2014--2019齐齐哈尔市中考数学试题分类解析-统计

合集下载

2014年黑龙江省齐齐哈尔地区联考中考数学模拟试卷(二)(含答案)

2014年黑龙江省齐齐哈尔地区联考中考数学模拟试卷(二)(含答案)

新世纪教育网精选资料版权所有@新世纪教育网2014 年黑龙江省齐齐哈尔地域联考取考数学二模试卷考生注意:1考试时间 120 分钟 .2全卷共三道大题,总分 120 分 .一、选择题(每题 3 分,共 30 分)1. 以下图形中,既是轴对称图形,又是中心对称图形的是()2.以下运算正确的选项是()23a 6B .52x7C. ( 3c)29c2D. ( a2b)2a22A . a·a(x )2ab 4b3.用平均的速度向一个容器灌水,最后把容器注满.在灌水过程中,水面高度h 随时间 t 的变化规律以下图(图中OAB 为一折线),这个容器的形状是图中()4.如图,点 B 是⊙ O 的半径 OA 的中点,且CD ⊥OA 于 B,则 tan∠ CPD 的值为()A. 1B.3C.3D.3 2325.为认识九年级学生的视力状况,某校随机抽取50 名学生进行视力检查,结果以下:这组数据的中位数是()A 4.6B 4.7C 4.8D 4.9A.1 种B.2 种C.3 种D.4 种7.已知二次函数 y=ax2+bx+c (a> 0)的图象与x轴交于点( -1, 0),( x1,0),且 1< x1<2,以下结论 :① b<0;② c< 0;③ a+c<0;④ 4a-2b+c> 0.正确的个数为()A.1个B.2个C.3个D.4个8.以下说法正确的选项是()A .一组数据2, 5, 3, 1, 4,3 的中位数是3B.五边形的外角和是540 度C.“菱形的对角线相互垂直”的抗命题是真命题D.三角形的外心是这个三角形三条角均分线的交点9.如图,点 B 是反比率函数上一点,矩形OABC 的周长是20,正方形BCGH 和正方形OCDF 的面积之和为68,则反比率函数的分析式是()8B. y 6y1616A . y C. D.yx x x x10.如图,在△ABC 中,已知∠ C=90 °, AC=BC=4 ,D 是 AB 的中点,点E、F 分别在 AC、 BC 边上运动(点 E 不与点 A、 C 重合),且保持 AE=CF ,连结 DE 、 DF、 EF.在此运动变化的过程中,有以下结论:①四边形 CEDF 有可能成为正方形;②△ DFE 是等腰直角三角形;③四边形 CEDF 的面积是定值;④点 C 到线段 EF 的最大距离为 2 .此中正确的结论是( )A. ①④B. ②③C. ①②④ D . ①②③④二、填空题(每题 3 分,共30 分)11.嫦娥三号月球探测器于于2013 年 12 月 2 日清晨 1 时 30 分在西昌卫星发射中心发射升空,“嫦娥三号”开始上涨的飞翔速度约10800 米/秒,把这个数据用科学记数法表示为_________米∕秒.12.函数y 1 2 x中自变量 x 的取值范围是 _____________]. x13.已知:扇形 OAB 的半径为12 厘米,∠ AOB=150 °,若由此扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径是_____________厘米.14.如图,在 1× 2 网格的两个格点上随意摆放黑、白两个棋子,且两棋子不在同一条格线上.此中恰巧如图示地点摆放的概率是___________.15.如图, D 是△ ABC 的边 AB 上一点,要使△ BCD ∽△ BAC ,只要增添条件为 _________(只添一个即可).16.对于 x 的分式方程x 2 m 无解,则 m 的值是 ____________.x1x117.一个几何体,是由很多规格同样的小正方体聚积而成的,其正视图、左视图以下图,要摆成这样的图形,可能有 _________块正方体.18.如图,在 Rt △ ABC 中,∠ ACB=90 °, D 是 AB 的中点,过 D 点作 AB 的垂线交 AC 于点 E , BC=6 , sinA= 3,则 DE=__________.519.在△ ABC 中, AB=22 , BC=1 ,∠ ABC=45 °,以 AB 为一边作等腰直角三角形ABD ,使∠ABD=90 °,连结 CD ,则线段 CD 的长为 __________.20.如图,在平面直角坐标系xOy 中, A 1 ( 1,0), A 2 ( 3, 0), A 3 ( 6,0), A 4 ( 10, 0),, ,以 A 1 A 2 为对角线作第一个正方形 A 1C 1 A 2 B 1 ,以 A 2 A 3为对角线作第二个正方形 A 2C 2A 3B 2, 以 A 3 A 4 为对角线作第三个正方形 A 3C 3A 4B 3,,,极点 B 1,B 2 ,B 3 ,, 都在第一象限,按照这样的规律挨次进行下去,点 B 4 的坐标为 ___________.三、解答题(共 60 分)21.(此题 5 分)a b ÷(a2ab b 22sin30?,b=2 2 sin45?先化简,再求代数式,) 的值,此中 aaa22.(此题 6 分) 点A(-1 ,4)和点B(-5 ,1)在平面直角坐标系中的地点如图所示.(1)将点 A 、 B 分别向右平移 5 个单位,获得点 A 1、 B 1,请画出四边形AA 1 B 1 B ;(2)画一条直线,将四边形AA 1 B 1 B 分红两个全等的图形,而且每个图形都是轴对称图形.23.(此题 6 分)如图,极点为 D 的抛物线y= x2 +bx-3 与 x 轴订交于 A 、 B 两点,与y 轴订交于点C,连结 BC ,已知△ BOC 是等腰三角形.(1)求抛物线 y= x2 +bx-3 的分析式;(2)求四边形 ACDB 的面积.24.(此题 7 分)为了进一步认识八年级500 名学生的身体素质状况,体育老师对八年级(1)班 50 名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数散布表和部分频数散布直方图以下所示:请联合图表达成以下问题:(1)表中的 a=12,次数在 140≤ x< 160 这组的频次为 ____________;(2)请把频数散布直方图增补完好;(3)这个样本数据的中位数落在第 ____________ 组;(4)若八年级学生一分钟跳绳次数( x)达标要求是: x< 120 不合格; x≥ 120 为合格,则这个年级合格的学生有多少人?25.(此题 8 分)甲、乙两人同时登西山,甲、乙两人距地面的高度y(米)与爬山时间x(分)之间的函数图象如图所示,依据图象所供给的信息解答以下问题:( 1)甲爬山的速度是每分钟10 米,乙在 A 地加速时距地面的高度 b 为 30 米.