华东师大数学分析课件11
最新20-2华东师大数学分析的练习和课件(历史上最好的-最全面的)学习的最好资料课件PPT

M i 1 M i ( x i ) i ( y i ) j .
取 F ( i , i ) P ( i , i ) i Q ( i , i ) j , y F(i,i)M
数学分析PPT课件第四版华东师大研制 第1章 实数集与函数

(1) 若 S 不是有上界的数集, 则称 S 无上界, 即 M R, x0 S,使得 x0 M . (2) 若 S 不是有下界的数集, 则称 S 无下界, 即 L R, x0 S,使得 x0 L. (3) 若 S 不是有界的数集, 则称 S 无界集, 即 M 0, x0 S, 使得 | x0 | M .
其中 p n.
反之, 若x a0 .a1a2 akak1ak p ,
则 x
a0
k i 1
ai 10i
10
1 p
1
a p k j 10k j p j 1
Q.
4. 无理数为无限不循环小数.
如:π 3.1415926 ; x 0.1010010001.
前页 后页 返回
二、实数的大小
定义1 x, y R+ , 若 x a0 .a1a2 an , y b0 .b1b2 bn
§2 数集 ·确界原理
确界原理本质上体现了实数的完备 性,是本章学习的重点与难点.
一、有界集 二、确界 三、确界的存在性定理 四、非正常确界
前页 后页 返回
记号与术语
U (a; ) { x | | x a | } : 点 a 的 邻域 U (a; ) {x | 0 | x a | } : 点 a 的 空心邻域 U (a; ) {x | 0 x a } : 点 a 的 右邻域 U(a; ) {x | 0 a x } : 点 a 的 左邻域
3. 令 a0 .a1a2 ,则 是正规小数表示. 4. sup S.
前页 后页 返回
四、实数的阿基米德性
实数具有阿基米德性: a,b R+ , n N+ , 使得 nb a. 理由如下:设
a a0 .a1a2 an , a0 k N, 则 a k 1 10k1. 设 b b0 .b1b2 bn , bp为第一个不为零的正整数, 令 n 10 pk1, 则 nb 10k1 a.
数学分析华东师大版

也是
例1 证明集合
E
y
y 1, x
x ( 0 ,1)
是无界数集.
证明:对任意 M 0 , 存在
x 1 (0,1) , y 1 E, y M 1 M
M 1
x
由无界集定义,E 为无界集。
2❖确定界义: E R, 数M若满足
❖ 1)M是E的上界
2)M是 任一上界,必有 M M 则称M是
一、区间与邻域
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM,
A {a1 , a2 , , an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
数集分类: N----自然数集 Z----整数集 Q----有理数集 R----实数集
❖ 闭区间 a, b 、开区间 (a,b) 为有限
数)、邻域等都是有界数集,
❖ 集合 E y y sin x, x ( , )
也是有界数集.
❖ ( , ) , ( , 0 ) , ( 0 , ) , 等都是无
❖
界数集,
集合 E
y
无界数集.
y 1, x
x(
0
,
1
)பைடு நூலகம்
xE
❖ 命题2 m= inf E 的 充要条件
1)m是E的下 界,
2) 0, x E 使得 x</ m .
❖
例2
⑴
S
1
(1 ) n n
,
则
❖ supS ______, inf S _______.
❖ ⑵ E y y sin x, x (0,).
数学分析华东师大第一章第一节

( 2) x1 x2 , y1 y2 , 则 x1 y1 x2 y2 .
前页 后页 返回
四、实数的阿基米德性
实数具有阿基米德性:
a, b R + , n N+ , 使得 nb a.
k 1 π a 与 b 之间的有理数, 而 是 a 与 b 之间 n 4n 的无理数.
例2 若a , b R, 对 0,a b ,则 a b. 证 倘若a b,设 a b 0, 则 a b ,
与 a b 矛盾.
前页 后页
k 1 k 2 k 1 k 2 于是, a b, 则 , 是 n n n n
前页 后页
返回
若实数都用无限小数表示,则表达式是唯一的. 即: 若 x a0 .a1a2 an ,
y b0 .b1b2 bn ,
则 x y an bn , n 0, 1, 2, . 用无限小数表示实数,称为正规表示. m 3. Q { x | x , 其中 m , n Z, n 0} 表示有理数集. n x Q, x 可用循环十进制小数表示, 1 42857 . 如 0 .1 7
4. 无理数为无限不循环小数.
如:π 3.1415926 ;
x 0.1010010001 .
前页 后页 返回
二、实数的大小
定义1 x , y R + , 若
x a0 .a1a2 an , y b0 .b1b2 bn
是正规的十进制小数表示, 规定
a b a0 b0 或 n N+ , 使
数学分析(华东师大)第一章实数集与函数

第一章实数集与函数§1 实数数学分析研究的基本对象是定义在实数集上的函数.为此, 我们先简要叙述实数的有关概念.一实数及其性质在中学数学课程中, 我们知道实数由有理数与无理数两部分组成.有理数可用分数形式p( p、q 为整数, q≠0 ) 表示, 也可用有限十进小数或无限十进循环q小数来表示; 而无限十进不循环小数则称为无理数.有理数和无理数统称为实数.为了以下讨论的需要, 我们把有限小数( 包括整数) 也表示为无限小数.对此我们作如下规定: 对于正有限小数( 包括正整数) x , 当x = a0 . a1 a2 a n 时, 其中0≤a i ≤9 , i = 1 , 2 , , n , a n ≠0 , a0 为非负整数, 记x = a0 . a1 a2 ( a n - 1) 999 9 ,而当x = a0 为正整数时, 则记x = ( a0 - 1 ) .999 9 ,例如2 .001 记为2.000 999 9 ; 对于负有限小数( 包括负整数) y , 则先将- y 表示为无限小数, 再在所得无限小数之前加负号, 例如- 8 记为- 7.999 9 ; 又规定数0 表示为0.000 0 .于是, 任何实数都可用一个确定的无限小数来表示.我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系.定义1 给定两个非负实数x = a0 . a1 a2 a n , y = b0 .b1 b2 b n ,其中a0 , b0 为非负整数, a k , b k ( k = 1 , 2 , ) 为整数, 0≤a k ≤9 , 0≤b k ≤9 .若有a k =b k , k = 0 , 1 , 2 , ,则称x 与y 相等, 记为x = y; 若a0 > b0 或存在非负整数l , 使得a k =b k ( k = 0 , 1 , 2 , , l ) 而a l + 1 > b l + 1 ,则称x 大于y 或y 小于x , 分别记为x > y 或y < x .2 第一章实数集与函数对于负实数x , y, 若按上述规定分别有- x = - y 与- x > - y , 则分别称x = y 与x < y( 或y > x) .另外, 自然规定任何非负实数大于任何负实数.以下给出通过有限小数来比较两个实数大小的等价条件.为此, 先给出如下定义.定义 2 设x = a0 . a1 a2 a n 为非负实数.称有理数x n = a0 . a1 a2 a n为实数x 的n位不足近似, 而有理数x n = x n + 称为x 的n位过剩近似, n = 0 , 1 , 2 , . 1 10 n对于负实数x = - a0 .a1 a2 a n , 其n 位不足近似与过剩近似分别规定为1x n = - a0 .a1 a2 a n - n 与x n = - a0 .a1 a2 a n .10注不难看出, 实数x 的不足近似x n 当n 增大时不减, 即有x0 ≤x1 ≤x2 ≤, 而过剩近似x n 当n 增大时不增, 即有x0 ≥x1 ≥x2 ≥.我们有以下的命题设x = a0 .a1 a2 与y = b0 . b1 b2 为两个实数, 则x > y 的等价条件是: 存在非负整数n , 使得x n > y n ,其中x n 表示x 的n 位不足近似, y n 表示y 的n 位过剩近似.关于这个命题的证明, 以及关于实数的四则运算法则的定义, 可参阅本书附录Ⅱ第八节.例1 设x、y 为实数, x < y .证明: 存在有理数r 满足x < r < y .