为标准触摸屏接口编写驱动程序共13页

为标准触摸屏接口编写驱动程序共13页
为标准触摸屏接口编写驱动程序共13页

为标准触摸屏接口编写驱动程序

尽管触摸屏正在迅速普及开来,但大多数开发人员以前从来没有开发过触摸屏产品。本文详细介绍了触摸屏产品的设计步骤,指导读者了解使触摸屏首次工作需要的软硬件细节。

触摸屏如今随处可见。工业控制系统、消费电子产品,甚至医疗设备上很多都装备了触摸屏输入装置。我们平时不经意间都会用到触摸屏。在ATM机上取款、签署包裹,办理登机手续或查找电话号码时都可能会用到触摸屏。

本文介绍了二种较新的CPU,它们都内建了对触摸屏输入的支持。本文将介绍如何编写软件驱动程序,从而能够使用这些微处理器配置、校准触摸屏以及对触摸屏输入持续响应。最终将提供可免费下载和使用的工作代码,作为读者进一步设计的基础。

触摸屏作为输入手段的优点和缺点

没有一种输入方式是十全十美的,对某些特定的应用和产品类型来说,触摸屏不是最好的输入手段。为了让读者清楚的了解触摸屏的特性,下面先概括使用触摸屏作为输入手段的优点和缺点。

首先是优点:触摸屏不可否认的具有酷的感觉,立刻就能使产品的使用变得更有乐趣。同时触摸屏也非常直观。当用户想要选择A选项时,他伸出手指碰一下A选项就可以了。这还不够直观吗?连两岁的婴儿都知道怎样伸手去触摸他(或她)想要的东西。

最后要说的是,触摸屏作为输入装置和系统固定在了一起。如果用户忘记遥控器或鼠标放的位置,就会无法进行输入。而如果具有触摸屏的设备放在用户前面,用户马上就可以用触摸屏进行输入。

再说缺点,触摸屏可能会在不合适的场合下被错误的使用。这里我是指对安全性要求严格的设备,对于这些设备,如果没有适当的预防措施,使用触摸屏会非常危险。下面我将概括一些最明显的潜在的问题,如果读者想作更进一步的了解,可以参考更多的资料。

第一个问题是视差,即屏幕上看到的对象的位置与其在触摸面板上的实际有效位置之间的差异。图1说明了这个问题。我能想到的最佳例子是典型的"免下车"ATM机。这种ATM机不会根据汽车的高度升高或降低自己的高度,因此如果你坐在较高的SUV或卡车里,那么你就会从抬

高的位置俯视显示屏。为了保护昂贵的显示器件免受恶意破坏,ATM机都会在用户和显示屏之间放置几层强化玻璃。

触摸屏是不能这样保护的。如果真这样做的话,用户就无法进行触摸了。因此触摸屏放在表层上,而显示屏放在表层下的几层玻璃后面。这就造成了触摸层和显示层之间的物理隔离。如果用户以某个角度观看屏幕,就意味着用户按压触摸屏进行选择的位置会与用户接口软件预期的输入位置之间存在一定的距离偏差。人们能很快适应这种偏差。经过几次尝试和错误,使用者学习在触摸屏的表面找到显示信息的映射位置,然后触摸到正确的位置。ATM设计师也认识到这一点,他们会采用大面积的按键,并尽量使它们相互远离,因此有助于防止错误按键的误触发。当然,不小心按下错误的ATM按键不会使你得癌症或使你失明。但如果这样的失误发生在医疗控制设备上,并且系统设计师没有在系统内置足够的安全预防措施,那么以上两种后果确实都有可能发生。

图1:视差(横截面图)。

通过缩短显示层和触摸层之间的物理距离可以尽量减少视差。在CRT或LCD前面总会有玻璃存在。最好的方法是将对触摸敏感的电子元件嵌入到玻璃里,并且这层玻璃做得尽可能薄。这样就减少了触摸输入层和显示层之间的相隔距离。像Palm这样的手持设备就可以采用这样的策略,因为它们不必太担心机械强度不够或者遭受恶意破坏。随着相隔距离的缩小(用户觉得真的触摸到了图形元件),精度会大大提高。

第二个明显的问题是,在用户触摸屏幕的过程中,触摸屏幕的物体(触控笔、手指)至少会遮挡屏幕上的一小部分面积,从而影响用户的观察。在工厂自动化应用中这种情况更容易发生,因为用户很可能使用手指或手套而非触控笔,即使是使用触控笔,在屏幕上做选择动作也会不时遮挡住一部分你给用户展示的信息。例如,想象一下你想展示一个滑动控制条给用户调节数值(如速度或音量),并且你将用户选择的数值以数字形式显示在滑动控制条的左边。这样做一般工作情况会很好,但当左撇子用户操作你的系统时,只有移开他的手指他才能看到所选的值。因此你必须在你的用户界面设计中考虑这类因素。

触摸屏硬件原理简介

我们在开始编写触摸屏驱动程序之前,必须对硬件的工作原理有个基本的了解。许多不同的触摸技术会把屏幕某个位置的压力或接触转换

成有意义的数字坐标。典型的触摸技术包括电阻触摸屏、声表面波触摸屏、红外线触摸屏和电容触摸屏。如果想详细了解这些技术,你可以登录elotouch或[url=网站。

这里侧重介绍电阻触摸屏。电阻触摸屏非常普及,你会发现许多评估板和开发套件中都集成了电阻触摸屏。电阻触摸屏普及的主要原因是价格便宜,而且在电气上可以直接接入用户的系统中。

