纳米碳管地提纯方法及其优缺点
碳纳米管材料的制备及应用

碳纳米管材料的制备及应用一、引言碳纳米管是一种由碳原子组成的纳米管状材料,具有很高的强度和导电性能,在电子学、生物医学等领域有着广泛的应用前景。
本文将介绍碳纳米管的制备方法以及在电子学、生物医学等领域中的应用情况。
二、碳纳米管的制备方法碳纳米管的制备方法主要有两种:一种是气相法,一种是化学还原法。
1.气相法气相法是指利用化学气相沉积技术制备碳纳米管。
其过程主要包括两个步骤:一是将含有碳源和催化剂的气体注入反应釜,使其在高温条件下发生反应;二是使反应产物在低温下凝聚成分散的碳纳米管。
2.化学还原法化学还原法是指利用还原剂将氧化的碳化合物还原成纯碳,从而制备碳纳米管。
其过程主要包括三个步骤:一是将碳化合物与还原剂混合悬浮在水中;二是加热溶液,使反应发生;三是通过离心等方法,将碳纳米管分离出来。
三、碳纳米管在电子学中的应用碳纳米管的高导电性和特殊结构使其成为电子学领域内的研究热点之一。
目前,已经有许多研究表明碳纳米管在场效应晶体管、能带结构调控、光电检测器等领域中都有着广泛的应用。
1.场效应晶体管场效应晶体管是一种用来控制电流的器件,当前许多电子产品都广泛使用这种器件。
碳纳米管因其高导电性和尺寸可控性,成为研究场效应晶体管的新材料。
研究发现,碳纳米管作为场效应晶体管的通道材料,其性能优于传统的有机材料。
2.能带结构调控由于碳纳米管的电子能带结构与其结构排列方式有关,因此能够通过控制其结构排列方式来调控其电子能带结构。
研究表明,调节碳纳米管的结构排列方式可以实现电子能带的控制,为制备新型电子器件奠定了基础。
3.光电检测器碳纳米管具有良好的光电响应特性,因此用于制备光电检测器具有很大的潜力。
一些研究表明,利用碳纳米管制备光电检测器可以获得优异的性能,为实现高性能光电器件奠定了基础。
四、碳纳米管在生物医学中的应用碳纳米管具有良好的生物相容性和生物活性,因此在生物医学领域中应用前景广阔。
在各种应用领域中,碳纳米管可以用于制备生物传感器、药物递送等。
碳纳米管制备及其应用前沿

碳纳米管制备及其应用前沿碳纳米管是一种由碳原子构成的纳米管状结构,具有优异的物理和化学性质,在许多领域具有广泛的应用前景。
接下来将从制备方法和应用前沿两个方面进行介绍和探讨。
一、碳纳米管的制备方法目前,制备碳纳米管的方法主要包括电弧放电、激光脱附、化学气相沉积、碳原子沉积和碳纳米管模板法等。
其中,化学气相沉积是目前较为常用的制备方法。
化学气相沉积法是在高温下,使含碳气体在催化剂表面上裂解,生成碳纳米管,并通过合适的控制方法,调节管子的直径、壁厚等性质。
此外,在催化剂上引入其他金属元素,如铁、镍等,还可以得到多壁碳纳米管、碳纳米带和碳纳米球等不同形态的碳纳米材料。
二、碳纳米管的应用前沿(一)能源储存碳纳米管具有极高的表面积和优异的电化学性能,已被广泛地应用于电池、超级电容器等领域。
例如,在锂离子电池中,将碳纳米管作为电极,可以大幅提高电极的比表面积、导电性能和循环寿命。
在超级电容器中,由于碳纳米管具有高比表面积和优异的导电性能,被广泛应用于电容的电极材料。
(二)催化剂由于碳纳米管的高比表面积和优异的催化性能,已成为新一代高效的催化剂材料。
例如,在氢能源领域,碳纳米管可以作为催化剂在反应中转化氢气,从而推进氢能源的发展。
同时,碳纳米管还可以用于金属催化剂的支撑材料,以提高催化剂的催化效率和稳定性。