证由于x < y , 故存在非负整数n , 使得x n < y n .令r = 1( x n + y n ) ,2则r 为有理数, 且有即得x < r < y .x ≤ x n < r < y n ≤y,为方便起见, 通常将全体实数构成的集合记为R , 即R = { x x 为实数} .实数有如下一些主要性质:1 . 实数集R 对加、减、乘、除( 除数不为0 ) 四则运算是封闭的, 即任意两个§1 实数3实数的和、差、积、商( 除数不为0) 仍然是实数.2 . 实数集是有序的, 即任意两实数a、b 必满足下述三个关系之一: a < b,a = b, a >b .3 . 实数的大小关系具有传递性, 即若a > b, b > c, 则有a > c .4 . 实数具有阿基米德( Archimedes ) 性, 即对任何a、b∈R , 若b > a > 0 , 则存在正整数n , 使得na > b .5 . 实数集R 具有稠密性, 即任何两个不相等的实数之间必有另一个实数, 且既有有理数( 见例1 ) , 也有无理数.6 . 如果在一直线( 通常画成水平直线) 上确定一点O 作为原点, 指定一个方向为正向( 通常把指向右方的方向规定为正向) , 并规定一个单位长度, 则称此直线为数轴.任一实数都对应数轴上唯一的一点; 反之, 数轴上的每一点也都唯一地代表一个实数.于是, 实数集R 与数轴上的点有着一一对应关系.在本书以后的叙述中, 常把“实数a”与“数轴上的点a”这两种说法看作具有相同的含义.例2 设a、b∈R .证明: 若对任何正数ε有a < b + ε, 则a≤b .证用反证法.倘若结论不成立, 则根据实数集的有序性, 有a > b .令ε= a - b, 则ε为正数且 a = b + ε, 但这与假设 a < b + ε相矛盾.从而必有a≤b .关于实数的定义与性质的详细论述, 有兴趣的读者可参阅本书附录Ⅱ .二绝对值与不等式实数a 的绝对值定义为a = a , a ≥0 ,- a , a < 0 .从数轴上看, 数a 的绝对值| a | 就是点 a 到原点的距离.实数的绝对值有如下一些性质:1 . | a | = | - a | ≥0; 当且仅当 a = 0 时有| a | = 0 .2 . - | a | ≤ a≤ | a | .3 . | a | < h! - h < a < h; | a | ≤ h! - h≤ a≤ h ( h > 0) .4 . 对于任何a、b∈R 有如下的三角形不等式:a -b ≤ a ±b ≤ a + b .5 . | ab | = | a | | b| .6 . ab| a || b|( b≠ 0) .下面只证明性质4 , 其余性质由读者自行证明. 由性质2 有=4 第一章实数集与函数两式相加后得到- a ≤ a ≤ a , - b ≤ b ≤ b .- ( a + b ) ≤ a + b ≤ a + b .根据性质3 , 上式等价于a +b ≤ a + b . ( 1) 将(1 ) 式中 b 换成- b, ( 1) 式右边不变, 即得| a - b | ≤| a | + | b | , 这就证明了性质4 不等式的右半部分.又由| a | = | a - b + b | , 据(1 ) 式有a ≤ a -b + b .从而得a -b ≤ a - b . ( 2) 将(2 ) 式中 b 换成- b, 即得| a | - | b | ≤| a + b | .性质4 得证.习题1 . 设a 为有理数, x 为无理数.证明:( 1) a + x 是无理数; ( 2)当a≠0 时, ax 是无理数.2 . 试在数轴上表示出下列不等式的解:( 1) x ( x2 - 1) > 0; ( 2) | x - 1 | < | x - 3 | ;( 3) x - 1 - 2 x - 1≥ 3 x - 2 .3 . 设a、b∈R .证明:若对任何正数ε有| a - b| < ε, 则a = b .4 . 设x ≠0 ,证明x + 1 x5 . 证明: 对任何x ∈R 有≥2 , 并说明其中等号何时成立.( 1) | x - 1 | + | x - 2 | ≥1; ( 2) | x - 1 | + | x - 2 | + | x - 3 | ≥2 .6 . 设a、b、c∈R+ ( R+ 表示全体正实数的集合) .证明a2 + b2- a2+ c2 ≤ b - c .你能说明此不等式的几何意义吗?7 . 设x > 0 , b > 0 , a≠b .证明a + x介于 1 与a之间.b + x b8 . 设p 为正整数.证明:若p 不是完全平方数, 则p是无理数.9 . 设a、b 为给定实数.试用不等式符号(不用绝对值符号) 表示下列不等式的解:( 1) | x - a| < | x - b | ; ( 2) | x - a | < x - b; (3) | x2 - a | < b .§2 数集·确界原理本节中我们先定义R 中两类重要的数集———区间与邻域, 然后讨论有界集§2 数集·确界原理5并给出确界定义和确界原理.一区间与邻域设a、b∈R , 且 a < b .我们称数集{ x | a < x < b} 为开区间, 记作( a , b) ; 数集{ x | a≤x≤b} 称为闭区间, 记作[ a , b] ; 数集{ x | a≤x < b} 和{ x | a < x ≤b} 都称为半开半闭区间, 分别记作[ a , b) 和( a , b] .以上这几类区间统称为有限区间.从数轴上来看, 开区间( a , b) 表示a、b 两点间所有点的集合, 闭区间[ a, b] 比开区间( a , b) 多两个端点, 半开半闭区间[ a, b) 比开区间( a, b) 多一个端点 a 等.满足关系式x ≥a 的全体实数x 的集合记作[ a , + ∞) , 这里符号∞读作“无穷大”, + ∞读作“正无穷大”.类似地, 我们记( - ∞ , a] = { x x ≤ a} , ( a , + ∞ ) = { x x > a} ,( - ∞, a) = { x x < a} , ( - ∞, + ∞) = { x - ∞< x < + ∞} = R , 其中- ∞读作“负无穷大”.以上这几类数集都称为无限区间.有限区间和无限区间统称为区间.设a∈R , δ> 0 .满足绝对值不等式| x - a | < δ的全体实数x 的集合称为点a 的δ邻域, 记作U ( a;δ) , 或简单地写作U( a ) , 即有U( a; δ) = { x x - a < δ} = ( a - δ, a + δ) .点a 的空心δ邻域定义为U°(a;δ) = { x 0 < x - a < δ} ,它也可简单地记作U°( a) .注意, U°( a;δ) 与U( a;δ) 的差别在于: U°( a;δ) 不包含点 a .此外, 我们还常用到以下几种邻域:点a 的δ右邻域U + ( a;δ) = [ a , a + δ) , 简记为U + ( a) ;点a 的δ左邻域U - ( a;δ) = ( a - δ, a] , 简记为U - ( a) ;( U- ( a ) 与U+ ( a ) 去除点 a 后, 分别为点 a 的空心δ左、右邻域, 简记为U°- ( a) 与U°+ ( a) .)∞邻域U( ∞) = { x | x | > M} , 其中M 为充分大的正数( 下同) ;+ ∞邻域U( + ∞) = { x | x > M}; - ∞邻域U( - ∞) = { x | x < - M} .二有界集·确界原理定义1 设S 为R 中的一个数集.若存在数M ( L ) , 使得对一切x ∈S , 都有x ≤M( x≥L) , 则称S 为有上界( 下界) 的数集, 数M( L) 称为S 的一个上界( 下界) .6 第一章实数集与函数若数集S 既有上界又有下界, 则称S 为有界集.若S 不是有界集, 则称S 为无界集.例1 证明数集N + = { n | n 为正整数}有下界而无上界.证显然, 任何一个不大于1 的实数都是N + 的下界, 故N + 为有下界的数集.为证N + 无上界, 按照定义只须证明: 对于无论多么大的数M, 总存在某个正整数n0 ( ∈N + ) , 使得n0 > M .事实上, 对任何正数M ( 无论多么大) , 取n0 = [ M ] + 1 ①, 则n0 ∈N + , 且n0 > M .这就证明了N + 无上界.读者还可自行证明: 任何有限区间都是有界集, 无限区间都是无界集; 由有限个数组成的数集是有界集.若数集S 有上界, 则显然它有无穷多个上界, 而其中最小的一个上界常常具有重要的作用, 称它为数集S 的上确界.同样, 有下界数集的最大下界, 称为该数集的下确界.下面给出数集的上确界和下确界的精确定义.定义2 设S 是R 中的一个数集.