(2)若乙加速后,乙的速度是甲爬山速度的 3 倍,请分别求出甲、乙二人爬山全过程中,爬山时距地面的高度 y(米)与爬山时间 x(分)之间的函数关系式.( 3)爬山多长时间时,乙追上了甲此时乙距 A 地的高度为多少米?26.(此题 8 分)已知四边形 ABCD 中, AB=BC ,∠ ABC=120 °,∠ MBN=60 °,∠ MBN 绕 B 点旋转,它的两边分别交 AD ,DC (或它们的延伸线)于 E, F.当∠ MBN 绕 B 点旋转到 AE=CF 时(如图 1),易证 AE+CF=EF ;(1)当∠ MBN 绕 B 点旋转到 AE ≠ CF 时,在图 2 的状况下,上述结论能否建立?若建立,请赐予证明;( 2)在图 3 的状况下,上述结论能否建立?若建立,请赐予证明;若不建立,线段AE , CF,EF 又有如何的数目关系?请写出你的猜想,不需证明.27.(此题 10 分)某工厂从外处连续两次购得 A ,B两种原料,购置状况如右表:现计划租用甲,乙两种货车共8辆将两次购得的原料一次性运回工厂.( 1)A , B 两种原料每吨的进价各是多少元?( 2)已知一辆甲种货车可装 4 吨 A 种原料和 1 吨 B 种原料;一辆乙种货车可装A,B 两种原料各2 吨.如何安排甲,乙两种货车?写出所有可行方案.( 3)若甲种货车的运费是每辆400 元,乙种货车的运费是每辆350 元.设安排甲种货车x 辆,总运费为 W 元,求 W(元)与x(辆)之间的函数关系式;在(2)的前提下, x 为什么值时,总运费W 最小,最小值是多少元?28.(此题 10 分)如图,在平面直角坐标系中,矩形OABC 的两边 OA 、 OC 分别在 x 轴、 y 轴的正半轴上,OA=4 ,OC=2.点 P 从点 O 出发,沿 x 轴以每秒 1 个单位长的速度向点 A 匀速运动,当点P 抵达点 A 时停止运动,设点 P 运动的时间是t 秒.将线段 CP 的中点绕点P 按顺时针方向旋转90°得点 D,点D 随点 P 的运动而运动,连结DP、 DA .(1)请用含 t 的代数式表示出点 D 的坐标;(2)求 t 为什么值时,△ DPA 的面积最大,最大为多少?( 3)在点 P 从 O 向 A 运动的过程中,△DPA 可否成为直角三角形?若能,求t 的值.若不可以,请说明原因 .参照答案。

历年黑龙江省齐齐哈尔市中考数学试题(含答案)

历年黑龙江省齐齐哈尔市中考数学试题(含答案)

2016年黑龙江省齐齐哈尔市中考数学试卷一、单项选择题:每小题3分,共30分1.(3分)(2016•齐齐哈尔)﹣1是1的()A.倒数 B.相反数C.绝对值D.立方根2.(3分)(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)(2016•齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数 B.众数和极差C.众数和方差D.中位数和极差4.(3分)(2016•齐齐哈尔)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.5.(3分)(2016•齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个6.(3分)(2016•齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.7.(3分)(2016•齐齐哈尔)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,38.(3分)(2016•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或59.(3分)(2016•齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个10.(3分)(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题:每小题3分,共27分11.(3分)(2016•齐齐哈尔)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为.12.(3分)(2016•齐齐哈尔)在函数y=中,自变量x的取值范围是.13.(3分)(2016•齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形(只填一个即可).14.(3分)(2016•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为cm.15.(3分)(2016•齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=度.16.(3分)(2016•齐齐哈尔)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=.17.(3分)(2016•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.18.(3分)(2016•齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD 边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB 于点N,则线段EC的长为.19.(3分)(2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为.三、解答题:共63分20.(7分)(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.21.(8分)(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.22.(8分)(2016•齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A 和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)(2016•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.24.(10分)(2016•齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.25.(10分)(2016•齐齐哈尔)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.26.