(三)生物传感器碳纳米管还可以用于生物传感器的制备,具有极高的灵敏度和选择性。
例如,在血糖检测中,将碳纳米管复合在臂带上,可以使用手机APP通过检测臂带的信号来进行血糖测量。
(四)纳米电子学由于碳纳米管的导电性能和尺寸效应,在纳米电子学领域也有广泛的应用。
例如,碳纳米管可以用作场效应管的电极材料,制备高性能的纳米电子器件。
总之,碳纳米管作为一种新型的纳米材料,在能源储存、催化剂、生物传感器、纳米电子学等领域都有着广阔的应用前景。
随着技术的不断成熟和进步,相信碳纳米管在更多领域将会有更广泛的应用。
碳纳米管技术的现状与应用前景

碳纳米管技术的现状与应用前景碳纳米管是由纯碳组成的一种纳米管结构,具有极高的强度、导电性和导热性,还具有独特的光电性质和分子识别能力。
因此,在众多纳米材料中,碳纳米管被认为是一种极具潜力的新型材料。
本文将介绍碳纳米管技术的现状和应用前景。
一、碳纳米管技术的现状碳纳米管的制备技术主要有两种方法:一种是化学气相沉积法(CVD),另一种是溶液法。
其中,化学气相沉积法是目前最主要的碳纳米管制备方法。
化学气相沉积法通过气氛中的化学反应将碳原子沉积在基底上,这种方法可以控制碳纳米管的直径、长度和取向。
此外,化学气相沉积法还可以控制碳纳米管的外径和内径,从而调节其电学和机械性能。
虽然化学气相沉积法具有很高的制备效率和生产能力,但同时也存在巨大的成本和环境污染问题,限制了其在工业领域的应用。
溶液法是另一种常用的碳纳米管制备方法,其主要包括化学还原剂法、水热法、电沉积法等。
溶液法制备碳纳米管的优点是方法简单、成本低、环境友好,它可以大规模生产碳纳米管,并得到高纯度和高品质的碳纳米管,但其制备效率和生产能力还需要进一步提高。
二、碳纳米管技术的应用前景碳纳米管具有极高的强度、导电性和导热性,还具有独特的光电性质和分子识别能力,因此有着广泛的应用前景。
1. 新一代电子器件碳纳米管可以制成纳米电子器件,如纳米场效应晶体管、纳米透明导电膜、纳米光电探测器、纳米场发射器等,具有非常好的性能表现。
相比传统的硅基电子器件,碳纳米管器件具有更好的尺寸一致性和热稳定性,还具有更佳的电子传导性能和灵敏性。
2. 生命科学碳纳米管在生物医学方面具有广泛应用前景,如用于药物递送、疫苗制备、生物传感等。
碳纳米管具有高度的生物相容性和分子靶向性,可以用于开发高效、低毒的靶向药物,有效减少药物的副作用和毒性。
3. 材料科学碳纳米管具有出色的机械性能和导电性能,可以应用于制备各种高性能的材料,如碳纳米管增强的复合材料、高导电性银浆、导电性弹性体等。
碳纳米管的过氧化氢法纯化研究

碳纳米管的过氧化氢法纯化研究摘要本文首先介绍碳纳米管的发现,碳纳米管的结构;详细介绍了碳纳米管的制备的方法,重点讲述碳纳米管的各种纯化方法;也对碳纳米管的应用进行描述,对碳纳米管的未来提出展望。
实验部分首先讲述了用来制备碳纳米管的催化剂的制备,接着讲述碳纳米管的制备,重点讲述用过氧化氢纯化碳纳米管的整个实验流程,并把实验中遇到的问题,以及如何解决这些问题进行了阐述。
最后把实验数据进行处理,将纯化后的碳纳米管做表征,通过扫描电子显微镜,拉曼普图和热重分析的研究,得出在此条件下过氧化氢法纯化碳纳米管的最佳浓度。