若数η满足:( i) 对一切x∈S , 有x≤η, 即η是S 的上界;( ii) 对任何α< η, 存在x0 ∈S , 使得x0 > α, 即η又是S 的最小上界,则称数η为数集S 的上确界, 记作η = sup S② .定义3 设S 是R 中的一个数集.若数ξ满足:( i) 对一切x∈S , 有x≥ξ, 即ξ是S 的下界;( ii) 对任何β> ξ, 存在x0 ∈S , 使得x0 < β, 即ξ又是S 的最大下界,则称数ξ为数集S 的下确界, 记作ξ= inf S .上确界与下确界统称为确界.例2 设S = { x |x 为区间(0 , 1 ) 中的有理数} .试按上、下确界的定义验证: sup S = 1 , inf S = 0 .解先验证sup S = 1 :( i) 对一切x∈S , 显然有x≤1 , 即1 是S 的上界.( ii) 对任何α< 1 , 若α≤0 , 则任取x0 ∈S 都有x0 > α; 若α> 0 , 则由有理数集在实数集中的稠密性, 在( α, 1) 中必有有理数x0 , 即存在x0 ∈S , 使得x0 > α.类似地可验证inf S = 0 .读者还可自行验证: 闭区间[0 , 1 ]的上、下确界分别为1 和0 ; 对于数集①[ x] 表示不超过数x 的最大整数, 例如[ 2 .9 ] = 2 , [ - 4 .1 ] = - 5 .②sup 是拉丁文supremum ( 上确界) 一词的简写; 下面的inf 是拉丁文infimum ( 下确界) 一词的简写.E = ( - 1 ) §2 数集·确界原理7nn n = 1 , 2 , , 有 sup E = N + = 1 , 而没有上确界 . 1 2 , inf E = - 1 ; 正整数集 N + 有下确界 inf 注 1 由上 ( 下 ) 确界的定义可见 , 若数集 S 存在上 ( 下 ) 确界 , 则一定是唯一 的 .又若数集 S 存在上、下确界 , 则有 inf S ≤s up S .注 2 从上面一些例子可见 , 数集 S 的确界可能属于 S , 也可能不属于 S . 例 3 设数集 S 有上确界 .证明η = sup S ∈ S !η = max S ① .证 ª ) 设 η= sup S ∈ S , 则对一切 x ∈ S 有 x ≤η, 而 η∈ S , 故 η是数集 S 中最大的数 , 即 η= max S .Ï ) 设 η= max S , 则 η∈ S ; 下面验证 η= sup S:( i ) 对一切 x ∈ S , 有 x ≤η, 即 η是 S 的上界 ;( ii ) 对任何 α< η, 只 须取 x 0 = η∈ S , 则 x 0 > α .从 而满 足 η= sup S 的 定 义 .关于数集确界的存在性 , 我们给出如下确界原理 .定理 1 .1 ( 确界原理 ) 设 S 为非空数集 .若 S 有上界 , 则 S 必有上确界 ; 若 S 有下界 , 则 S 必有下确界 .证 我们只证明关于上确界的结论 , 后一结论可类似地证明 .为叙述的方便起见 , 不妨设 S 含有非负数 .由于 S 有上界 , 故可找到非负整 数 n , 使得1) 对于任何 x ∈ S 有 x < n + 1 ;2) 存在 a 0 ∈ S , 使 a 0 ≥ n .对半开区间 [ n , n + 1) 作 10 等分 , 分点为 n .1 , n .2 ,, n .9 , 则存在 0 , 1 , 2 , , 9 中的一个数 n 1 , 使得1) 对于任何 x ∈ S 有 x < n . n 1 + 1 ; 102) 存在 a 1 ∈ S , 使 a 1 ≥ n . n 1 .再对半开区间 [ n . n 1 , n . n 1 + 1 ) 作 10 等 分 , 则 存在 0 , 1 , 2 , , 9 中的一 个 10数 n 2 , 使得1) 对于任何 x ∈ S 有 x < n . n 1 n 2 + 1 ; 1022) 存在 a 2 ∈ S , 使 a 2 ≥ n . n 1 n 2 .① 记号 max 是 maxim um( 最大 ) 一 词的 简写 , η= max S 表 示数 η是 数集 S 中 最大 的数 .以下 将出 现 的记号 min 是 minimu m( 最小 ) 一 词的简 写 , min S 表示 数集 S 中 最小 的数 .8 第一章实数集与函数继续不断地10 等分在前一步骤中所得到的半开区间, 可知对任何k = 1 , 2 , , 存在0 , 1 , 2 , , 9 中的一个数n k , 使得1) 对于任何x∈S 有x < n . n1 n2 n k + 1; ( 1)10 k2) 存在a k ∈S , 使a k ≥n . n1 n2 n k .将上述步骤无限地进行下去, 得到实数η= n . n1 n2 n k .以下证明η= sup S .为此只需证明:( i) 对一切x∈S 有x≤η; ( ii ) 对任何α< η, 存在a′∈S 使α< a′.倘若结论( i ) 不成立, 即存在x ∈S 使x > η, 则可找到x 的k 位不足近似x k , 使从而得x k > 珔ηk = n . n1 n2 n k +1,10 kx > n . n1 n2 n k +1,10 k但这与不等式(1 ) 相矛盾.于是( i) 得证.现设α< η, 则存在k 使η的k 位不足近似ηk > 珔αk , 即n . n1 n2 n k > 珔αk .根据数η的构造, 存在a′∈S 使a′≥ηk , 从而有a′≥ηk > 珔αk ≥α,即得到α< a′.这说明( ii) 成立.在本书中确界原理是极限理论的基础, 读者应给予充分的重视.例4 设 A 、B为非空数集, 满足: 对一切x∈A 和y∈B 有x ≤y .证明: 数集A 有上确界, 数集 B 有下确界, 且sup A ≤ inf B . ( 2) 证由假设, 数集 B 中任一数y 都是数集 A 的上界, A 中任一数x 都是 B 的下界, 故由确界原理推知数集 A 有上确界, 数集 B 有下确界.现证不等式(2 ) .对任何y∈B , y 是数集A 的一个上界, 而由上确界的定义知, sup A 是数集A 的最小上界, 故有sup A≤y .而此式又表明数sup A 是数集B 的一个下界, 故由下确界定义证得sup A≤inf B .例5 设 A 、B为非空有界数集, S = A ∪ B .证明:( i) sup S = max{sup A , sup B};( ii) inf S = min{inf A , inf B} .证由于S = A ∪B 显然也是非空有界数集, 因此S 的上、下确界都存在.( i) 对任何x∈S , 有x∈A 或x∈Bªx≤sup A 或x≤sup B , 从而有x ≤§2 数集·确界原理9max{sup A , sup B} , 故得sup S≤max{ sup A , sup B} .另一方面, 对任何x∈A , 有x ∈S ªx ≤sup S ªs up A ≤sup S ; 同理又有sup B≤sup S .所以sup S≥max{sup A , sup B} .综上, 即证得sup S = max{sup A , sup B} .( ii) 可类似地证明.若把+ ∞和- ∞补充到实数集中, 并规定任一实数 a 与+ ∞、- ∞的大小关系为: a < + ∞, a > - ∞, - ∞< + ∞, 则确界概念可扩充为:若数集S 无上界, 则定义+ ∞为S 的非正常上确界, 记作sup S = + ∞;若S 无下界, 则定义- ∞为S 的非正常下确界, 记作inf S = - ∞.相应地, 前面定义2 和定义3 中所定义的确界分别称为正常上、下确界.在上述扩充意义下,我们有推广的确界原理任一非空数集必有上、下确界( 正常的或非正常的) .例如, 对于正整数集N+ 有inf N+ = 1 , sup N+ = + ∞; 对于数集S = { y y = 2 - x2 , x ∈R } ( 3) 有inf S = - ∞, sup S = 2 .习题1 . 用区间表示下列不等式的解:( 1) | 1 - x | - x ≥0; ( 2) x + 1x≤6 ;( 3) ( x - a) ( x - b) ( x - c) > 0( a , b , c 为常数, 且 a < b < c) ;( 4) sin x ≥ 2 .22 . 设S 为非空数集.试对下列概念给出定义:( 1) S 无上界; ( 2) S 无界.3 . 试证明由(3 )式所确定的数集S 有上界而无下界.4 . 求下列数集的上、下确界, 并依定义加以验证:( 1) S = { x | x2 < 2} ; (2 ) S = { x | x = n !, n∈ N+ } ;( 3) S = { x | x 为(0 , 1 )内的无理数} ;( 4) S = { x | x = 1 - 1, n∈N+ } .2 n5 . 