之所以叫电阻触摸屏,是因为它们本质上就是电阻分压器。它们由两个电阻薄层组成,这两个薄层被非常薄的绝缘层隔开,绝缘层通常以塑料微粒子的形式存在。当你触摸屏幕时,会使两个电阻薄层变形到足以使它们之间发生电气连接。然后由软件通过检测分压器上产生的电压计算出两层的短接位置,并最终确定触摸位置。

电阻触摸屏分为几种类型,比如"四线","五线"和"八线"。线越多,精度就越高,温度漂移也越少,但基本的操作是一样的。在最简单的四线设计中,有一层称为"X轴"的电阻层,上面加有一定的电压,另一个称为"Y轴"的电阻层作为接受层测量对应X轴位置的电压值。这一过程再反过来执行一遍,即Y轴层加电,X轴层用于电压检测。

图2是电阻触摸屏的简单等效电路。注意必须获取二个完全独立的读数,即X轴位置和Y轴位置数据。这些数据在四线或五线电阻触摸屏中是无法同时读取的。软件必须先读一个轴,然后再读另外一个轴。读取的顺序则无关紧要。

将电阻触摸屏产生的电压转换成数字需要用到模数转换器(ADC)。直到不久前这个ADC几乎一直是主CPU的外围器件。Burr Brown NS7843或NS7846就是这种ADC控制器。该器件为12位的模数转换器,其内嵌的逻辑电路通过交替给一个薄层加电,再从另外一层转换来控制触摸屏。虽然可以使用诸如GPIO之类的信号线来完成薄层加电的切换,但该器件能够分担许多任务,还能提供产生触摸或笔压中断的方式。

最近有几家CPU制造商开始在主CPU中集成ADC模块和专用的触摸屏控制电路。在消费类设备、远程信息通信或一些面向其它市场的产品中,LCD显示屏和触摸屏非常普遍,当想把CPU用于这类产品中时,在CPU中集成ADC和触摸屏控制电路的做法会非常有意义。

基于两种CPU的参考板

本文设计两种集成了触摸屏控制功能的CPU的参考板。这二种CPU 都基于ARM处理器架构。

第一块板是飞思卡尔的MX9823ADS评估板,采用了飞思卡尔的

MC9328MX1处理器。该评估板可以直接从飞思卡尔的分销商处定购。评估套件包括QVGA(240x320)彩色LCD和触摸屏。

第二块板采用了夏普LH79524 ARM处理器。这块夏普的参考板以及集成的显示和触摸套件都可以从LogicPD公司处定购。有几种可更换的显示套件供选择,分辨率范围从QVGA到800x600像素不等。

本文中不提供每个驱动程序的详细代码,而是介绍驱动程序的设计和流程,并重点介绍其中的重要部分。读者可以从ftp:

//ftp.embedded/pub/2005/07maxwell下载每个驱动程序的全部源代码。总的来看,软件提供的功能完成以下这些步骤:

1.配置控制器硬件

2.判断屏幕是否被触摸

3.获得稳定的、去抖动的位置测量数据

4.校准触摸屏

5.将触摸状态和位置变化信息发送给更高层的图形软件

下面开始详细介绍每个步骤。

硬件配置

触摸驱动程序要做的第一件事是配置硬件。对这些集成控制器来说,这意味着通过向映射到存储器的寄存器中写入数据将控制器配置成某个确定状态。这一过程是由每个驱动程序中的TouchConfigureHardware()函数完成的。

为了配置硬件,需要事先做好某些决定。例如,驱动程序应该使用中断驱动吗?为了获得能够响应并且精确的触摸位置信息需要什么样的转换速率?让我们看看做出这些决定的具体过程吧。

关于触摸驱动程序是否应该使用中断驱动,事实上在范例的驱动程序中用的就是中断驱动方式。坦率地讲,我之所以这样做是因为使用中断很有趣。千万不要由这个例子推断出采用中断永远是最好或最正确的设计方式,也不要听信别人说不采用中断驱动方式的触摸驱动程序就是"错误的"。

图2:触摸屏电路简单等效电路。

之所以这样说只是因为"轮询"对嵌入式系统程序员来说似乎变成了贬义词。我曾经问过一位客户,他的输入设备采用的是轮询还是中断服务方式。回答是"这是嵌入式系统,我们不做任何轮询"。我当时感觉问这个问题时我就像一个傻瓜,但进一步探讨后发现查询其实也是一种合理且值得考虑的方式。如果使用的是RTOS,并且所有任务经常为了等待某类外部事件而被中断,处理器经常处于空闲的循环状态,没有什么有意义的事做。这种情况下使用空闲任务查询触摸屏上的输入也许是更好的设计方式。根据你的总体系统需求,查询也可能是一个值得考虑的合理的设计方式。

配置中断的方法因具体操作系统而异。读者会发现对于每一个支持的RTOS都有被(#ifdef)限定的代码段。在所有情况下驱动程序实际会使用二种不同的中断:

1当屏幕被初次触摸时唤醒主机的中断,称为PEN_DOWN中断

2当完成一组模数数据转换时的第二种中断信号

后文会详细介绍这些中断和它们产生的过程。

接下来的问题是我们希望以多快的速度从ADC接收采样输入读数。采样速度会影响我们需要如何配置时钟来驱动触摸屏和ADC。我们希望时钟有足够快的速度来提供可响应的输入和实现精确的跟踪,但也不要太快,以至于影响转换精度,或让系统消耗超过所需的功率。