关键词:碳纳米管过氧化氢纯化扫描电子显微镜拉曼光谱热重分析Oxidative purification of catalytically prepared carbon nanotubeswith H2O2AbstractKey Words: Carbon nanotubes; H2O2; Purification; SEM;目录摘要 (I)ABSTRACT (II)第一章文献综述 (1)1.1 碳纳米管的结构 (1)1.2 碳纳米管的制备 (1)1.2.1电弧法 (1)1.2.2催化法 (2)1.2.3激光蒸发法 (3)1.3 碳纳米管的纯化 (3)1.3.1物理纯化方法 (4)1.3.2 化学纯化法 (5)1.3.3 综合纯化法 (8)1.4 碳纳米管的应用 (9)1.5 展望 (9)第二章实验部分……………………………………………………………2.1催化剂的制备 (9)2.2 碳纳米管的制备 (9)2.2.1制备碳纳米管的仪器2.2.2碳纳米管的制备2.3过氧化氢法纯化碳纳米管 (10)2.2.2 网站导航的表现形式 (12)2.3 使用所见既所得工具创建网站导航 (14)2.4 网站导航设计的一般原则 (17)……结语 (104)参考文献 (106)致谢 (107)文献综述自从1991年日本NEC的lijima用真空电弧蒸发石墨电极,并对产物作高分辨率透射电镜(HRTEM)分析,发现了具有纳米尺寸的碳的多层管状物碳纳米管(CNTs),碳纳米管特殊的结构以及性能引起了科学家的兴趣。
碳纳米管的合成与性能研究

碳纳米管的合成与性能研究碳纳米管是一种结构独特、性能优越的纳米材料,具有很高的热导率、电导率和机械强度,因此,在各个领域都有广泛的应用前景。
为了进一步探索碳纳米管的潜力,许多研究机构和科学家们进行了大量的合成与性能研究。
本文将对碳纳米管的合成方法和性能研究进行详细探讨。
一、碳纳米管合成方法碳纳米管的合成方法多种多样,下面将介绍其中的几种主要方法。
1. 化学气相沉积法(CVD)化学气相沉积法是目前最常用的一种合成碳纳米管的方法。
该方法利用金属催化剂(如铁、镍等)在高温下将碳源化合物(如乙炔、甲烷等)分解生成碳纳米管。
CVD方法能够在大面积的衬底上合成碳纳米管,并且可以控制碳纳米管的直径和长度。
2. 水热法水热法是另一种常用的碳纳米管合成方法。
该方法利用高温高压条件下,将含有碳源的溶液进行反应,产生碳纳米管。
水热法合成碳纳米管的过程相对简单,合成的碳纳米管质量较高,但产量相对较低。
3. 电弧放电法电弧放电法是最早发现碳纳米管的方法之一。
该方法利用直流电弧放电,在碳棒的两端形成高温高压条件,使碳原子聚集形成纳米管。
电弧放电法合成的碳纳米管质量较高,但只能合成少量的碳纳米管。
二、碳纳米管的性能研究碳纳米管具有许多出色的性能,下面将介绍其中的几个主要性能。
1. 电导率碳纳米管的电导率非常高,远远超过普通的导电材料。
因此,碳纳米管在电子器件和导电材料方面有着广阔的应用前景。
科学家们通过测量电流-电压曲线、四探针法等方法来研究碳纳米管的电导率。
2. 机械性能碳纳米管具有很高的机械强度和韧性,能够承受很大的拉伸和压缩力。
科学家们通过拉伸实验、压缩实验等方法来研究碳纳米管的机械性能,为材料强度和耐用性方面的应用提供了理论基础。
3. 热导率由于碳纳米管是一维纳米结构,其热导率非常高。
科学家们通过热传导实验等方法来研究碳纳米管的热导率,为纳米尺度热管理和热界面材料的发展提供了新的思路。
综上所述,碳纳米管的合成方法和性能研究是当前纳米材料领域的重要研究方向。