设S 为非空有下界数集.证明:inf S = ξ∈ S!ξ = min S .6 . 设S 为非空数集, 定义S - = { x | - x ∈S} .证明:( 1) inf S - = - sup S; ( 2) sup S - = - inf S .7 . 设A 、B皆为非空有界数集, 定义数集A +B = { z | z = x + y, x ∈ A , y ∈ B} .10 第一章实数集与函数证明: (1) sup( A + B) = sup A + sup B; ( 2) inf( A + B) = inf A + inf B .8 . 设a > 0 , a≠1 , x 为有理数.证明sup{ a r | r 为有理数, r < x} , 当a > 1 ,a x =inf{ a r | r 为有理数, r < x} , 当a < 1 .§3 函数概念关于函数概念, 在中学数学中我们已有了初步的了解, 本节将对此作进一步的讨论.一函数的定义定义1 给定两个实数集 D 和M , 若有对应法则 f , 使对D 内每一个数x , 都有唯一的一个数y∈M 与它相对应, 则称 f 是定义在数集D 上的函数, 记作f : D → M ,( 1)x 組y .数集 D 称为函数 f 的定义域, x 所对应的数y , 称为f 在点x 的函数值, 常记为f ( x) .全体函数值的集合f ( D) = { y y = f ( x ) , x ∈ D} ( ÌM)称为函数f 的值域.(1 ) 中第一式“D→M”表示按法则 f 建立数集D到M 的函数关系; 第二式“x 組y”表示这两个数集中元素之间的对应关系, 也可记为“x 組f ( x) ”.习惯上, 我们称此函数关系中的x 为自变量, y 为因变量.关于函数的定义, 我们作如下几点说明:1 . 定义1 中的实数集M 常以R 来代替, 于是定义域 D 和对应法则 f 就成为确定函数的两个主要因素.所以, 我们也常用y = f ( x ) , x ∈D表示一个函数.由此, 我们说某两个函数相同, 是指它们有相同的定义域和对应法则.如果两个函数对应法则相同而定义域不同, 那么这两个函数仍是不相同的.例如 f ( x ) = 1 , x ∈R 和g( x) = 1 , x∈R \ {0 } 是不相同的两个函数.另一方面, 两个相同的函数, 其对应法则的表达形式可能不同, 例如φ( x) = x , x ∈R 和ψ( x) = x2 , x ∈R .2 . 我们在中学数学中已经知道,表示函数的主要方法是公式法, 即用数学运算式子来表示函数.这时, 函数的定义域常取使该运算式子有意义的自变量值的全体,通常称为存在域.在这种情况下,函数的定义域( 即存在域) D 可省略不写,而只用对应法则 f 来表示一个函数,此时可简单地说“函数y = f ( x)”或“函数f”.§3 函 数 概 念113 . 函数 f 给出了 x 轴上的点集 D 到 y 轴上 点集 M 之间 的单值 对应 , 也 称 为映射 .对于 a ∈ D, f ( a) 称为映射 f 下 a 的象 , a 则称为 f ( a) 的原象 .4 . 在函数定义中 , 对每一个 x ∈ D , 只能有唯一的 一个 y 值 与它对 应 , 这 样 定义的函数称为单值函数 .若同 一个 x 值 可以 对应 多于 一 个的 y 值 , 则 称这 种 函数为多值函数 .在本书范围内 , 我们只讨论单值函数 .二 函数的表示法在中学课程里 , 我们已经知道函数 的表 示法主 要有 三种 , 即 解析法 ( 或称 公 式法 ) 、列表法和图象法 . 有些函数在其定义域的不同部 分用 不同的 公式 表达 , 这 类函数 通常 称为 分 段函数 .例如 , 函数sgn x =1 , x > 0 , 0 ,x = 0 ,- 1 , x < 0是分段函数 , 称为符号函数 , 其图象如图 1 - 1 所示 . 又如函数 f ( x ) = | x | 也可 用 如下 的 分 段函 数 形式 来表示 :图 1 - 1f ( x) =x ,x ≥ 0 ,- x , x < 0 .它还可表示为 f ( x) = x sgn x .函数 y = f ( x ) , x ∈ D 又可用如下有序数对的集合 :G = { ( x , y) y = f ( x ) , x ∈ D} 来表示 .在坐标平面上 , 集合 G 的每一个元素 ( x , y ) 表 示平面上 的一个点 , 因 而 集合 G 在坐标平面 上 描绘 出 这 个函 数 的图 象 .这 就 是用 图 象法 表 示 函数 的 依 据 .有些函数难以用解析法、列表法 或图 象法来 表示 , 只 能用 语言来 描述 .如 定 义在 R 上的狄利克雷 ( Dirichlet ) 函数1 , 当 x 为有理数 ,D( x) =0 , 当 x 为无理数 和定义在 [0 , 1 ] 上的黎曼 ( Riemann ) 函数1 , 当 x = p ( p , q ∈ N + , p为既约真分数 ) ,R ( x) =q qq0 ,当 x = 0 , 1 和 (0 , 1 ) 内的无理数 .三 函数的四则运算给定两个函数 f , x ∈ D 1 和 g , x ∈ D 2 , 记 D = D 1 ∩ D 2 , 并设 D ≠¹?.我们定* 2 12第一章 实数集与函数义 f 与 g 在 D 上的和、差、积运算如下 :F( x ) = f ( x) + g ( x ) , x ∈ D,G( x) = f ( x ) - g( x) , x ∈ D,H( x ) = f ( x) g( x) , x ∈ D .若在 D 中剔除使 g( x) = 0 的 x 值 , 即令D = D 1 ∩ { x g( x) ≠ 0 , x ∈ D 2 } ≠ ¹?,可在 D *上定义 f 与 g 的商的运算如下 :L( x ) = f ( x) , x ∈ D *.g( x )注 若 D = D 1 ∩ D 2 = ¹?, 则 f 与 g 不能进行四则运算 .例如 , 设f ( x) = 1 - x 2, x ∈ D 1 = { x x ≤ 1} , g( x) =x 2- 4 , x ∈ D = { xx ≥ 2 } ,由于 D 1 ∩ D 2 = ¹?, 所以表达式f ( x ) + g( x) =1 - x 2+x 2- 4是没有意义的 .以后为叙述方便 , 函数 f 与 g 的和、差、积、商常分别写作f +g , f - g, fg , f.g四 复合函数设有两函数y = f ( u) , u ∈ D, u = g( x ) , x ∈ E .( 2)记 E * = { x | g( x ) ∈ D } ∩ E .若 E *≠¹?, 则对每一个 x ∈ E *, 可通过函数 g 对 应 D 内唯一的一个值 u , 而 u 又通过函数 f 对应唯一的一个值 y .这就确定了一 个定义在 E *上的函数 , 它以 x 为自变量 , y 为因变量 , 记作y = f ( g( x ) ) , x ∈ E *或 y = ( f g) ( x) , x ∈ E *, 称为函数 f 和 g 的 复合函 数 .并称 f 为 外函数 , g 为内函 数 , ( 2) 式中 的 u 为 中 间变量 .函数 f 和 g 的复合运算也可简单地写作 f g . 例 1 函数 y = f ( u ) = u , u ∈ D = [0 , + ∞ ) 与 函数 u = g( x ) = 1 - x 2, x ∈ E = R 的复合函数为y = f ( g( x ) ) =1 - x2或 ( f g) ( x ) =1 - x 2,其定义域 E *= [ - 1 , 1] Ì E .复合函数也可由多个函数相继复 合而 成 .例如 , 由三 个函 数 y = sin u , u =§3 函数概念13v 与v = 1 - x2 ( 它们的定义域取为各自的存在域)相继复合而得的复合函数为y = sin 1 - x2 , x ∈[ - 1 , 1] .注当且仅当 E * ≠¹?( 即D∩g ( E) ≠¹?) 时, 函数 f 与g 才能进行复合. 例如, 以y = f ( u) = arc sin u , u∈D = [ - 1 , 1 ] 为外函数, u = g( x ) = 2 + x2 , x ∈E = R 为内函数, 就不能进行复合.这是因为外函数的定义域 D = [ - 1 , 1 ] 与内函数的值域g( E ) = [ 2 , + ∞) 不相交.五反函数函数y = f ( x ) 的自变量x 与因变量y 的关系往往是相对的.有时我们不仅要研究y 随x 而变化的状况, 也要研究x 随y 而变化的状况.