根据我的经验,触摸屏至少需要以20Hz或50ms间隔的速度向更高层软件提供位置更新数据,只要高层软件跟得上,速度越快越好,我们不太担心功耗问题。如果触摸输入响应比这慢得多,那么在用户的触摸输入和显示屏上可观察到的响应之间会出现明显和烦人的迟滞现象。

20Hz的更新速度听起来并不是太有挑战性,但提供20Hz的更新速度实际上要求采样速度接近200Hz,具体数值取决于我们在确定输入稳定之前准备采用多少读数。为了去抖动和对触摸输入位置值进行平均,我们需要进行过采样。电阻触摸屏,特别是便宜的那种,一般会有很大的噪声和抖动。

在向更高层软件发送位置更新数据之前,驱动程序需要多次采样每个轴上的输入。我们提供的驱动程序默认情况下将以最少200Hz(5ms)的采样速率配置各自处理器上的ADC时钟。这样就能让驱动程序对输入原

始数据进行充分的去抖动和过滤,并仍能向高层用户接口软件提供20Hz 的实际位置更新速率。

飞思卡尔i.MX处理器中的触摸控制器模块叫做模拟信号处理器(ASP),i.MX处理器提供两个由内核CPU时钟分频得到的外设时钟。输入ASP模块端口的是PERCLK2(外设时钟2),它经过再分频产生ASP所需的最终输入时钟。需要注意的是,PERCLK2除了驱动ASP模块外,还驱动包括内部LCD控制器在内的其它子模块,因此触摸驱动程序无法只是为了更好的配合触摸采样而对PERCLK2进行编程。PERCLK2被编程为所有附属外设所要求的最高速率(在大多数情况下是LCD控制器),然后通过分频产生速度较慢的外设所需的时钟。MC9328MX1参考手册中包含一份表格,该表格定义了达到200Hz数据输出速率所需的时钟编程值。

夏普LH79524在硬件配置时要求对几个GPIO引脚进行编程以便给这些引脚分配ADC功能,并要求编程和激活ADC时钟,还要对ADC序列器编程。

LH79524 ADC本身是一个令人称奇的电路系统,能够实现完全可编程的状态机和序列器。该ADC无需核心CPU的任何干预就可以通过编程完成:驱动一个触摸层;延时;进行测量;驱动另一层;延时;进行测量等操作。理解如何对LH79524 ADC序列器控制单元编程可能是一个挑战,不过利用夏普(sharpsma)公司提供的应用指南可以使这项工作简单很多。本文提供的驱动程序完全符合该应用指南对如何配置夏普ADC序列控制器提出的建议。

屏幕被触摸到了吗?

一旦完成了基本的硬件设置,接下来就需要一种可靠的方法判断屏幕是否被触摸了。如果用户没有触摸屏幕,那么运行ADC获得转换后的读数毫无意义。上述两个控制器都提供了屏幕是否被触摸的检测机制,并且当触摸事件发生时还可选择是否中断主处理器。判断屏幕是否被触摸的驱动程序的函数名叫WaitForTouchState()。

图3:X轴移动时Y轴上的偏移。

当控制器处于触摸检测模式时,Y轴触摸层通过一个上拉电阻上拉到高电平,X轴触摸层则连接到地。当用户触摸屏幕的任何地方时,这两层就发生短接,Y轴层被拉到低电平。该事件可以在驱动程序内部连接到名为PEN_OWN IRQ的中断发生机制。

在正常工作期间,当触摸事件发生时驱动程序利用PEN_DOWN IRQ 唤醒触摸驱动任务。这样做可以让驱动程序在屏幕没有被触摸时中断自己的执行,而不消耗任何CPU资源,而一旦用户触摸屏幕,驱动程序就被唤醒并进入转换模式。我们也可以在转换模式没被激活时停止(disable)ADC时钟来节省功耗。

在校准和主动采样期间,驱动程序使用与上述基本相同的机制检测屏幕是否被触摸;不过在这些模式下驱动程序会屏蔽实际的中断,并通过人工方式简单的检查触摸状态。对于飞思卡尔的处理器,这时要求把控制器编程到触摸检测模式,并检查PEN_DOWN IRQ的数据位。对于夏普的处理器,触摸检测内建在ADC命令序列中,不需要额外的步骤。

读取触摸数据

在校准和正常操作期间,我们需要读取X和Y轴的原始数据并去抖动,然后确定屏幕被触摸时是否有稳定的读数。该过程在两个驱动程序中都叫TouchScan()。该过程的要点是:

1.检查屏幕是否被触摸;

2.采集每个轴上的多个原始读数用于以后的过滤;

3.检查屏幕是否仍在被触摸。

在执行模数转换时,两个控制器都提供了由编程产生延迟的方法,以在给触摸层加电和开始实际的模数转换之间插入一段时延。飞思卡尔把这段时延称作数据建立计数(DSCNT),在两层切换后会有很多个ASP输入时钟长度的延时。夏普把这段时延称为预充时延。

两种CPU都需要这种时延,因为电阻触摸面板是二块由薄绝缘层隔离的大面积导体,正好形成一个电容。当从将要执行模数转换的层切换到正在加电的层时,需要一定的延时才能保证电容达到稳定状态。

对于飞思卡尔的i.MX1处理器来说,一旦我们启动转换过程,那么由ADC产生的数据将被保存在一个16位宽x12个条目深度的FIFO中。ADC产生9位无符号数据,因此每个16位条目的高7位将被忽略掉。这意味着这种触摸控制器的全部数据范围从0到511,不过实际上没有ADC 或电阻触摸屏会产生接近这个极限值的数据。