(12分)(2016•齐齐哈尔)如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2016年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分1.(3分)(2016•齐齐哈尔)﹣1是1的()A.倒数 B.相反数C.绝对值D.立方根【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.即a的相反数是﹣a.【解答】解:﹣1是1的相反数.故选B.【点评】主要考查相反数的概念:只有符号不同的两个数互为相反数,0的相反数是0.同时涉及倒数的定义,绝对值的性质,立方根的定义的知识点.2.(3分)(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2016•齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数 B.众数和极差C.众数和方差D.中位数和极差【分析】根据众数和极差的概念进行判断即可.【解答】解:一班同学投中次数为6个的最多反映出的统计量是众数,二班同学投中次数最多与最少的相差6个能反映出的统计量极差,故选:B.【点评】本题考查的是统计量的选择,平均数、众数、中位数和极差、方差在描述数据时的区别:①数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大.4.(3分)(2016•齐齐哈尔)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【分析】分别利用二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算法则、合并同类项法则进行判断,再利用概率公式求出答案.【解答】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=2016,错误;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:,故选:A.【点评】此题主要考查了二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算、合并同类项、概率公式等知识,正确掌握相关运算法则是解题关键.5.(3分)(2016•齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【分析】根据平行线的性质对①进行判断;根据平行公理对②进行判断;根据等弧的定义对③进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形.【解答】解:两直线平行,同位角相等,所以①错误;经过直线外一点有且只有一条直线与这条直线平行,所以②错误;在同圆或等圆中,长度相等的弧是等弧,所以③选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以④正确.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2016•齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6﹣x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=×4×(6﹣x)=12﹣2x(0<x<6),∴C符合.故选C.【点评】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.7.(3分)(2016•齐齐哈尔)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,3【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,x=4﹣m≠2,由关于x的分式方程=2﹣的解为正数,得m=1,m=3,故选:C.【点评】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.8.(3分)(2016•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或5【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.【点评】本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.9.(3分)(2016•齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行1个小正方体,第一列第二行2个小正方体,第二列第三行2个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:1+2+2=5个.故选A.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.(3分)(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每小题3分,共27分11.(3分)(2016•齐齐哈尔)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为 6.9×10﹣7.【分析】对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000069=6.9×10﹣7.故答案为:6.9×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2016•齐齐哈尔)在函数y=中,自变量x的取值范围是x≥﹣,且x≠2.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得3x+1≥0且x﹣2≠0,解得x≥﹣,且x≠2,故答案为:x≥﹣,且x≠2.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式是解题关键.13.(3分)(2016•齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AC⊥BD或∠AOB=90°或AB=BC使其成为菱形(只填一个即可).【分析】利用菱形的判定方法确定出适当的条件即可.【解答】解:如图,平行四边形ABCD的对角线AC,BD相交于点O,添加一个适当的条件为:AC⊥BD或∠AOB=90°或AB=BC使其成为菱形.故答案为:AC⊥BD或∠AOB=90°或AB=BC【点评】此题考查了菱形的判定,以及平行四边形的性质,熟练掌握菱形的判定方法是解本题的关键.14.