碳纳米管的制备方法和应用

碳纳米管的制备方法和应用碳纳米管是由纳米级的碳原子构成的一种纳米材料,具有独特的物理和化学性质,被广泛应用于各个领域。
本文将探讨碳纳米管的制备方法以及其在材料科学、电子学和生物医学中的应用。
一、碳纳米管的制备方法目前,常见的碳纳米管制备方法主要有化学气相沉积法、电化学沉积法、电弧放电法和碳热还原法等。
化学气相沉积法是制备碳纳米管最常用的方法之一。
该方法利用金属催化剂(如铁、铜等)和含碳的气体(如一氧化碳、甲烷等)在高温下反应,生成碳纳米管。
这种方法可以控制碳纳米管的尺寸和结构,制备出高质量的碳纳米管。
电化学沉积法是一种较为简单和经济的制备方法。
通过在电极表面施加电压,使金属离子在电极上还原并沉积成碳纳米管。
这种方法可以在常温下进行,对环境友好,但产出的碳纳米管质量较低。
电弧放电法是一种高温高压条件下制备碳纳米管的方法。
通过在金属电极之间施加高电压,形成电弧放电,使电极表面的碳物质蒸发并在高温高压下形成碳纳米管。
这种方法制备出的碳纳米管尺寸较大,结构较不规则。
碳热还原法是使用碳源将金属氧化物还原成金属,并在高温下生成碳纳米管。
这种方法能够制备出高纯度的碳纳米管,但操作条件较为复杂。
二、碳纳米管在材料科学中的应用由于碳纳米管具有优异的力学性能、导电性和热导性,因此在材料科学中有广泛的应用。
碳纳米管可以添加到复合材料中,提高材料的力学性能和导电性。
此外,碳纳米管还可以用于制备超级电容器和锂离子电池,因为其具有较大比表面积和良好的电化学性能。
另外,由于碳纳米管具有较高的比表面积和孔隙结构,可以用作吸附剂来去除水和气体中的有害物质。
碳纳米管的应用还延伸到柔性电子学和传感器领域,用于制备柔性显示器件和高灵敏度的传感器,如压力传感器和化学传感器等。
三、碳纳米管在电子学中的应用碳纳米管由于其独特的电子性质,被广泛应用于电子学领域。
碳纳米管可以用作场发射源,用于制备高亮度和高分辨率的显示器件。
此外,碳纳米管也可以用于制备柔性电子器件,如柔性电池和柔性晶体管等,具有重要的应用价值。
化学气相沉积法制备碳纳米管

化学气相沉积法制备碳纳米管材料化学专业制备原料碳源多为乙烯或者乙炔;催化剂颗粒多为亲碳的、过渡金属的纳米粒子如铁、镍、镁、钼等。
制备工艺在高温条件下碳源气体在过渡金属纳米颗粒的催化作用下分解,碳原子在催化剂例粒子中熔解、饱和。
在催化剂粒子中饱和并析出碳形成了小管状的碳固体即碳纳米管。
碳纳米管的性能力学性能:碳纳米管中碳原子采取SP2杂化S轨道成分比较大,使其具有高模量、高强度,具有优异的力学性能。
理想的碳纳米管的抗拉强度可高达100GPa。
一般碳纳米管的抗拉强度可达50-200GPa,是钢的100倍,密度却只有钢的1/6,弹性模量高达1TPa,与金刚石的弹性模量相当,约为钢的5倍。
不同的SP2和SP3杂化几率使碳纳米管其表现出优良的弹性,柔韧性,易拉伸,十分柔软,同时它还具有与金刚石相当的硬度和极大的长径比,可以作为理想的高强度纤维材料,被称为未来的“超级纤维”。
导电性能:碳原子最外层有4个电子,碳纳米管具有类石墨结构,石墨的每个碳原子最外层的三个电子与三个最邻近的碳原子以SP2杂化,呈现层状结构。
碳原子的另一个未成对电子位于垂直于层片的π轨道上,碳纳米管具有石墨的良好导电性能。
碳纳米管由石墨片卷曲而来,其导电性能由石墨片的卷曲方式决定,即导电性能取决于它的管径和手性。