我们可以通过编程让处理器在FIFO存有任何有效数据时就产生中断,或在输入FIFO装满时产生中断。由于我们通常会做多次读取,因此

触摸屏的选型

触摸屏面板一般包括两个部分:触摸检测装置和触摸屏控制器。触摸检测装置安装在显示器屏幕前面,用于检测用户触摸位置,把接收到信息传送到触摸屏控制器;触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 随着科技的进步,触摸屏技术也经历了从低档向高档逐步升级和发展的过程。根据其工作原理,其目前一般被分为四大类:电阻式触摸屏、电容式触摸屏、红外线式触摸屏和表面声波触摸屏。 表1 各类触摸屏技术特性 红外触摸屏(红外对管触摸屏和红外成像触 摸屏)表面声波式 触摸屏 电阻式 触摸屏 电容式触摸 屏 透 光率 100% 92% 85% 85% 分辨率4096*4096 4096*4096 4096*40 96 1024*1024 感 应轴 X,Y X,Y,Z X,Y X,Y 漂 移率 无无无有

耐 磨损性 很好很好好好 抗 暴性 强强弱弱 干 扰性 强光干扰无无电磁干扰 污 物影响 无小无较小 稳 定性 高一般好差 多 点触摸 有无无有 尺寸等要求中大型尺寸 (中长期产 品) 中大型尺寸 (短期产品) 小尺寸 (短期 产品) 小尺寸 (中长期产 品) 触摸屏的性能比较 电阻式触摸屏工作在与外界完全隔离的环境中,它不怕灰尘、水气和油污,可以用任何物体来触摸,比较适合工业控制领域使用。缺点是由于复合薄膜的外层采用塑料,太用力或使用锐器触摸可能划伤触摸屏。 电容式触摸屏的分辨率很高,透光率也不错,可以很好地满足各方面的要求,由于iphone的面世,所以现今最常见的就是电容式触摸屏。不过,电容式触摸屏把人体当作电容器的一个电极使用,当有导体靠近并与夹层ITO工作面之间耦

四种常见触摸屏介绍

四种常见触摸屏介绍 1. 电阻式触摸屏 电阻触摸屏的屏体部分是一块多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(ITO 膜),上面再盖有一层外表面经过硬化处理、光滑防刮的塑料层。它的内表面也涂有一层ITO,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开。当手指接触屏幕时,两 层ITO 发生接触,电阻发生变化,控制器根据检测到的电阻变化来计算接触点的坐标,再依照这个坐标来进行相应的操作。电阻屏根据引出线数多少,分为四线、五线等类型。五线电阻触摸屏的外表面是导电玻璃而不是导电涂覆层,这种导电玻璃的寿命较长,透光率也较高。电阻式触摸屏的ITO 涂层若太薄则容易脆断,涂层太厚又会降低透光且形成内反射降低清晰度。由于经常被触动,表层ITO 使用一定时间后会出现细小裂纹,甚至变型,因此其寿命并不长久。电阻式触摸屏价格便宜且易于生产,因而仍是人们较为普遍的选择。四线式、五线式以及七线、八线式触摸屏的出现使其性能更加可靠,同时也改善了它的光学特性。 2. 电容式触摸屏 电容式触摸屏的四边均镀上了狭长的电极,其内部形成一个低电压交流电场。触摸屏上贴有一层透明的薄膜层,它是一种特殊的金属导电物质。当用户触摸电容屏时,用户手指和工作面形成一个耦合电容,因为工作面上接有高频信号,于是手指会吸走一个很小的电流,这个电流分别从屏的四个角上的电极中流出; 且理论上流经四个电极的电流与手指到四角的距离成比例,控制器通过对四个电流比例的精密计算,即可得出接触点位置。电容触摸屏的双玻璃不但能保护导体及感应器,更能有效地防止外在环境因素对触摸屏造成影响,就算屏幕

触摸屏的主要类型优点和缺点

触摸屏的主要类型优点和缺点 触摸屏的主要类型: 从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏 。其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式, 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1、电阻式触摸屏(电阻式触摸屏工作原理图) 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有: A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。

四大触摸屏技术工作原理及特点分析

四大触摸屏技术工作原理及特点分析 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点, 要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1. 电阻式触摸屏 电阻式触摸屏的工作原理这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000 英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y 两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:(1)ITO,氧化铟,弱导电体,特性是当厚度降到1800 个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300 埃厚度时又上升到80%。ITO 是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO 涂层。 (2)镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,

最新多点触摸屏技术介绍

最新多点触摸屏技术介绍 -多点位置识别 肖学军高级应用工程师 郑赞高级应用工程师 林荣茹触摸屏产品经理 彭涛触摸屏资深系统工程师

?感应电容触摸屏(Projected Capacitive Touchscreen)?人机接口的选择 ?手势(Gestures) ?单点触摸(Single-Touch) ?多点触摸(Multi-Touch) ?多点触摸识别位置(Multi-Touch All-Point) ?触摸屏物理结构 ?Cypress TrueTouch?触摸屏控制器 ?在线问答

?感应电容触摸屏(Projected Capacitive Touchscreen)?人机接口的选择 ?手势(Gestures) ?单点触摸(Single-Touch) ?多点触摸(Multi-Touch) ?多点触摸识别位置(Multi-Touch All-Point) ?触摸屏物理结构 ?Cypress TrueTouch?触摸屏控制器 ?在线问答