对此, 我们引入反函数概念.设函数y = f ( x ) , x ∈ D ( 3) 满足: 对于值域 f ( D) 中的每一个值y, D 中有且只有一个值x 使得f ( x) = y,则按此对应法则得到一个定义在 f ( D) 上的函数, 称这个函数为 f 的反函数, 记作f - 1 : f ( D) → D,y 組x或x = f - 1 ( y) , y ∈ f ( D) . ( 4) 注1 函数 f 有反函数, 意味着 f 是D 与 f ( D) 之间的一个一一映射.我们称 f - 1 为映射 f 的逆映射, 它把集合 f ( D) 映射到集合D, 即把 f ( D) 中的每一个值 f ( a) 对应到 D 中唯一的一个值 a .这时称a 为逆映射 f - 1 下f ( a) 的象,而f ( a ) 则是 a 在逆映射f - 1 下的原象.从上述讨论还可看到, 函数 f 也是函数 f - 1 的反函数.或者说, f 与f - 1 互为反函数.并有f - 1 ( f ( x ) ) ≡ x , x ∈ D ,f ( f - 1 ( y) ) ≡ y , y ∈ f ( D) .注2 在反函数 f - 1 的表示式( 4) 中, 是以y 为自变量, x 为因变量.若按习惯仍用x 作为自变量的记号, y 作为因变量的记号, 则函数( 3 ) 的反函数( 4 ) 可改写为y = f - 1 ( x ) , x ∈ f ( D) . ( 5) 例如, 按习惯记法, 函数y = ax + b ( a≠0 ) , y = a x ( a > 0 , a ≠1 ) 与y = sin x ,14第一章 实数集与函数x ∈ - π , π的反函数分别是2 2x - b a , y = log a x 与 y = arcsin x . 应该注意 , 尽管反函数 f - 1的表示式 (4 ) 与 ( 5) 的形式不同 , 但它 们仍表示 同 一个函数 , 因 为它 们的定 义域 都是 f ( D) , 对应 法则 都是 f - 1, 只是 所用 变量 的 记号不同而已 .六 初等函数在中学数学中 , 读者已经熟悉基本初等函数有以下六类 : 常量函数 y = c ( c 是常数 ) ; 幂函数 y = x α(α为实数 ) ; 指数函数 y = a x( a > 0 , a ≠ 1) ; 对数函数 y = log a x ( a > 0 , a ≠1 ) ;三角函数 y = sin x( 正弦函数 ) , y = cos x ( 余弦函数 ) ,y = tan x( 正切函数 ) , y = cot x( 余切函数 ) ; 反三角函数y = arcsin x( 反正弦函数 ) , y = arccos x ( 反余弦函数 ) ,y = arctan x ( 反正切函数 ) , y = arccot x( 反余切函数 ) .这里我们要指 出 , 幂函 数 y = x α和指数 函数 y = a x都涉 及乘幂 , 而 在中 学 数学课程中只给出了有理指数乘幂的定 义 .下面 我们借 助确 界来 定义无 理指 数 幂 , 使它与有理指数幂一起构成实指数乘幂 , 并保持有理指数幂的基本性质 .定义 2 给定实数 a > 0 , a ≠1 .设 x 为无理数 , 我们规定a x= sup { arr 为有理数 } , 当 a > 1 时 ,r < xinf { arr 为有理数 } , 当 0 < a < 1 时 .r < x( 6)( 7)注 1 对任一无理数 x , 必有有理数 r 0 , 使 x < r 0 , 则当有理数 r < x 时有 r < r 0 , 从而由有理数乘幂的性质 , 当 a > 1 时有 a r< ar.这表明非空数集{ a r r < x , r 为有理数 }有一个上界 a r 0 .由确界原理 , 该数集有上确界 , 所以 ( 6) 式右边是一个确定的数 . 同理 , 当 0 < a < 1 时 (7 ) 式右边也是一个定数 .注 2 由§2 习题 8 可知 , 当 x 为有理数时 , 同样可 按 ( 6 ) 式和 (7 ) 式来表 示 a x, 而且与我们以前所熟知的有理数乘幂的概念是 一致的 .这样 , 无论 x 是有 理 数还是无理数 , a x都可用 (6 ) 式和 ( 7) 式来统一表示 .定义 3 由基本初等函 数 经过 有限 次四 则运 算 与复 合运 算所 得到 的 函数 ,y =§3 函数概念15统称为初等函数.不是初等函数的函数, 称为非初等函数.如在本节第二段中给出的狄利克雷函数和黎曼函数, 都是非初等函数.习题1 . 试作下列函数的图象:( 1) y = x2 + 1 ; (2) y = ( x + 1) 2 ;( 3) y = 1 - ( x + 1 )2 ; (4) y = sgn( sin x) ;3 x , | x | > 1 ,( 5) y = x3 , | x | < 1 ,3 , | x | = 1 .2 . 试比较函数y = a x 与y = log a x 分别当 a = 2 和 a = 1 时2的图象.3 . 根据图1 - 2 写出定义在[ 0 , 1 ] 上的分段函数f1 ( x ) 和f2 ( x )的解析表示式.4 . 确定下列初等函数的存在域:( 1) y = sin( sin x) ; ( 2) y = lg( lg x) ;( 3) y = arcsin lg x105 . 设函数f ( x) = ; ( 4) y = lg arcsinx.102 + x , x ≤0 ,2 x , x > 0 .图 1 - 2求: (1 ) f ( - 3) , f (0 ) , f ( 1) ; (2 ) f (Δx) - f ( 0) , f ( - Δx) - f ( 0) (Δx > 0) .6 . 设函数 f ( x ) = 1, 求1 + xf (2 + x) , f ( 2 x) , f ( x2 ) , f ( f ( x) ) , f 1.f ( x )7 . 试问下列函数是由哪些基本初等函数复合而成:( 1) y = (1 + x) 20 ; (2 ) y = ( arcsin x2 ) 2 ;2 ( 3) y = lg(1 + 1 + x2 ) ; (4 ) y = 2sin x .8 . 在什么条件下,函数的反函数就是它本身? y =ax + bcx + d9 . 试作函数y = arcsin (sin x )的图象.10 . 试问下列等式是否成立:16 第一章实数集与函数( 1) tan( arctan x) = x , x∈R ;( 2) arctan( tan x) = x , x≠kπ+ 11 . 试问y = | x | 是初等函数吗? π2, k = 0 , ±1 ,±2 , .12 . 证明关于函数y = [ x ]的如下不等式:( 1) 当x > 0 时, 1 - x < x 1x≤1;( 2) 当x < 0 时, 1≤x 1x< 1 - x .§4 具有某些特性的函数在本节中, 我们将介绍以后常用到的几类具有某些特性的函数.一有界函数定义 1 设f 为定义在 D 上的函数.若存在数M( L) , 使得对每一个x∈D 有f ( x ) ≤ M ( f ( x) ≥ L) ,则称 f 为 D 上的有上( 下) 界函数, M( L) 称为 f 在D 上的一个上( 下) 界.根据定义, f 在D 上有上( 下) 界, 意味着值域 f ( D) 是一个有上( 下) 界的数集.又若M( L) 为 f 在D 上的上( 下) 界, 则任何大于( 小于) M ( L) 的数也是 f 在D 上的上( 下) 界.定义2 设f 为定义在 D 上的函数.若存在正数M , 使得对每一个x ∈D 有则称f 为D 上的有界函数.f ( x ) ≤M , ( 1)根据定义, f 在D 上有界, 意味着值域 f ( D) 是一个有界集.又按定义不难验证: f 在D 上有界的充要条件是f 在D 上既有上界又有下界.( 1) 式的几何意义是: 若 f 为D 上的有界函数, 则 f 的图象完全落在直线y = M 与y = - M 之间.例如, 正弦函数sin x 和余弦函数cos x 为R 上的有界函数, 因为对每一个x∈R 都有| sin x | ≤1 和| cos x | ≤1 .关于函数 f 在数集D上无上界、无下界或无界的定义, 可按上述相应定义的否定说法来叙述.例如, 设 f 为定义在D 上的函数, 若对任何M( 无论M 多大) , 都存在x0 ∈D , 使得 f ( x0 ) > M , 则称 f 为D 上的无上界函数.作为练习, 读者可自行写出无下界函数与无界函数的定义.