(3分)(2016•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为4cm.【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出2r=l,代入S侧=πrl,求出r,l,从而求得圆锥的高.【解答】解:设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴2r=l,∴侧面积S侧=πrl=πr2=16πcm2,解得r=4,l=4,∴圆锥的高h=4cm,故答案为:4.【点评】本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式,难度不大.15.(3分)(2016•齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=45度.【分析】连接OD,只要证明△AOD是等腰直角三角形即可推出∠A=45°,再根据平行四边形的对角相等即可解决问题.【解答】解;连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.【点评】本题考查平行四边形的性质、切线的性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.16.(3分)(2016•齐齐哈尔)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y 轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=6.【分析】根据点P(6,3),可得点A的横坐标为6,点B的纵坐标为3,代入函数解析式分别求出点A的纵坐标和点B的横坐标,然后根据四边形OAPB的面积为12,列出方程求出k的值.【解答】解:∵点P(6,3),∴点A的横坐标为6,点B的纵坐标为3,代入反比例函数y=得,点A的纵坐标为,点B的横坐标为,即AM=,NB=,∵S四边形OAPB=12,即S矩形OMPN﹣S△OAM﹣S△NBO=12,6×3﹣×6×﹣×3×=12,解得:k=6.故答案为:6.【点评】本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.17.(3分)(2016•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20.【分析】分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,分别作腰上的高即可.【解答】解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.【点评】本题考查正方形的性质、等腰三角形的性质等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.18.(3分)(2016•齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD 边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB 于点N,则线段EC的长为﹣1.【分析】过点M作MF⊥DC于点F,根据在边长为2的菱形ABCD中,∠A=60°,M为AD中点,得到2MD=AD=CD=2,从而得到∠FDM=60°,∠FMD=30°,进而利用锐角三角函数关系求出EC的长即可.【解答】解:如图所示:过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴EC=MC﹣ME=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,解题的关键是从题目中抽象出直角三角形,难度不大.19.(3分)(2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为(﹣,).【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n OC n B n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).【点评】本题考查的是矩形的性质、位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.三、解答题:共63分20.(7分)(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.【分析】先算括号里面的,再算除法,最后算减法,根据x2+2x﹣15=0得出x2+2x=15,代入代数式进行计算即可.【解答】解:原式=•﹣=﹣=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.(8分)(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.【分析】(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.【解答】解:(1)如图所示,△A1B1C1为所求做的三角形;(2)如图所示,△A2B2O为所求做的三角形;(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),∴A2A3所在直线的解析式为:y=﹣5x+16,令y=0,则x=,∴P点的坐标(,0).【点评】本题考查了利用旋转和平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(8分)(2016•齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A 和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)利用对称轴方程可求得b,把点A的坐标代入可求得c,可求得抛物线的解析式;(2)根据A、B关于对称轴对称可求得点B的坐标,利用抛物线的解析式可求得B点坐标;(3)根据B、C坐标可求得BC长度,由条件可知BC为过O、B、C三点的圆的直径,可求得圆的面积.【解答】解:(1)由A(﹣1,0),对称轴为x=2,可得,解得,∴抛物线解析式为y=x2﹣4x﹣5;(2)由A点坐标为(﹣1,0),且对称轴方程为x=2,可知AB=6,∴OB=5,∴B点坐标为(5,0),∵y=x2﹣4x﹣5,∴C点坐标为(0,﹣5);(3)如图,连接BC,则△OBC是直角三角形,∴过O、B、C三点的圆的直径是线段BC的长度,在Rt△OBC中,OB=OC=5,∴BC=5,∴圆的半径为,∴圆的面积为π()2=π.