消费类电子人机接口发展?1997: 摩托罗拉Startac手机& Palm PDA ?外形美观的通讯或管理工具 ?基于电阻触摸屏 ?1998: RIM 黑莓(Blackberry) ?带有完整的键盘 ?一种新颖的方式来解决人机接口的困扰?2004: 超薄而雅致的摩托罗拉RAZR ?很漂亮但是键盘输入不方便 ?2006: 使用感应电容触摸屏的LG Prada ?屏幕很硬抗损坏 ?精度很好无需校验 ?2007: 苹果iPhone ?从单点触摸进入多点触摸时代

为什么会选择触摸屏 节省空间–显示屏就是用户接口 用户接口方式多样化 单点触摸& 多点触摸 设计更美观 产品差异化

各种触摸屏的优点和缺点

各有优点和缺点! 触摸屏的主要类型 从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏 。其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式, 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1、电阻式触摸屏(电阻式触摸屏工作原理图) 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于 1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有: A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导

触摸屏种类及说明

触摸屏种类及说明 触摸屏是一种可以根据显示屏表面接触(手指、笔)、依靠电脑识别其触摸的位置,做出相应的反映的一种电子设备.目前市面上的触摸屏大致可以分为电容式触摸屏,四线电阻式触摸屏,五线电阻式触摸屏,表面声波触摸屏、红外线式触摸屏及光学触摸屏五种类型。 电容屏 电容技术的触摸屏是一块四层复合玻璃屏,如下图所示。玻璃屏的内表面和夹层各涂有一层ITO导电层,最外层是只有0.0015毫米厚的矽土玻璃保护层。内层ITO作为屏蔽层,以保证良好的工作环境,夹层ITO涂层作为检测定位的工作层,在四个角或四条边上引出四个电极。 容屏基本工作原理的最初想法是:人是假象的接地物(零电势体),给工作面通上一个很低的电压,当用户触摸屏幕时,手指头吸收走一个很小的电流,这个电流分从触摸屏四个角或四条边上的电极中流出,并且理论上流经这四个电极的电流与手指到四角的距离成比例,控制器通过对这四个电流比例的精密计算,得出触摸点的位置。 这个想法本来是很好的。但是,按照这种思路进行下去,却碰到了难以逾越的障碍:目前的透明导电材料

ITO——氧化金属非常脆弱,触摸几下就会损坏,还不能直接用来作工作层。材料的问题一时还难以解决,只好委曲求全:在外部增加一层非常薄的坚硬玻璃。 这层玻璃显然是不导电的,直流导电是不行了,改用高频交流信号,靠人的手指头(隔着薄玻璃)与工作面形成的耦合电容来吸走一个交流电流,这就是电容屏“电容”名字的由来:靠耦合电容来工作。 问题解决了,但代价是很大的:首先是“漂移”,因为耦合电容的方式是不稳定的,它直接受温度、湿度、手指湿润程度、人体体重、地面干燥程度影响,受外界大面积物体的干扰也非常大,带来了不稳定的结果,这些都直接违背了作为触摸屏这种绝对坐标系统的基本要求,不可避免的要产生漂移,有的电容触摸屏欲求通过25点校准法甚至96点校准法来解决漂移问题,其实是不可能的,漂移是电容工作的这种方式决定的,即使是在控制器的单片机程序上利用动态计算和经验值查表,也只能是治标不治本。多点校准法最早是大屏幕投影触摸板使用的方法,目的是消除坐标对应的线性失真,电容触摸屏的线性失真也非常厉害,主要是因为电容屏的计算建立在四个电流量与触摸点到四电极的距离成比例的理想状态上,实际由于受环境电容、线路寄生电容和不同人使用的影响,这种比例关系不可能是完全线性的,多点校准法只能解决局域分配的线性问题,解决不了整体的漂移。 电容方式的另一个代价是:最外这层极薄的玻璃,正常情况下防刮擦性能非常好,但工艺上要求在真空下制造,因为它害怕氢,哪怕有一点氢也会结合成易脆碎的玻璃,使用中轻轻一敲就成个小破洞,这对电容触摸屏来说是要命的:破洞周围直径5cm大小的区域不能使用。实际的真空是不可能有的,这层极薄的玻璃有5%的概率碰上有破洞的产品。 电容触摸屏的透光率和清晰度优于四线电阻屏,尤其是一些新的产品。 四线电阻触摸屏 电阻触摸屏的屏体部分是一块与显示器表面非常配合的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。 当手指触摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y 轴方向的5V均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行A/D转换,并将得到的电压值与5V相比即可得触摸点的Y轴坐标,同理得出X轴的坐标,这就是所有电阻技术触摸屏共同的最基本原理。 电阻类触摸屏的关键在于材料科技。常用的透明导电涂层材料有: ①ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。

触摸屏技术发展简介9051316835

已经是第一篇 下一篇:心痛的感觉 |返回日志列表 触摸屏技术发展简介/PDF: ?分享 ?复制地址 触摸屏技术发展简介/PDF: 摘要:触摸屏的应用随着信息社会的发展越来越普遍,目前触摸屏产品在中国已开始形成了产业,本文专题介绍有关触摸屏的相关基础技术知识,供广大用户和业者参考。 随着多媒体信息查询的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的而且又适用于中国多媒体信息查询国情的输入设备,触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,我们用户只要用手指轻轻地指碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术极大方便了那些不懂电脑操作的用户。这种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要有公共信息的查询,如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外还可广泛应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等,将来,触摸屏还要走入家庭。随着城市向信息化方向发展和电脑网络在日常生活中的渗透,信息查询都会以触摸屏——显示内容可触摸的形式出现。本文提供一些有关触摸屏的相关基础技术知识,希望这些内容能对广大用户有所用处。 基本技术 一、触摸屏的工作原理 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。