§4 具有某些特性的函数 17例 1 证明 f ( x) = 1为 (0 , 1 ] 上的无上界函数 .x证 对任何正数 M , 取 ( 0 , 1] 上一点 x 0 = 1, 则有M + 1f ( x 0 ) = 1x 0= M + 1 > M .故按上述定义 , f 为 ( 0 , 1] 上的无上界函数 .前面已经指出 , f 在 其 定 义域 D 上 有上 界 , 是 指 值域 f ( D) 为 有 上 界 的 数 集 .于是 由 确界 原 理 , 数 集 f ( D) 有上 确 界 .通 常 , 我 们 把 f ( D) 的 上 确 界 记 为 sup f ( x ) , 并称之为 f 在 D 上的上确界 .类似地 , 若 f 在其定义域 D 上有下界 , 则x ∈ Df 在 D 上的下确界记为 inf f ( x) .x ∈ D例 2 设 f , g 为 D 上的有界函数 .证明 : (i ) ) inf f ( x) + inf g( x) ≤ inf { f ( x) + g( x) } ;x ∈ Dx ∈ Dx ∈ D(i )) sup { f ( x) + g( x) } ≤sup f ( x ) + sup g( x ) .x ∈ D证 ( i ) 对任何 x ∈ D 有x ∈ Dx ∈ Dinf f ( x ) ≤ f ( x) , inf g( x ) ≤ g( x) ª inf f ( x) + inf g( x ) ≤ f ( x) + g( x) .x ∈ Dx ∈ Dx ∈ Dx ∈ D上式表明 , 数 inf f ( x ) + inf g( x ) 是函数 f + g 在 D 上的一个下界 , 从而x ∈ Dx ∈ Dinf f ( x) + inf g( x) ≤ inf { f ( x ) + g( x) } .x ∈ D( ii ) 可类似地证明 ( 略 ) .x ∈ Dx ∈ D注 例 2 中的两个不等式 , 其严格的不等号有可能成立 .例如 , 设f ( x ) = x , g( x ) = - x , x ∈ [ - 1 , 1 ] ,则有 inf | x | ≤ 1f ( x ) = inf | x | ≤ 1g( x) = - 1 , sup | x | ≤ 1f ( x) = sup | x | ≤ 1g( x ) = 1 , 而inf | x| ≤ 1{ f ( x) + g ( x ) } = sup { f ( x ) + g( x) } = 0 .| x | ≤ 1二 单调函数定义 3 设 f 为定义在 D 上的函数 .若对任何 x 1 , x 2 ∈ D , 当 x 1 < x 2 时 , 总 有( i ) f ( x 1 ) ≤ f ( x 2 ) , 则称 f 为 D 上的增函数 , 特别当成立严格不等式 f ( x 1 ) < f ( x 2 ) 时 , 称 f 为 D 上的严格增函数 ;(ii ) f ( x 1 ) ≥ f ( x 2 ) , 则 称 f 为 D 上 的 减 函 数 , 特 别 当 成 立 严 格 不 等 式 f ( x 1 ) > f ( x 2 ) 时 , 称 f 为 D 上的严格减函数 ;增函数和减函数统称为单调函 数 , 严格 增函 数和严 格减 函数统 称为 严格 单 调函数 .例 3 函数 y = x 3在 R 上是 严格 增的 .因为 对任 何 x 1 , x 2 ∈ R , 当 x 1 < x 21 2- 1 - 1 - 11 2 1 2 1 1 218第一章 实数集与函数时总有x33x 123 2即 x 3< x 3.2- x 1 = ( x 2 - x 1 ) x 2 + 2+ 4x 1 > 0 ,例 4 函数 y = [ x ] 在 R 上是增的 .因为对任何 x 1 , x 2 ∈R , 当 x 1 < x 2 时 显然有 [ x 1 ] ≤ [ x 2 ] .但 此 函 数 在 R 上 不 是 严 格 增 的 , 若 取 x 1 = 0 , x 2 = 12 , 则 有[ x 1 ] = [ x 2 ] = 0 , 即定义中所要求的严格不等式不成立 .此函数的图象如图 1 - 3 所示 .严格单调 函 数 的 图 象与 任 一 平 行 于 x 轴 的 直 线至多有一个交 点 , 这一 特性 保 证了 它 必定 具 有反 函数 .定理 1 .2 设 y = f ( x ) , x ∈ D 为严 格增 ( 减 ) 函数 , 则 f 必有反函数 f - 1, 且 f - 1在其定义域 f ( D) 上也是严格增 ( 减 ) 函数 .证 设 f 在 D 上 严格 增 .对任 一 y ∈ f ( D) , 有 x ∈ D 使 f ( x) = y .下面证明这样的 x 只能有一个 .图 1 - 3事实上 , 对于 D 内任一 x 1 ≠ x , 由 f 在 D 上的严格增性 , 当 x 1 < x 时 f ( x 1 ) < y, 当 x 1 > x 时有 f ( x 1 ) > y, 总之 f ( x 1 ) ≠ y .这就说 明 , 对 每一个 y ∈ f ( D) , 都 只 存在唯 一的 一个 x ∈ D, 使 得 f ( x ) = y , 从而 函 数 f 存在 反函 数 x = f - 1( y) , y ∈ f ( D) .现证 f - 1也是 严格 增的 .任取 y , y ∈ f ( D) , y < y .设 x = f- 1( y ) , x = f - 1 ( y 2 ) , 则 y 1 = f ( x 1 ) , y 2 = f ( x 2 ) .由 y 1 < y 2 及 f 的严 格增 性 , 显然 有 x 1< x 2 , 即 f ( y 1 ) < f ( y 2 ) .所以反函数 f 是严格增的 .例 5 函数 y = x 2在 ( - ∞ , 0 ) 上是 严格减 的 , 有反 函数 ( 按习惯 记法 ) y = - x , x ∈ ( 0 , + ∞ ) ; y = x 2在 [0 , + ∞ ) 上是 严格 增的 , 有 反 函数 y = x , x ∈ [0 , + ∞ ) 。
数学分析课本(华师大三版)-习题及答案第二十一章

第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理(20.3):若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。
.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。
华东师范大学数学系《数学分析》讲义实数集与函数【圣才出品】
第1章实数集与函数1.1本章要点详解本章要点■实数■数集•确界原理■函数的概念■复合函数与反函数重难点导学一、实数1.实数的表示若规定:012012..(1)999n n a a a a a a a a =- 则有限十进小数都能表示成无限循环小数.2.两个实数的大小关系给定两个非负实数其中a 0,b 0为非负整数,a k ,b k (k =1,2…)为整数,0≤a k ≤9,0≤b k ≤9.若有则称x 与y 相等,记为x =y ;若a 0>b 0或存在非负整数l ,使得则称x 大于y 或y 小于x .分别记为x >y 或y <x .对于负实数x ,y ,若按上述规定分别有-x =-y 与-x >-y ,则分别称x =y 与x <y (或y >x ).另外,自然规定任何非负实数大于任何负实数.3.实数的性质(1)实数集R 对加、减、乘、除(除数不为0)四则运算是封闭的,即任意两个实数的和、差、积、商(除数不为0)仍然是实数.(2)实数集是有序的,即任意两实数a ,b 必满足下述三个关系之一:a <b ,a =b ,a >b .(3)实数的大小关系具有传递性,即若a >b ,b >c ,则有a >c .(4)实数具有阿基米德性,即对任何a ,b ∈R ,若b >a >0,则存在正整数n ,使得na >b .(5)实数集R 具有稠密性,即任何两个不相等的实数之间必有另一个实数.且既有有理数,也有无理数.(6)实数集R 与数轴上的点有着一一对应关系.任一实数都对应数轴上唯一的一点;反之,数轴上的每一点都唯一地代表一个实数.4.绝对值与不等式(1)绝对值①定义||0a a a a a ≥⎧=⎨-<⎩②性质a .|a |=|-a |≥0;当且仅当a =0时有|a |=0;b .-|a |≤a ≤|a |;c .|a |<h ⇔-h <a <h ;|a |≤h ⇔-h ≤a ≤h (h >0);d .三角形不等式:;f .;g ..(2)几个重要不等式①222a b ab +≥, sin 1x ≤, sin x x ≤;②均值不等式:12,,,n a a a +∀∈R ,令1211() n n i ii a a a M a a n n =+++==∑ 1121()nnn i n i i G a a a a a =⎛⎫== ⎪⎝⎭∏ 12111()111111i n nni i iinn H a a a a n a a =====+++∑∑ 有平均值不等式() () ()i i i H a G a M a ≤≤等号当且仅当12n a a a === 时成立.