【点评】本题为二次函数的综合应用,涉及知识点有二次函数的性质、待定系数法、勾股定理、圆周角定理等.在(3)中确定出圆的半径是解题的关键.本题属于基础性的题目,难度不大.23.(8分)(2016•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.【分析】(1)由∠C+∠DBF=90°,∠C+∠DAC=90°,推出∠DBF=∠DAC,由此即可证明.(2)先证明AD=BD,由△ACD∽△BFD,得==1,即可解决问题.【解答】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴==1,∴BF=AC=3.【点评】本题考查相似三角形的判定和性质、三角函数等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.24.(10分)(2016•齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【分析】(1)根据题目中的信息可知本次调查为抽样调查,也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%,可以求得每周课外体育活动时间在6≤x<8小时的学生人数,从而可以求得2≤x<4的学生数,从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,。

2014年中考数学试题分类汇编解析统计

2014年中考数学试题分类汇编解析统计

统计一、选择题1. (2014?上海,第5题4分)某事测得一周PM2.5的日均值(单位:)如下:50, 40 , 75,50, 37,50,40,这组数据的中位数和众数分别是()(四川巴中,第题分)今年我市有万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析•在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000 .其中说法正确的有()A . 4个B . 3个C . 2个D . 1个考点:总体,个体,样本,样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目•我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象•从而找出总体、个体•再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解答:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选C.点评:本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象•总体、个体与样本的考查对象是相同的,所不同的是范围的大小•样本容量是样本中包含的个体的数目,不能带单位.3. (2014?山东威海,第5题3分)在某中学举行的演讲比赛中,初一年级5名参赛选手的成绩如下表所示,请你根据表中提供的数据,计算出这5名选手成绩的方差()考点:方差分析:首先根据五名选手的平均成绩求得3号选手的成绩,然后利用方差公式直接计算即可.解答:解:观察表格知道5名选手的平均成绩为91分,••• 3号选手的成绩为91拓-90 - 95 - 89 - 88=93分,所以方差为:[(90 - 91) 2+ (95 - 91) 2+ (93 - 91) 2+ (89 - 91)2 2+ (88 - 91) ]=6.8 ,故选B.点评:本题考查了方差的计算,牢记方差公式是解答本题的关键.4. (2014?山东枣庄,第4题3分)下列说法正确的是()A.明天降雨的概率是50%表示明天有半天都在降雨B.数据4, 4, 5, 5, 0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应米用普查的方式D.若甲、乙两组数中各有20个数据,平均数x甲匚乙,方差s2甲=1.25, s2乙=0.96,则说明乙组数据比甲组数据稳定考点:概率的意义;全面调查与抽样调查;中位数;众数;方差分析:根据概率的意义,众数、中位数的定义,以及全面调查与抽样调查的选择,方差的意义对各选项分析判断利用排除法求解.解答:解: A、明天降雨的概率是50%表示明天降雨和不降雨的可能性相等,不表示半天都在降雨,故本选项错误;B、数据4, 4, 5, 5, 0的中位数是4,众数是4和5,故本选项错误;C、要了解一批钢化玻璃的最少允许碎片数,应米用抽样调查的方式,故本选项错误;D、••方差s2甲〉s2乙,•••乙组数据比甲组数据稳定正确,故本选项正确.故选D .点评:本题解决的关键是理解概率的意义以及必然事件的概念;用到的知识点为:不太容易做到的事要采用抽样调查;反映数据波动情况的量有极差、方差和标准差等.5. (2014?山东潍坊,第10题3分)右图是某市7月1日至1 0日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于 2 00表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天•则此人在该市停留期间有且仅有1天空气质量优良的概率是()D、考点:折线统计图;;几何概率.3分析:将所用可能结果列举出来,找出符合要求的,后者除以前者即可。

黑龙江省齐齐哈尔市中考数学试卷

黑龙江省齐齐哈尔市中考数学试卷

黑龙江省齐齐哈尔市中考数学试卷一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.(3分)(2019•齐齐哈尔)3的相反数是( ) A .3-B .3C .3D .3±2.(3分)(2019•齐齐哈尔)下面四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.(3分)(2019•齐齐哈尔)下列计算不正确的是( ) A .93±=± B .235ab ba ab += C .0(21)1-=D .2224(3)6ab a b =4.(3分)(2019•齐齐哈尔)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是( ) A .平均数B .中位数C .方差D .众数5.(3分)(2019•齐齐哈尔)如图,直线//a b ,将一块含30︒角(30)BAC ∠=︒的直角三角尺按图中方式放置,其中A 和C 两点分别落在直线a 和b 上.