放电等事故隐患,及时采取措施予以消除。设备经过一段时间运行后,需要做定期检修,更

换设备中的某些部件或单元,也必须通过绝缘试验来检验检修质量, 决定是否可以重新投入使用。 由此看来,能否通过绝缘试验是保证供、用电设备能否可靠运行的关键检验手段,而对于电力系统的运行人员,更重要的是如何对运行中的设备进行维护和管理,使电力设备的绝缘事故防患于未然,达 到电力系统安全运行的目的。 一、绝缘预防性试验的意义 预防性试验是电力设备运行和维护工作中的一个重要环节,是保证电力系统安全运行的有效手段之一。通过定期(有些试验是根据需要进行)试验,掌握设备的绝缘性能的变化情况,及时发现内部缺陷,采取相庆措施进行维护与检修,保证设备的安全可靠运行。 绝缘试验的目的就是检验设备在长期额定电压作用下绝缘性能的 可靠程度,以及即使在外界过电压作用下,也不致发生有害的放电, 导致绝缘击穿。 绝缘试验一般可分为绝缘强度试验和绝缘性能试验。换句话说,可分为破坏性试验和非破坏性试验。破坏性试验如雷电冲击试验、操 作冲击试验、工频耐压试验,主要是考验设备的绝缘强度,发现较大 的制造工艺上失误、运输过程等环节中出现的变形、局部绝缘损坏、绝缘子断裂等集中性的缺陷。它能保证绝缘有一定的裕度,但这种试验对绝缘本身会有不同程度的损害。非破坏性试验主要是针对绝缘质

气体的绝缘特性与介质的电气强度

气体的绝缘特性与介质的电气强度 1-1气体放电过程中产生带电质点最重要的方式是什么,为什么? 1-2简要论述汤逊放电理论。 1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高? 1-4雷电冲击电压的标准波形的波前和波长时间是如何确定的? 1-5操作冲击放电电压的特点是什么? 1-6影响套管沿面闪络电压的主要因素有哪些? 1-7具有强垂直分量时的沿面放电和具有弱垂直分量时的沿面放电,哪个对于绝缘的危害比较大,为什么? 1-8某距离4m的棒-极间隙。在夏季某日干球温度=30℃,湿球温度=25℃,气压=99.8kPa的大气条件下,问其正极性50%操作冲击击穿电压为多少kV?(空气相对密度=0.95) 1-9某母线支柱绝缘子拟用于海拔4500m的高原地区的35kV变电站,问平原地区的制造厂在标准参考大气条件下进行1min工频耐受电压试验时,其试验电压应为多少kV? 1-1气体放电过程中产生带电质点最重要的方式是什么,为什么? 答: 碰撞电离是气体放电过程中产生带电质点最重要的方式。 这是因为电子体积小,其自由行程(两次碰撞间质点经过的距离)比离子大得多,所以在电场中获得的动能比离子大得多。其次.由于电子的质量远小于原子或分子,因此当电子的动能不足以使中性质点

电离时,电子会遭到弹射而几乎不损失其动能;而离子因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减小,影响其动能的积累。 1-2简要论述汤逊放电理论。 答: 设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于过程,电子总数增至个。假设每次电离撞出一个正离子,故电极空间共有(-1)个正离子。这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数的定义,此(-1)个正离子在到达阴极表面时可撞出(-1)个新电子,则( -1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。即汤逊理论的自持放电条件可表达为r( -1)=1或=1。 1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高? 答:(1)当棒具有正极性时,间隙中出现的电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。随着电压的逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多的电子崩。当电子崩达到棒极后,其中的电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。于是在棒极附近,积聚起正空间电荷,从

电介质基本物理知识

第一章 电介质基本物理知识 电介质(或称绝缘介质)在电场作用下的物理现象主要有极化、电导、损耗和击穿。 在工程上所用的电介质分为气体、液体和固体三类。目前,对这些电介质物理过程的阐述,以气体介质居多,液体和固体介质仅有一些基本理论,还有不少问题难以给出量的分析,这样就在很大程度上要依靠试验结果和工作经验来进行解释和判断。 第一节电介质的极化 一、极化的含义 电介质的分子结构可分为中性、弱极性和极性的,但从宏观来看都是不呈现极性的。当把电介质放在电场中,电介质就要极化,其极化形式大体可分为两种类型:第一种类型的极化为立即瞬态过程,极化的建立及消失都以热能的形式在介质中消耗而缓慢进行,这种方式称为松电子和离子极化属于第一种,为完全弹性方式,其余的属于松弛极化型。 (一)电子极化 电子极化存在于一切气体,液体和固体介质中,形成极化所需的时间极短,约为1015 s。它与频率无关,受湿度影响小,具有弹性,这种极化无能量损失。 (二)原子或离子的位移极化 当无电场作用时,中性分子的正、负电荷作用中心重合,将它放在电

场中时,其正负电荷作用中心就分离,形成带有正负极性的偶极子。离子式结构的电介质(如玻璃、云母等),在电场作用下,其正负离子被拉开,从而使正负电荷作用中心分离,使分子呈现极性,形成偶极子,形成正负电荷距离。 原子中的电子和原子核之间,或正离子和负离子之间,彼此都是紧密联系的。因此在电场作用下,电子或离子所产生的位移是有限的,且随电场强度增强而增大,电场以清失,它们立即就像弹簧以样很快复原,所以通称弹性极化,其特点是无能量损耗,极化时间约为1013-s。(三)偶极子转向极化 电介质含有固有的极性分子,它们本来就是带有极性的偶极子,它的正负电荷作用中心不重合。当无电场作用时,它们的分布是混乱的,宏观的看,电介质不呈现极性。在电场作用下,这些偶极子顺电场方向扭转(分子间联系比较紧密的),或顺电场排列(分子间联系比较松散的)。整个电介质也形成了带正电和带负电的两级。这类极化受分子热运动的影响也很大。偶极松弛极化的电介质有胶木、橡胶、纤维素等,极化为非弹性的,极化时间约为1010---102-s。 (四)空间电荷极化 介质内的正负自由离子在电场作用下,改变其分布状况,在电极附近形成空间电荷,称为空间电荷极化,其极化过程缓慢。 (五)夹层介质界面极化 由两层或多层不同材料组成的不均匀电介质,叫做夹层电介质。由于各层中的介电常数和电导率不同,在电场作用之下,各层中的电位,

相关文档
最新文档