③Bernoulli 不等式1x ∀>-,有不等式(1)1, n x nx n +≥+∈N ,且当0x ≠时,(1)1nx nx +>+.二、数集•确界原理1.区间与邻域(1)区间设a,b∈R,且a<b.称数集{x|a<x<b}为开区间,记作(a,b);数集{x|a≤x≤b}称为闭区间,记作[a,b];数集{x|a≤x<b}和{x|a<x≤b}都为半开半闭区间,分别记作[a,b)和(a,b],以上这几类区间统称为有限区间.满足关系式x≥a的全体实数x的集合记作[a,+∞).符号∞读作“无穷大”,+∞读作“正无穷大”.记其中-∞读作“负无穷大”.以上这几类数集都称为无限区间.有限区间和无限区间统称为区间.(2)邻域设a∈R,δ>0,满足绝对值不等式|x-a|<δ的全体实数x的集合称为点a的δ邻域,记作U(a,δ),或简单地写作U(a).即有U(a;δ)={x||x-a|<δ}=(a-δ,a+δ)点a的空心δ邻域定义为U0(a;δ)={x|0<|x-a|<δ}2.上确界与下确界(1)相关概念①设S是R中的一个数集.若存在数M(L),使得对一切x∈S,都有x≤M(x≥L),则称S为有上界(下界)的数集,数M(L)称为S的个上界(下界).若数集S既有上界又有下界,则称S为有界集.若S不是有界集,则称S为无界集.②设S是R中的一个数集.若数η满足a.对一切x∈S,有x≤η,即η是S的上界;b.对任何α<η,存在x0∈S,使得x0>α,即又是S的最小上界.则称数η为数集S的上确界,记作η=sup S③设S是R中的一个数集.若数ξ满足a.对一切x∈S,有x≥ξ,即ξ是S的下界;b.对任何β>ξ,存在x0∈S,使得x0<β,即ξ又是S的最大下界.则称数ξ为数集S的下确界,记作ξ=inf S④上确界与下确界统称为确界.(2)重要定理①确界原理:设S为非空数集.若S有上界,则S必有上确界;若S有下界,则S必有下确界;②推广的确界原理:任一非空数集必有上、下确界.三、函数的概念1.函数的定义给定两个实数集D和M,若有对应法则f,使对D内每一个数x,都有唯一的一个数y ∈M与它相对应,则称f是定义在数集D上的函数,记作数集D称为函数f的定义域,x所对应的数y称为f在点x的函数值,常记为f(x).2.函数的表示法主要有三种:表格法、图像法、解析法(公式法).3.几个特殊的函数(1)常值函数y =c其定义域为D =(-∞,+∞),其值域为R f ={c }.(2)绝对值函数0||0xx y x x x ≥⎧⎪==⎨⎪-<⎩其定义域为D =(-∞,+∞),其值域为R f =[0,+∞).(3)符号函数10sgn 0010x y x x x >⎧⎪===⎨⎪-<⎩其定义域为D =(-∞,+∞),其值域为R f ={-1,0,1}.(4)取整函数:y=[x ],[x ]表示不超过x 的最大整数;(5)“非负小数部分”函数[]y x x =-,(,)x ∈-∞+∞它的定义域是(),D =-∞+∞,值域是[)0,1f R =.(6)狄利克雷函数1()0x Qy D x x Q∈⎧==⎨∉⎩其定义域为D =(-∞,+∞),其值域为f R ={0,1}.(7)取最值函数。
数学分析课本(华师大三版)-习题及答案第二十一章(20200511214824)
第十一章重积分§ 1二重积分的概念1•把重积分. .xydxdy作为积分和的极限,计算这个积分值,其中D=l0,1】0,1】,并用直线D「i j网x= ,y= (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为n n其界点•2•证明:若函数f在矩形式域上D可积,则f在D上有界•3•证明定理(20.3):若f在矩形区域D上连续,则f在D上可积•4•设D为矩形区域,试证明二重积分性质2、4和7.性质2若f、g都在D上可积,则f+g在D上也可积,且° f g = f °g •性质4若f、g在D上可积,且f _ g ,则岂D g ,性质7(中值定理)若f为闭域D上连续函数,则存在, D,使得D f =f , D5. 设D o、D1和D2均为矩形区域,且D o = D1 D 2, intD j int D j = •一,试证二重积分性质 3.性质3(区域可加性)若D o =D1 D2且int D1int D j —一,则f在D o上可积的充要条件是f在D2上都可积,且6. 设f在可求面积的区域D上连续,证明:(1) 若在D 上f x,y - 0,f x,y - 0则D f 0 ;(2) 若在D内任一子区域D D上都有D f 二0,则在D 上f x,y . = 0。
7・证明:若f在可求面积的有界闭域D上连续,,g在D上可积且不变号,则存在一点, D,使得f x,yg x,y dxdy=f , gx,y dxdy.D D8.应用中值定理估计积分r r dxdy2 2-凶砒o1OO cos x cos y的值§ 2二重积分的计算1.计算下列二重积分:⑴y -2x dxdy,其中D= 3,5】1,2】;D⑵xy2dxdy,其中(i )D= 0,2〕0,3 1( ii )D= 0,3】0,2】;D2.设f(x,y)= f l x f2 y为定义在D= a i, bj ^2, bj上的函数若f l在la i,b」上可积,f2在a2,b21上可积,则f在D上可积,且3. 设f在区域D上连续试将二重积分 f x,y dxdy化为不同顺序的累次积分D(1)D由不等式y-x,y-a,x-b 0-a-b所确的区域⑶!! cosx y dxdy,其中D=D⑷..Dx1 xydxdy,其中D= 0,1 0,11.2 2 2⑵D 由不等式x y _a 与x y <a (a>0)所确定的区域(3)D=如,y )x + y4. 在下列积分中改变累次积分的顺序5. 计算下列二重积分2(1) i ixy dxdy ,其中D 由抛物线y=2px 与直线D⑵ 11 ix 2 y 2 dxdy ,其中 D= :x,y 0 _ x _1, . x 乞 y 乞 2 一 x [D卄 dxdy(3) .. ------------- (a>0),其中D 为图(20— 7)中的阴影部分;D2a -x⑷ I l -xdxdy ,其中 D='x,y x 2 y 2 乞 x jD(5) Il xydxdy ,其中为圆域 x 2 ya 2.D6.写出积分11 f x,y dxdy 在极坐标变换后不同顺序的累次积分d2 2(1)D 由不等式x y 乞1,y^x ,y-0所确定的区域x(1) 0 dx x f (x,y dy ;11 ^x 2⑵ j d ^_1^2fx,y dy ;⑶ 0dy 0 f x,y dy + dxX 专(p >0)所围的区域;3dy .⑵D由不等式a2 _x2• y2 _b2所确定的区域(3)D= :x,y x2y2zy,x _0「7•用极坐标计算二重积分:⑴Il si n x2y2dxdy,其中D= ' x, y 二2乞x2y2<4~2';D(2) x y dxdy,其中D^ x,y x2y2_x y』;曽F rD(3) II「X2• y2dxdy,其中D为圆域x2R2.D8•在下列符号分中引入新变量后,试将它化为累次积分:2 2丄(1) 0 dx f (x, y )dy ,其中u=x+y,v=x-y;(2) i if x,y dxdy ,其中D=,x,y . x y 乞.a , x _ 0 , y _ 0』,若x= U cos4 v ,D4y 二U sin v .(3) i if x,y dxdy,其中D=,x,y x y — a ,x — 0, y — Of,若x+y=u,y=uv.9•求由下列曲面所围立体V的体积:(1) v由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;2 2 | 一 ,(2) v由z= x * y 和z=x+y围的立体;2 2 2 22 x v x v(3) v由曲面Z 和2Z= 所围的立体•4 9 4 911. 试作适当变换,计算下列积分:(1) 11 [x y sin x - y dxdy ,D= :x.y 0 _ x y _ 二0 _ x - y _ T;Dy(2)I ie x y dxdy ,D= x,y x y 岂1, x _ 0,y _ 0D12. 设f:[a,b] T R为连续函数,应用二重积分性质证明-b I2j b|[f(xdx I 兰(b—a)[f (xdx,其中等号仅在f为常量函数时成立。
... 确界原理 数学分析(华师大 四版)课件 高教社ppt .