若120∠=︒,则2∠的度数为()A .20︒B .30︒C .40︒D .50︒6.(3分)(2019•齐齐哈尔)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为( )A .5B .6C .7D .87.(3分)(2019•齐齐哈尔)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S 与时间t 之间函数关系的是( )A .B .C .D .8.(3分)(2019•齐齐哈尔)学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( ) A .3种B .4种C .5种D .6种9.(3分)(2019•齐齐哈尔)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为( ) A .27 B .23 C .22 D .1810.(3分)(2019•齐齐哈尔)如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)-,其对称轴为直线12x =-,结合图象分析下列结论:①0abc >; ②30a c +>;③当0x <时,y 随x 的增大而增大;④一元二次方程20cx bx a ++=的两根分别为113x =-,212x =;⑤2404b aca-<;⑥若m ,()n m n <为方程(3)(2)30a x x +-+=的两个根,则3m <-且2n >, 其中正确的结论有( )A .3个B .4个C .5个D .6个二、填空题(共7小题,每小题3分,满分21分)11.(3分)(2019•齐齐哈尔)预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为 .12.(3分)(2019•齐齐哈尔)如图,已知在ABC ∆和DEF ∆中,B E ∠=∠,BF CE =,点B 、F 、C 、E 在同一条直线上,若使ABC DEF ∆≅∆,则还需添加的一个条件是 (只填一个即可).13.(3分)(2019•齐齐哈尔)将圆心角为216︒,半径为5cm 的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为 cm .14.(3分)(2019•齐齐哈尔)关于x 的分式方程21311x a x x--=--的解为非负数,则a 的取值范围为 .15.(3分)(2019•齐齐哈尔)如图,矩形ABOC 的顶点B 、C 分别在x 轴,y 轴上,顶点A 在第二象限,点B 的坐标为(2,0)-.将线段OC 绕点O 逆时针旋转60︒至线段OD ,若反比例函数(0)ky k x=≠的图象经过A 、D 两点,则k 值为 .16.(3分)(2019•齐齐哈尔)等腰ABC ∆中,BD AC ⊥,垂足为点D ,且12BD AC =,则等腰ABC ∆底角的度数为 .17.(3分)(2019•齐齐哈尔)如图,直线3:13l y x =+分别交x 轴、y 轴于点A 和点1A ,过点1A 作11A B l ⊥,交x 轴于点1B ,过点1B 作12B A x ⊥轴,交直线l 于点2A ;过点2A 作22A B l ⊥,交x 轴于点2B ,过点2B 作23B A x ⊥轴,交直线l 于点3A ,依此规律⋯,若图中阴影△11A OB 的面积为1S ,阴影△212A B B 的面积为2S ,阴影△323A B B 的面积为3S ⋯,则n S = .三、解答题(共7小题,满分69分)18.(10分)(2019•齐齐哈尔)(1)计算:11()126tan 60|243|3-+-︒+-(2)因式分解:2124(1)a a a +-+-19.(5分)(2019•齐齐哈尔)解方程:267x x +=-20.(8分)(2019•齐齐哈尔)如图,以ABC ∆的边BC 为直径作O ,点A 在O 上,点D 在线段BC 的延长线上,AD AB =,30D ∠=︒. (1)求证:直线AD 是O 的切线;(2)若直径4BC =,求图中阴影部分的面积.21.(10分)(2019•齐齐哈尔)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A .十分了解;B .了解较多:C .了解较少:D .不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为 ;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(10分)(2019•齐齐哈尔)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.(12分)(2019•齐齐哈尔)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN ,MN ,AN ,如图②(一)填一填,做一做: (1)图②中,CMD ∠= . 线段NF =(2)图②中,试判断AND ∆的形状,并给出证明.剪一剪、折一折:将图②中的AND ∆剪下来,将其沿直线GH 折叠,使点A 落在点A '处,分别得到图③、图④. (二)填一填(3)图③中阴影部分的周长为 .(4)图③中,若80AGN ∠'=︒,则A HD ∠'= ︒. (5)图③中的相似三角形(包括全等三角形)共有 对; (6)如图④点A '落在边ND 上,若A N m A D n'=',则AGAH = (用含m ,n 的代数式表示). 24.(14分)(2019•齐齐哈尔)综合与探究如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,2OA =,6OC =,连接AC 和BC . (1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当ACD ∆的周长最小时,点D 的坐标为 .(3)点E是第四象限内抛物线上的动点,连接CE和BE.求BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.(3分)3的相反数是( ) A .3-B .3C .3D .3±【考点】相反数;实数的性质;算术平方根【分析】根据只有符号不同的两个数互为相反数,可得答案. 【解答】解:3的相反数是3-, 故选:A .2.(3分)下面四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【考点】中心对称图形;轴对称图形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、不是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,也是中心对称图形,故此选项正确.