常见触摸屏的种类及优劣

常见触摸屏的种类及优劣 1、电阻式触摸屏 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有: A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 1.1四线电阻屏 四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。特点:高解析度,高速传输反应。表面硬度处理,减少擦伤、刮伤及防化学处理。具有光面及雾面处理。一次校正,稳定性高,永不漂移。 1.2五线电阻屏 五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。特点:解析度高,高速传输反应。表面硬度高,减少擦伤、刮伤及防化学处理。同点接触3000万次尚可使用。导电玻璃为基材的介质。一次校正,稳定性高,永不漂移。五线电阻触摸屏有高价位和对环境要求高的缺点 1.3电阻屏的局限 不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用。电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太用力或使用锐器触摸可能划伤整个 触摸屏而导致报废。不过,在限度之内,划伤只会伤及外导电层,外导电层的划伤对于五线电阻触摸屏来说没有关系,而对四线电阻触摸屏来说是致命的。

常用的四大触摸屏技术

常用的四大触摸屏技术 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在技术'>显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1、电阻式触摸屏 电阻式触摸屏是一种传感器,它将矩形区域中触摸点(X,Y)的物理位置转换为代表X坐标和Y坐标的电压。很多LCD模块都采用了电阻式触摸屏,这种屏幕可以用四线、五线、七线或八线来产生屏幕偏置电压,同时读回触摸点的电压。

这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有: A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 1.1四线电阻屏 四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。特点:高解析度,高速传输反应。表面硬度处理,减少擦伤、刮伤及防化学处理。具有光面及雾面处理。一次校正,稳定性高,永不漂移。 1.2五线电阻屏

触摸屏技术原理及分类

触摸屏技术原理及分类 触摸技术已经广泛应用于智能手机、平板等消费电子产品。本文通过对触摸屏技术的原理及分类进行讲解,希望能对读者有所帮助。 触摸屏技术触摸屏技术是一种新型的人机交互输入方式,与传统的键盘和鼠标输入方式相比,触摸屏输入更直观。配合识别软件,触摸屏还可以实现手写输入。 触摸屏技术的分类根据屏幕表面定位原理不同,可以把触摸屏技术分声学脉冲识别(APR)技术,表面声波(SAW)技术电容式触摸屏技术和电阻式触摸屏技术红外/光学式技术两类。 声学脉冲识别(APR)技术APR由一个玻璃显示器涂层或其他坚硬的基板组成,背面安装了4个压电传感器。该传感器安装在可见区域的两个对角上,通过一根弯曲的电缆连接到控制卡。用户触摸屏幕时,手指或者触笔和玻璃之间的拖动发生了碰撞或摩擦,于是就产生了声波。波辐射离开接触点传向传感器,按声波的比例产生电信号。在控制卡中放大这些信号,然后转换为数字数据流。比较数据与事先存储的声音列表来确定触摸的位置。APR设计成能够消除环境的影响和外部的声音,因为这些因素与存储的声音列表不匹配。表面声波(SAW)技术SAW触摸屏是由一个针对X和Y轴的有发送和接收的压电传感器的玻璃涂层。该控制器发送电信号至发射传感器,并在玻璃的表面内将信号转换成超声波。通过反射器阵列,这些波覆盖整个触摸屏。对面的反射器收集和控制这些波至接收传感器,将他们转换成电信号。对每个轴重复这个过程。用户触摸时吸收了传播的波的一部分。接收到的对应X和Y坐标的信号与存储的数字分布图相比较,从而识别变化并计算出坐标。触摸屏原理电阻式触摸屏技术电阻屏是利用触摸屏表面随着所受压力的变化,产生屏幕凹凸变形而引起的电阻变化实现精确定位的触摸屏技术。电阻屏性能具备以下特点:①它们都是一种对外界完全隔离的工作环境,不怕灰尘、水汽和油污②可以用任何物体来触摸,可以用来写字画画,这是它们比较大的优势③电阻触摸屏的精度只取决于A/D转换的精度,因此都能轻松达到4096*4096按照实现原理不同,电阻式触摸屏分为四线和五线两类。表面声波(SAW)式SAW触摸屏是由一个针对X和Y轴的有发送和接收的压电传感器的