一、有界集二、确界三、确界的存在性定理四、非正常确界*点击以上标题可直接前往对应内容记号与术语(;){|||}:U a x x a a δδδ=-<点的邻域;(;){|0||}:U a x x a a δδδ=<-<o点的空心邻域;(;){|0}:U a x x a a δδδ+=≤-<点的右邻域;(;){|0}:U a x a x a δδδ-=≤-<点的左邻域;(;){|||}:U M x x M M ∞=>∞的邻域;(;){|}:U M x x M M +∞=>+∞的邻域;(;){|}:U M x x M M -∞=<-∞的邻域;.;max :S S 数集的最大值min :S S 数集的最小值后退前进目录退出定义1有界集R,.S S 设⊂≠∅(1)R,,,M x S x M M 若使得则称为∃∈∀∈≤,.S S 的一个上界称为有上界的数集(2)R,,,L x S x L L 若使得则称为∃∈∀∈≥,.S S 的一个下界称为有下界的数集.S 则称为有界集(3),S 若既有上界又有下界:0,,||.M x S x M ∃>∀∈≤其充要条件为使有(1),,S S '若不是有上界的数集则称无上界00R,,.M x S x M ∀∈∃∈>使得(2),,S S '若不是有下界的数集则称无下界00R,,.L x S x L ∀∈∃∈<使得(3),,S S '若不是有界的数集则称无界集000,,||.M x S x M ∀>∃∈>使得即即即[]102[]1,M x M M +=>+>取证取L = 1,{2|N },.nS n +=∈证明数集无上界有下界例1例22+31N .2n S n n ⎧⎫-=∈⎨⎬⎩⎭证明数集有界证2+31N ,2n n n -∀∈.S 因此有界,,2L x S x n ≥∈=∀则故S 有下界.因此S 无上界.,1,<∈∀M R M 若;210M x >=取,若1≥M 233122n n n ≤+111,22≤+=定义2确界:R . R,满足若设∈≠⊂η∅S S .sup ,S S =ηη记为的上确界是则称;,)i (η≤∈∀x S x ,,(ii)0S x ∈∃<∀ηα0,x α>使得若数集S 有上界, 则必有无穷多个上界, 而其中最小的一个具有重要的作用. 确界. 确界.最小的上界称为上同样,若S 有下界,则最大的下界称为下定义3R,.R :S S ξ设若满足⊂≠∅∈(i),;x S x ξ∀∈≥00(ii),,;x S x βξβ∀>∃∈<.inf ,S S =ξξ记为的下确界是则称00,.x S x εξε∀>∃∈<+0,(ii)下确界定义中的亦可换成注2注1由定义,下确界是最大的下界.注4(ii)显然,条件亦可换成:00,.x S x εηε∀>∃∈>-0,注3 条件(i) 说明是的一个上界, S η比小的数都不是的上界,从而是最小的上界S ηη界,条件(ii )说明即上确界是最小的上界.证先证sup S =1.;111,i)(≤-=∈∀n x S x .,211000αα>∈-=≤x S x ,则取若(ii) 1.α<设例3 11,1,2,,S x x n n ⎧⎫==-=⎨⎬⎩⎭设证明L .0inf 1sup ==S S ,.1sup =S 因此,00,10,,,n αεα若令由阿基米德性>=->∃01.n ε使得<00011,1.x S x n εα取则=-∈>-=.0inf =S 因此.0inf =S 再证00(ii)0,0,.x S x αα∀>∃=∈<;011,)i (≥-=∈∀nx S x 以下确界原理作为公理,不予证明.虽然我们定义了上确界, 但并没有证明上确界的存在性, 不一定有最小值, 例如(0, ∞) 无最小值.这是由于上界集是无限集, 而无限数集确界存在性定理定理1.1(确界原理)设若有上界则必有上确界⊂≠∅S S S SR,.,;若有下界则必有下确界,.S S.,,y x B y A x ≤∈∀∈∀有:.,满足为非空数集设B A 例4.inf sup B A ≤且证明:数集A 有上确界,数集B 有下确界,由定义, 上确界sup A 是最小的上界, 因此, 任意证由假设, B 中任一数y 都是A 的上界, A 中的任界, B 有下确界.y ∈B ; sup A ≤y . 而inf B 是最大的下界, 因此sup A ≤inf B.一数x 都是B 的下界. 因此由确界原理, A 有上确这样, sup A 又是B 的一个下界,例5,R 中非空有上界的数集是设S (i)R,{|},a S a x a x S ∈+=+∈若定义则sup {}sup ;S a S a +=+=∈(ii)>0,{|},b bS bx x S 若定义则sup {}sup .bS b S =⋅证,)i (a S a x +∈+∀,S x ∈其中必有,sup S x ≤于是.sup a S a x +≤+,,00S x ∈∃>∀ε对于使,sup 0ε->S x 从而,0a S a x +∈+且,)(sup 0ε-+>+a S a x 因此.sup )sup(a S a S +=+,)ii (bS bx ∈∀其中,S x ∈必有,sup S x ≤于是.sup S b bx ≤0,0,b εεε'∀>=>令则存在,0S x ∈使0sup ,x S ε'>-因此0sup sup .bx b S b b S εε'>-=-这就证明了.sup }sup{S b bS =非正常确界;R,)i (.1+∞<<∞-∈∀a a 规定supN ,inf{2|N }.nn +=+∞-∈=-∞2. 推广的确界原理: 非空数集必有上、下确界..sup ,)ii (+∞=S S 记无上界若.inf ,-∞=S S 记无下界若例2 设数集1R ,.A B x A x +⎧⎫⊂=∈⎨⎬⎩⎭求证:sup inf 0.A B 的充要条件是=+∞=例1,M ε1令=001,,.x B x M εε=∃∈<令于是0001,.y A y M x 且=∈>证设sup .A 若=+∞,0.x B x ∀∈>显然0,ε∀>于是0001,.y B y x ε=∈<且因此inf 0.B =sup .A 因此=+∞反之,若inf 0,B =则0,M ∀>求证:sup inf 0.A B 的充要条件是=+∞=sup ,A =+∞则由于00,.x A x M ∃∈>复习思考题2. 1212,,S S S S ⊂和都是数集且21sup sup S S 和比较.inf inf 21的大小和及S S .sup S a =其中形式一定为,),[∞+a 1. 数集S 有上界,则S 的所有上界组成的集合是否3. 在上确界的定义中,00(ii),,x S x αηα使∀<∃∈>能否改为00(ii ),,?x S x αηα'∀<∃∈≥使或改为00(ii ),,?x S x αηα使''∀≤∃∈≥。
华东师范大学数学分析第四版
,
n
?
1,
2,
L
,
2.
lim
n??
? ??
1 n
?
0
? ??
?
0.
但是定理1中的? 是不存在的 , 这是因为
I?
n?
1
???0,
1 n
? ??
?
?
.
例1.用区间套定理证明 连续函数根的存在性定理
前页 后页 返回
二、聚点定理与有限覆盖定理
定义2 设 S 为数轴上的非空点集 , ? 为直线上的
一个定点 (当然可以属于 S, 也可以不属于 S). 若对
前页 后页 返回
在上图的等价性关系中 , 仅 4 和 6 尚未证明 .这里 给出 4 的证明, 6 请大家自己阅读教材 . 例3 用有限覆盖定理证明聚点定理 . 证 设 S 是无限有界点集 , 则存在 M > 0, 使得
S ? [? M , M ]. 若 S 的聚点集合 S?? ? , 那么, 任给 x ? [? M , M ], x
(i) [an , bn ] ? [a n?1 , bn?1 ], n ? 1, 2, L ;
(ii)
bn
? an
?
M 2n?1
?
0;
(iii) 每个闭区间 [an, bn] 均含S 的无限多个点 .
由区间套定理 , 存在惟一的 ? ? [an , bn ], n ? 1, 2, ? .
前页 后页 返回
这就是说 ,[ a N , bN] 被 H 中的一个开区间所覆盖 , 矛盾 .
前页 后页 返回
注 定理7.3中的闭区间不可以改为开区间 .
比如开区间集
H
?