故选:D .3.(3分)下列计算不正确的是( ) A .93=± B .235ab ba ab += C .0(21)1=D .2224(3)6ab a b =【考点】合并同类项;零指数幂;平方根;幂的乘方与积的乘方【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得出答案.【解答】解:A 、93±=±,正确,故此选项错误;B 、235ab ba ab +=,正确,故此选项错误;C 、0(21)1-=,正确,故此选项错误;D 、2224(3)9ab a b =,错误,故此选项正确;故选:D .4.(3分)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是( ) A .平均数 B .中位数C .方差D .众数【考点】统计量的选择【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差. 【解答】解:能用来比较两人成绩稳定程度的是方差, 故选:C .5.(3分)如图,直线//a b ,将一块含30︒角(30)BAC ∠=︒的直角三角尺按图中方式放置,其中A 和C 两点分别落在直线a 和b 上.若120∠=︒,则2∠的度数为( )A .20︒B .30︒C .40︒D .50︒【考点】平行线的性质【分析】直接利用平行线的性质结合三角形内角和定理得出答案. 【解答】解:直线//a b , 12180BCA BAC ∴∠+∠+∠+∠=︒, 30BAC ∠=︒,90BCA ∠=︒,120∠=︒, 240∴∠=︒.故选:C .6.(3分)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为( )A.5B.6C.7D.8【考点】由三视图判断几何体【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选:B.7.(3分)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是()A.B.C.D.【考点】函数的图象【分析】根据题意,可以写出各段过程中,S与t的关系,从而可以解答本题.【解答】解:由题意可得,战士们从营地出发到文具店这段过程中,S随t的增加而增大,故选项A错误,战士们在文具店选购文具的过程中,S随着t的增加不变,战士们从文具店去福利院的过程中,S随着t的增加而增大,故选项C错误,战士们从福利院跑回营地的过程中,S随着t的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B正确,选项D错误,故选:B.8.(3分)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A .3种B .4种C .5种D .6种【考点】二元一次方程的应用【分析】设购买A 品牌足球x 个,购买B 品牌足球y 个,根据总价=单价⨯数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可求出结论. 【解答】解:设购买A 品牌足球x 个,购买B 品牌足球y 个, 依题意,得:60751500x y +=, 4205y x ∴=-.x ,y 均为正整数,∴11516x y =⎧⎨=⎩,221012x y =⎧⎨=⎩,33158x y =⎧⎨=⎩,44204x y =⎧⎨=⎩,∴该学校共有4种购买方案.故选:B .9.(3分)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为( ) A .27 B .23 C .22 D .18【考点】概率公式【分析】袋中黑球的个数为x ,利用概率公式得到5152310x =++,然后利用比例性质求出x即可.【解答】解:设袋中黑球的个数为x , 根据题意得5152310x =++,解得22x =,即袋中黑球的个数为22个. 故选:C .10.(3分)如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)-,其对称轴为直线12x =-,结合图象分析下列结论: ①0abc >; ②30a c +>;③当0x <时,y 随x 的增大而增大;④一元二次方程20cx bx a ++=的两根分别为113x =-,212x =;⑤2404b aca-<;⑥若m ,()n m n <为方程(3)(2)30a x x +-+=的两个根,则3m <-且2n >, 其中正确的结论有( )A .3个B .4个C .5个D .6个【考点】抛物线与x 轴的交点;二次函数图象与系数的关系;根与系数的关系 【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【解答】解:抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)-,其对称轴为直线12x =-∴抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)-和(2,0),且a b =由图象知:0a <,0c >,0b < 0abc ∴>故结论①正确;抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)- 930a b c ∴-+= a b = 6c a ∴=- 330a c a ∴+=->故结论②正确;当12x <-时,y 随x 的增大而增大;当102x -<<时,y 随x 的增大而减小∴结论③错误;20cx bx a ++=,0c >∴210c bx x a a++=抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)-和(2,0) 20ax bx c ∴++=的两根是3-和2∴1b a=,6ca =-∴210c b x x a a ++=即为:2610x x -++=,解得113x =-,212x =;故结论④正确;当12x =-时,2404ac b y a -=>∴2404b aca-<故结论⑤正确;抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)-和(2,0),2(3)(2)y ax bx c a x x ∴=++=+-m ,()n m n <为方程(3)(2)30a x x +-+=的两个根m ∴,()n m n <为方程(3)(2)3a x x +-=-的两个根m ∴,()n m n <为函数(3)(2)y a x x =+-与直线3y =-的两个交点的横坐标结合图象得:3m <-且2n > 故结论⑥成立; 故选:C .