不同手性的碳纳米管可分别呈现金属性、半导体性。
给定的碳纳米管的手性矢量Ch=na1+ma2,若n.m=3k(k为整数),那么该方向碳纳米管呈现金属性,可视为良好的导体。
其中,若n=m,碳纳米管电导率可高达铜的l万倍,导电性极好。
当n.m不等于3k(k为整数)时,该方向碳纳米管视为半导体。
另外,在碳纳米管的管壁上往往有成对的五元环和七元环出现,这些缺陷会导致新的导电行为,为碳纳米管的导电性做贡献。
传热性能:碳纳米管的类石墨结构使得其具有良好的传热性能,另外,准一维结构使得沿着碳纳米管轴向方向的热交换极易进行,由此,可以通过制备定向的碳纳米管阵列从而获得某个方向热传导性能极好的产品。
碳纳米管的制备方法及其电催化性能研究

碳纳米管的制备方法及其电催化性能研究碳纳米管是一种具有特殊结构和优异性能的纳米材料。
它在电化学领域中具有广泛的应用,如催化氧化还原反应、电化学能量存储和传感器等方面。
本文将就碳纳米管的制备方法及其电催化性能研究进行深入探讨。
一、碳纳米管的制备方法碳纳米管的制备方法主要包括化学气相沉积法、电化学方法、热解法、溶剂热法、机械球磨法等。
其中,化学气相沉积法是最常用的方法之一,其制备过程如下:选择适当的碳源,在适当的载体上蒸发,并将这种碳源转化为碳纳米管。
这种方法可以控制碳纳米管的性质,如直径、长度、壁厚和结构等。
二、碳纳米管的电催化性能研究碳纳米管具有优异的电催化性能,是目前研究的热点。
在催化氧化还原反应中,碳纳米管的电催化活性很高,可以用于制备氧还原反应催化剂,如碳纳米管/铂合金催化剂。
研究表明,碳纳米管/铂合金催化剂的催化活性比普通铂催化剂高出许多。
除此之外,碳纳米管还可以用于电化学能量存储,如锂离子电池、超级电容器等。
在锂离子电池中,碳纳米管可以用作电极材料,具有高的电容量和长寿命。
同时,超级电容器中的电极材料也可以采用碳纳米管,具有高效的电催化催化性能和长寿命。
另外,碳纳米管还可以用于传感器的制备。
以电化学传感器为例,由于碳纳米管导电性强且表面积大,故其作为传感器电极材料具有更好的灵敏度和选择性。
研究表明,利用碳纳米管作为电极材料的传感器可以检测到低至微克进样量的大部分物质,如葡萄糖、酸、氨气等。
三、碳纳米管在实际应用中的现状目前,碳纳米管在实际应用中已经被广泛地应用于许多方面,如电化学催化、电化学能量存储、催化燃烧、传感器等。
其中,碳纳米管/铂合金催化剂已经被工业界应用于汽车尾气净化和直接甲醇燃料电池等。
此外,碳纳米管还可以用于医药领域,如药物递送、诊断和治疗等。
因此,碳纳米管具有广泛的应用前景和商业价值。
综上所述,碳纳米管作为一种优异的纳米材料,具有着极高的应用价值和商业潜力。
未来,随着相关技术的不断发展和完善,碳纳米管在各个领域中的应用前景将不断拓展和深化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生考试试卷考试科目:新材料制备技术课程编号:y09521086专业:姓名:学号:纳米碳管的制备及提纯摘要:近年来碳纳米管的发展取得了相当大的进步,随着大量制备纳米碳管特别是单层纳米碳管的技术日趋成熟,进一步探索纳米碳管的物理、化学性质、提纯逐渐成为研究的重点。
本文总结了纳米碳管的制备工艺,并说明了制备纳米碳管的方法主要有电弧放电法、化学气相沉积法,热解聚合物法、气体燃烧法和激光蒸汽法等。