三大主流触摸屏技术对比

就电子产品,特别是消费类产品而言,如何将用户复杂的控制动作转变为直观、便捷且可生产的体验,是用户界面设计面临的终极挑战。用户界面设计一方面要考虑到用户视觉、听觉、味觉、嗅觉和触觉等五种感官的需求,另一方面还要考虑到用户需求对器件或系统的影响。目前市场上推出的大部分产品虽然有效,但主要都是将用户的视觉和触觉分开来处理。从计算机键盘、手机键盘、MP3播放器、家用电器甚至电视遥控器等上面的简单按钮或按键,到音量调节滑条、滚轮和跟踪板[LU1]等上面更高级的单击和滚动特性,输出位置(也就是用户的输入或操控动作的结果[LU2])与用户的输入位置是截然不同的。要是能让输入和输出,即视觉和触觉完全达到一致,那该有多好啊!而这种视觉和触觉的一致性正是触摸屏的基本优势所在。 让视觉和触觉完全达到一致说起来简单,但做起来则不啻为一场意义深远的技术突破,其将彻底改变用户与电子产品互动的方式,因此有人将此称为用户界面的革命。触摸屏的透明特性允许用户直接“触摸”显示屏上的不同内容,人们对这样的用户界面设计发出感叹。因为用户再也不用去找电子设备周边的这个或那个按钮,如计算机鼠标或键盘甚至手机上的拨号按键,而是直接与固化在设备“大脑”(即其操作系统)中的应用进行互动。这是一场革命性的变化,这种操控方式可让用户直接掌控强大的操作系统和应用程序,一切尽在用户的指尖。当然,我们能在计算机屏幕上使用鼠标和跟踪[LU3]板访问应用程序,不过这种操控不是直接触摸显示屏,不能让用户与屏幕及内嵌的应用融为一体。实际上,我们能通过我们所能想象出来的各种动作或手势来使用触摸屏,让显示屏变得鲜活生动,只要眼睛看到的,都能简单地通过触摸进行互动。目前触摸屏主要分为三大类:单点触摸;多点触摸识别手指方向;多点触摸识别手指位置。 单点触摸屏 触摸屏的功能发展由简及繁,最初的产品只支持最简单的操[LU4]控,就是一个手指触摸屏幕上的一点来实现操控。比如我们每天在附件超市的POS终端机,或者在机场的check-in 终端上进行的操作。以前,我们只能通过屏幕周边的机械按钮进行操控,单点触摸屏在此基础上实现了用户界面方面的一大进步。当然,机械和新型电容式触摸感应按钮在我们的家庭、办公室及其他地方无所不在:手机、固定电话、遥控器、电视、电脑及其各种外设、游戏机、电冰箱、微波炉、烤箱,以及无线电和空调等车内电子控制设备等等。现在,如下列图1 所示的单点触摸屏在显示屏上直接集成了用户控制界面,因此再也不需要传统的机械按钮了。

触摸屏基本知识

所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。不用学习,人人都会使用,是触摸屏最大的魔力,这一点无论是键盘还是鼠标,都无法与其相比。人人都会使用,也就标志着计算机应用普及时代的真正到来。这也是我们发展触摸屏,发展KIOSK,发展KIOSK网络,努力形成中国触摸产业的原因。 从技术原理角度来讲,触摸屏是一套透明的绝对定位系统,首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,像数字化仪、写字板、电梯开关,它们都不是触摸屏;其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统,我们可以注意到,触摸屏软件都不需要光标,有光标反倒影响用户的注意力,因为光标是给相对定位的设备用的,相对定位的设备要移动到一个地方首先要知道现在在何处,往哪个方向去,每时每刻还需要不停的给用户反馈当前的位置才不致于出现偏差。这些对采取绝对坐标定位的触摸屏来说都不需要;再其次就是能检测手指的触摸动作并且判断手指位置,各类触摸屏技术就是围绕“检测手指触摸”而八仙过海各显神通的。 触摸屏的第一个特征:透明,它直接影响到触摸屏的视觉效果。透明有透明的程度问题,红外线技术触摸屏和表面声波触摸屏只隔了一层纯玻璃,透明可算佼佼者,其它触摸屏这点就要好好推敲一番,“透明”,在触摸屏行业里,只是个非常泛泛的概念,我们知道,很多触摸屏是多层的复合薄膜,仅用透明一点来概括它的视觉效果是不够的,它应该至少包括四个特性:透明度、色彩失真度、反光性和清晰度,还能再分,比如反光程度包括镜面反光程度和衍射反光程度,只不过我们的触摸屏表面衍射反光还没到达 CD盘的程度,对用户而言,这四个度量已经基本够了。今天我尽量不结合具体的触摸屏去“排队”,技术是在前进的,今天也许是声波屏最理想,明天也许又是另一种,环星公司通过触摸屏的技术本质引申出一些触摸屏的概念,目的是让用户自己学会思考、学会判断,选购适用的触摸屏。 先说透明度和色彩失真度,首先提醒大家,我们看到的彩色世界包含了可见光波段中的各种波长色,在没有完全解决透明材料科技之前,或者说还没有低成本的很好解决透明材料科技之前,多层复合薄膜的触摸屏在各波长下的透光性还不能达到理想的一致状态,下面是一个示意图: 由于透光性与波长曲线图的存在,通过触摸屏看到的图象不可避免的与原图象产生了色彩失真,静态的图象感觉还只是色彩的失真,动态的多媒体图象感觉就不是很舒服了,色彩失真度也就是图中的最大色彩失真度自然是越小越好。平常所说的透明度也只能是图中的平均透明度,当然是越高越好。 反光性,主要是指由于镜面反射造成图象上重叠身后的光影,如人影、窗户、灯光等。反光是触摸屏带来的负面效果,越小越好,它影响用户的浏览速度,严重时甚至无法辨认图象字符,反光性强的触摸屏使用环境受到限制,现场的灯光布置也被迫需要调整。大多数存在反光问题的触摸屏都提供另外一种经过表面处理的型号:磨砂面触摸屏,也叫防眩型,价格略高一些,防眩型反光性明显下降,适用于采光非常充足的大厅或展览场所,不过,防眩型的透光性和清晰度也随之有较大幅度的下降。