为了更准确地测量纳米碳管的各种性能及实现其最终的广泛应用,在继续研究制备高纯度纳米碳管技术的同时,对已有低纯度的纳米碳管原料进行分离、提纯和富集日益摆在众多研究人员的日程中来。
目前已有多种提纯纳米碳管的方法被提出,本文根据分离提纯的方式不同,归纳为化学提纯方法和物理提纯方法两大类,并分别介绍了优缺点。
关键词:纳米碳管,制备,提纯,优缺点。
1纳米碳管简介及制备方法碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。
它主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。
层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。
由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价。
纳米管具有奇异的物理化学性能,如独特的金属或半导体导电性、极高的机械强度、储氢能力、吸附能力和较强的微波吸收能力等,90年代初一经发现即刻受到物理、化学和材料科学界以及高新技术产业部门的极大重视。
应用研究表明,碳纳米管可用于多种高科技领域。
如用它作为增强剂和导电剂可制造性能优良的汽车防护件;用它作催化剂载体可显著提高催化剂的活性和选择性;碳纳米管较强的微波吸收性能,使它可作为吸收剂制备隐形材料、电磁屏蔽材料或暗室吸波材料等。
碳纳米管被认为是一种性能优异的新型功能材料和结构材料,世界各国均在制备和应用方面投入大量的研究开发力量,期望能占领该技术领域的制高点。
目前常用的碳纳米管制备方法主要有:电弧放电法、化学气相沉积法(碳氢气体热解法),热解聚合物法、气体燃烧法和激光蒸汽法等以及聚合反应合成法。
1.1电弧放电法电弧放电法是生产碳纳米管的主要方法。
1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。
电弧放电法的具体过程是:将石墨电极置于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。
在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。
通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对产量。
使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。
此外该方法反应消耗能量太大。
传统的电弧法以氦作为保护介质,中国科学院沈阳金属研究所成会明研究小组开发了一种有效制备单壁碳纳米管的半连续氢电弧法,他们通过此方法实现了高纯度单壁碳纳米管的大批量制备。
同传统石墨电弧法相比,氢电弧法的改进包括:用氢气取代氦气作为缓冲气体,有效的提高了产品的纯度;添加某种含硫生长促进剂,使产量大大提高。
氢电弧方法具有以下特点:(1)在大直径阳极圆盘中填充混合均匀的反应物,可有效克服传统电弧法中反应数量有限且均匀性差的特点,利于单壁碳纳米管的大批量制备。
(2)阴极棒与阳极圆盘上表面成斜角,在电弧力的作用下可在反应室内形成一股等离子流,及时将单壁碳纳米管产物携带出高温反应区,避免了产物烧结。
同时保持反应区内产物浓度较低,利于单壁碳纳米管的连续生长。
(3)阴极与阳极的位置均可调整,当部分原料反应完毕后可通过调整电极位置,利用其他区域的原料继续单壁碳纳米管的合成。
1.2化学气相法化学气相法又称碳氢气体热解法,他在一定程度上克服了电弧放电法的缺陷,这种方法是让气态烃通过附着有催化剂微粒的模板,在600-1200度和有保护气体作用的条件下,使气态烃分解并在一定载体上生成CNTS,同时温度亦不需要很高,相对而言节省了能量,但是必须用到催化剂,目前此方法的主要研究方向是希望通过控制模板上催化剂的排列方式来控制生成的CNTS的结构,已经取得了一定进展。
碳纳米管的化学气相沉积法制备采用了四种不同系列的催化剂制备碳纳米管,并对不同催化剂及不同生长工艺条件制备的碳纳米管进行表征。
将纳米钴粉与石墨粉混合研磨制备出纳米钴/石墨混合粉体催化剂用来生长碳纳米管。
以离子注入方式在石英衬底上注入Fe离子制备出的负载型催化剂也可以生长碳纳米管,制出的碳纳米管纯度较高。
该工艺适用于工业大批量生产,但制备的碳纳米管存在较多的结晶缺陷,常常发生弯曲和变形,石墨化程度较差,这些缺点对碳纳米管的力学性能及物化性能会有不良的影响。
因此对催化裂解法制备的碳纳米管采取一定的后处理是必要的,比如高温退火处理可消除部分缺陷,使管身变直,石墨化程度得到改善。
化学气象沉积法在工艺中的方法大致有两种:基种催化法和浮动催化法。
(1)基种催化法具有设备投资少,成本低,碳纳米管产量高,含量高以及易于实现大批量制备等优点。
基种催化法的基本原理是:用碳氢化合物(以丙烯为例)为碳源,氢气为还原气,在铁,钴和镍基催化剂作用下,在管式电阻炉中裂解原料气形成自由碳原子,并沉积在催化剂上,最终生长碳纳米管。
(2)浮动法一般利用铁的有机金属化合物为催化剂原料,有机金属化合物和碳氢化合物一同引入。
在一定温度下(1100-1200℃),有机金属化合物分解出铁原子并聚集成一定大小的催化剂颗粒。
碳氢化合物在催化剂颗粒上吸附,分解,扩散并析出气相生长碳纤维。
在整个反应过程中,催化剂和气相生长碳纤维是悬浮在反应室的气氛中的,最后气相生长碳纤维被载气带出反应室。
因此浮动法一般采用立式反应室,以便原料器能够连续的进入,气相生长碳纤维产物能够连续的引出,从而实现气相生长碳纤维的连续制备。
1.3热解聚合物法热解聚合物法是通过热解某些聚合物或有机金属化合物得到碳纳米管。
Cho等人将柠檬酸和甘醇聚脂化,并将得到的聚合物在400℃空气中加热8h,然后冷却至室温,得到了碳纳米管。
热处理温度是关键因素,聚合物的分解可能产生碳悬键并导致碳的重组而形成碳纳米管。
在420-450℃下用镍作为催化剂,在氢气中热解粒状的聚乙烯,也可合成碳纳米管。
1.4激光蒸汽法激光蒸汽法是在1200℃的电阻炉中,由激光束蒸发石墨靶,流动的氩气(6.67×410Pa)使产物沉积到水冷铜柱上。
石墨棒中掺杂Ni/Co(1:1)金属粉末(x(Ni/Co)=1.2%,颗粒直径约1微米)。
单壁碳纳米产物在1000℃的真空环境中热处理,使C60和其他富勒碳小分子升华掉。
高纯度的碳纳米管产物由随机排列的长数微米、直径为10-20nm的细小纤维组成。
1.5气体燃烧法气体燃烧法既是采用燃烧含碳有机物的过程最后中,利用各种催化剂进行制备,主要的概述如下:通过硝酸铁柠檬酸凝胶直接自蔓延燃烧反应制备氧化铁体粉末,使用热重-差热分析法(TG-DSC)分析凝胶的合成温度,比较凝胶的先驱体溶液中柠檬酸和硝酸铁的不同比例对氧化铁体粉末结构和形貌的影响,并以此法制备的氧化铁为催化剂制备碳纳米管。