关于触摸屏的一些技术问答

触摸屏和显示屏集成在一起,还是独立外挂的? 一般来说,现在触摸屏和显示屏是独立分开的。 怎么理解多点触摸? 多点触摸就是允许多手指之间任意的选择和操作,这样可以极大地丰富操作类型。而且多点操作通常可以实现智能的手势识别,提供更人性化的用户界面。 多点触摸技术的优势与性价比? 多点触摸技术可以在不显著增加成本的情况下,使操作易于被用户理解和掌握,比如用两个手指就可以实现图像旋转,而不需要过多的菜单操作。 影响多点触摸屏准确度的干扰因素有哪些? 包括:ITO CapSense sensor 阻抗,X/Y sensor 对齐,LCD 显示时电压干扰,RF 干扰等。 多点触摸是否可运用在电阻触摸屏或表面电容触摸屏吗? 无法用在这两者上,表面电容触摸屏只能检测一个触摸点,现在的 4 线/5 线电阻触摸屏上也只能检测一个触摸点。 求教多点触摸?实现像iphone那样的屏幕控制对触摸屏和控制芯片有什么特殊的要求,是否有现成的方案,谢谢。 iPone 使用的是互电容模式,行Sensor 发出脉冲,列Sensor 检测耦合过来的电容。这种方式需要使用MIPS 高的MCU / DSP,处理X * Y 次检测操作,可以实现真正多点触摸。 Cypress 方案目前使用的是自电容模式,检测行和列Sensor 的电容,这种方式对IC 的要求不高,处理X + Y 次检测操作,可以检测多点,但只解析(ITO Sensor 维数- 1)个点的具体位置。 请教多点触摸和平常触摸的区别是什么?为什么多点触摸,电脑可以识别两个以上的操作点?? 平常触摸通常只能实现单点操作,用于按键控制;多点触摸可以实现手势操作(Pan / Resize / rotate), 更方便用户操作。多点触摸需要触摸屏控制器的支持,控制器解析出多点的位置后报告给电脑或主机,后者就可以识别了 那么设计触摸屏的主要技术瓶颈是什么? 有很多因素需要考虑: 与触摸Sensor 个数/ 触摸屏控制芯片选型有关- 触摸屏的大小; 与触摸屏Cp有关- 触摸Sensor 的形状和大小,触摸屏的结构安排和各材料的厚度,触摸屏与LCD屏之间的间距,FPC layout;与Cf 有关- 触摸屏表面保护层的厚度;与report rate有关- 触摸屏控制芯片性能。 多点触摸的的技术以及应用现状和趋势? 怎么理解多点触摸?

《触摸屏贴合技术简介》要点

触摸屏贴合技术 2012-04-01 行业简介 触摸屏产品的研究和开发始于60年代的美国,而该技术的成熟和壮大主要应归功于日本的业者,尤其在70年代倍受关注的人机对话系统即是对触摸屏技术的极佳运用,随着运用的不断普及,日本业者开发出适合量产化的触摸屏生产工艺,并逐步控制了全球80%以上的触摸屏生产能力。为了控制触摸屏的生产技术,日本业者一直坚持触摸屏技术不转移的策略。直到90年代,韩国和台湾的厂商才先后在触摸屏的工艺攻关上有所突破,开始在触摸屏市场上有了一席之地,但他们的量产能力和技术水准都还和日本业者有着较大的差距。 在改革开放的大潮中,特别是进入21世纪以来,随着信息技术和平面显示技术在中国的迅速发展,国内许多企业也开始对触摸屏技术产生了兴趣,有的引进出国留学人才开发触摸屏技术;有的和境外企业合作生产,逐步掌握这项技术。目前已改变了过去触摸屏只能依赖进口的局面。在国内市场上,一开始触摸屏主要是应用于公共场所的信息查询系统上。当初只是显示菜单选择的画面,让顾客逐个点按的简单系统,其软件处理速度和触摸屏耐久性等方面都存在水平较低的问题。近几年,随着国内触摸屏制造、开发能力的增强,以及计算机应用能力的提高和显示技术的进步,业界专家开发出了各种适合个性化用途且具备耐久性和可靠性的触摸屏。现在,在不少公共场所中(如车站的售票机、图书馆的检索终端等)都应用了触摸屏。另外,触摸屏也被应用在现代工厂所使用的机器设备,作为一种操控面板。除此之外,以POS系统为中心的销售处理系统、便携式信息终端和自动记录仪等方面通过采用触摸屏,其工作的便利性得到了大大增强。 应用领域 电子钟表,电动玩具,计算器,台历; ?手写板,电子字典/书,PDA,商务通; ?电话机,手机; ?家用电器(电磁炉、微波炉、空调、消毒柜等); ?工业仪器设备操作系统; ?军事指挥系统; ?教育训练设备; ?安全监控系统; ?GPS卫星定位系统; ?餐饮业点餐、订位系统; ?医疗器械及挂号、诊疗、配药系统; ?金融提款、转帐、服务系统; ?各类自动销售系统; ?各类公共场所信息查询系统。 可进行手写输入的触摸屏在近几年间以每年1000万台的规模急速发展。可以肯定,随着人们对显示类产品功能的要求越来越高,随着工业、医疗、教学、科技、军事现代化的不断推进,触摸屏的应用范围必将越来越广,从而实现显示装置和信号输入装置的一体化、直观化、小型化和集约化。同时由于应用了触摸屏,各种科技含量高的新产品必将相继面市。 触摸屏产品类型介绍 从目前触摸屏的应用中,人们对触摸屏的性能要求也越来越理性化,不断提高与顾客要求相

相关文档
最新文档