使用SEM,TEM对所制备的碳纳米管的结构和形貌进行表伍,XRD分析表明,使用稀盐酸和浓硝酸能有效的除去产物中残留的催化剂颗粒,进而生成碳纳米管。
2纳米碳管的提纯由于碳纳米管的奇特性能和广泛的应用前景,使得制备与纯化显得非常重要。
尤其是碳纳米管的纯化,科学工作者一直在探索大批量、高纯度、快速的分离提纯工艺。
近些年,在碳纳米管纯化的某些领域取得了可喜的成绩,推动了对碳纳米管的深入研究。
纳米碳管又称为巴基管,属富勒碳系是由单层或多层石墨片卷曲而成的无缝纳米级的管状结构材料,分别称为单壁或多壁纳米碳管由于单壁管是由单层碳原子绕合而成的,结构具有较好的对称性和单一性。
多壁管由若干个壁间距约为0.34nm的同轴圆柱面套构成。
自日本NEC的LIJIMA生产出世界上第一支纳米碳管以来,纳米碳管就以其许多新颖的特性,如极高的拉抗强度,既可为导体、半导体,又可为绝缘体等机械;电导性能引起了材料、物理、化学等各学科的研究人员的极大关注。
正是由于这种优异的性能,纳米碳管在电子、复合材料和储氢材料等领域有着极大的应用价值,许多国家在其制备和纯化研究上都给予了很大的支持和投入。
纳米碳管的制备方法很多,目前最主要的是碳弧法和碳氢化合物裂解法。
碳弧法是制备纳米碳管的传统工艺。
它是在真空反应器中充一定压力的惰性气体或氢气,采用较粗大的石墨棒为阴极,细石墨棒为阳极,在弧放电的过程中阳极石墨棒不断被消耗,同时在石墨阳极上沉积出含有纳米碳管的富勒烯、石墨等碳微粒;碳氢化合物热解法是通过激光等把过渡金属和碳氢化合物同时加热到高温而使碳氢化合物发生热分解来制备纳米碳管的方法。
Yacaman首先用此法获得了长达50微米直径与Iijima所制尺寸相当地纳米碳管。
Ivanov等用催化法合成了长达50微米的纳米碳管,并宣称该法制备纳米碳管比电弧法更简单,产率高且可进行大规模生产。
为了更准确地测量纳米碳管的各种性能及实现其最终的广泛应用,在继续研究制备高纯度纳米碳管,技术的同时,对已有低纯度的纳米碳管原料进行分离、提纯和富集日益摆在众多研究人员的日程中来。
经过近五年的研究,目前已有多种提纯纳米碳管的方法被提出,根据分离提纯的方式不同,可以归纳为化学提纯方法和物理提纯方法两大类。
2.1化学纯化法化学纯化法的依据是:通过结合超声波振荡分离和其他不同的化学处理手段,能够有效地将碳纳米管从其他碳颗粒(无定形碳、石墨多面体、富勒烯等)和催化剂(催化剂载体和金属微粒)分离出来。
达到提纯碳纳米管和单层碳纳米管的目的。
虽然化学提纯方法可将纳米碳管从其它杂质中有效地分离出来,但是化学提纯方法最大的特点是建立在碳管样品中不同组份存在不同氧化温度和条件这一特征基础上被提出来的,而利用氧化方法提纯纳米碳管存在一个最大的缺点,就是在氧化掉其它碳杂质的同时,有相当一部分的纳米碳管管壁或管端也相应被氧化掉,甚至有一些纳米碳管被完全氧化掉。
氧化后残余的纳米碳管无论是管径还是长度都远远小于初始的状态,结构也大大地受到破坏。
因此,化学提纯方法能够有效地分离出高纯度的纳米碳管,但是同时使结构也大大受到破坏。
氧化后残余的纳米碳管无论是管径还是长度都远远小于初始的状态,结构也大大地受到破坏。
2.1.1酸氧化提纯法1995年,H.Hiura和T.W.Ebbesen等人将纳米碳管视为管状的石墨微晶,首先把1g的纳米碳管放入200mL浓度1mol/L的硫酸溶液中进行分散和沉淀。