二、填空题(共7小题,每小题3分,满分21分)11.(3分)预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为 43.810⨯ .【考点】科学记数法-表示较大的数【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.【解答】解:38000用科学记数法表示应为43.810⨯, 故答案为:43.810⨯.12.(3分)如图,已知在ABC ∆和DEF ∆中,B E ∠=∠,BF CE =,点B 、F 、C 、E 在同一条直线上,若使ABC DEF ∆≅∆,则还需添加的一个条件是 AB DE = (只填一个即可).【考点】全等三角形的判定【分析】添加AB DE =,由BF CE =推出BC EF =,由SAS 可证ABC DEF ∆≅∆. 【解答】解:添加AB DE =; BF CE =, BC EF ∴=,在ABC ∆和DEF ∆中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,()ABC DEF SAS ∴∆≅∆;故答案为:AB DE =.13.(3分)将圆心角为216︒,半径为5cm 的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为 4 cm . 【考点】圆锥的计算【分析】圆锥的底面圆的半径为r ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到21652180r ππ⨯=,解得3r =,然后根据勾股定理计算出圆锥的高. 【解答】解:设圆锥的底面圆的半径为r , 根据题意得21652180r ππ⨯=,解得3r =, 所以圆锥的高22534()cm =-. 故答案为4.14.(3分)关于x 的分式方程21311x a x x--=--的解为非负数,则a 的取值范围为 4a 且3a ≠ .【考点】解一元一次不等式;2B :分式方程的解 【分析】根据解分式方程的方法和方程21311x a x x--=--的解为非负数,可以求得a 的取值范围.【解答】解:21311x a x x--=--, 方程两边同乘以1x -,得 213(1)x a x -+=-,去括号,得 2133x a x -+=-,移项及合并同类项,得 4x a =-,关于x 的分式方程21311x a x x--=--的解为非负数,10x -≠, ∴40(4)10a a -⎧⎨--≠⎩,解得,4a 且3a ≠, 故答案为:4a 且3a ≠.15.(3分)如图,矩形ABOC 的顶点B 、C 分别在x 轴,y 轴上,顶点A 在第二象限,点B 的坐标为(2,0)-.将线段OC 绕点O 逆时针旋转60︒至线段OD ,若反比例函数(0)ky k x=≠的图象经过A 、D 两点,则k 值为 1633-.【考点】反比例函数的性质;反比例函数图象上点的坐标特征;坐标与图形变化-旋转;矩形的性质【分析】过点D 作DE x ⊥轴于点E ,由点B 的坐标为(2,0)-知2kOC AB ==-,由旋转性质知2k OD OC ==-、60DOC ∠=︒,据此求得1cos304OE OD k =︒=-,3sin30DE OD =︒=,即3(D ,1)4k -,代入解析式解之可得. 【解答】解:过点D 作DE x ⊥轴于点E , 点B 的坐标为(2,0)-,2kAB ∴=-,2kOC ∴=-,由旋转性质知2kOD OC ==-、60COD ∠=︒,30DOE ∴∠=︒,1124DE OD k ∴==-,33cos30()2k OE OD k =︒=⨯-=-, 即3(D k -,1)4k -, 反比例函数(0)ky k x=≠的图象经过D 点,2313()()4k k k k ∴=--=, 解得:0k =(舍)或163k =-, 故答案为:163-.16.(3分)等腰ABC ∆中,BD AC ⊥,垂足为点D ,且12BD AC =,则等腰ABC ∆底角的度数为 15︒或45︒或75︒ .【考点】等腰三角形的性质;含30度角的直角三角形【分析】分点A 是顶点、点A 是底角顶点、AD 在ABC ∆外部和AD 在ABC ∆内部三种情况,根据等腰三角形的性质、直角三角形的性质计算. 【解答】解:①如图1,点A 是顶点时, AB AC =,AD BC ⊥, BD CD ∴=, 12AD BC =, AD BD CD ∴==,在Rt ABD ∆中,1(18090)452B BAD ∠=∠=⨯︒-︒=︒;②如图2,点A 是底角顶点,且AD 在ABC ∆外部时, 12AD BC =,AC BC =, 12AD AC ∴=, 30ACD ∴∠=︒,130152BAC ABC ∴∠=∠=⨯︒=︒;③如图3,点A 是底角顶点,且AD 在ABC ∆内部时, 12AD BC =,AC BC =, 12AD AC ∴=, 30C ∴∠=︒,1(18030)752BAC ABC ∴∠=∠=︒-︒=︒;故答案为:15︒或45︒或75︒.17.(3分)如图,直线3:1l y =+分别交x 轴、y 轴于点A 和点1A ,过点1A 作11A B l ⊥,交x 轴于点1B ,过点1B 作12B A x ⊥轴,交直线l 于点2A ;过点2A 作22A B l ⊥,交x 轴于点2B ,过点2B 作23B A x ⊥轴,交直线l 于点3A ,依此规律⋯,若图中阴影△11A OB 的面积为1S ,阴影△212A B B 的面积为2S ,阴影△323A B B 的面积为3S ⋯,则n S =2234()3n -⨯ .【考点】一次函数的性质;一次函数图象上点的坐标特征;规律型:图形的变化类 【分析】由直线3:1l y +可求出与x 轴交点A 的坐标,与y 轴交点1A 的坐标,进而得到OA ,1OA 的长,也可求出1Rt OAA ∆的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有30︒角的直角三角形,然后这个求出1S 、2S 、3S 、4S 、⋯⋯根据规律得出Sn .【解答】解:直线3:1l y x +,当0x =时,1y =;当0y =时,3x =-(3A ∴-,10)(0,1)A 130OAA ∴∠=︒又11A B l ⊥,1130OA B ∴∠=︒,在Rt △11OA B 中,1133OB OA =, 111132S OA OB ∴==同理可求出:2143A B =,12433B B =,2221121144334()()22333S A B B B ∴==⨯⨯=; 依次可求出:4334()3S ;6434()3S =;8534()3S =⋯⋯ 因此:2234()3n n S -= 2234()3n -.三、解答题(共7小题,满分69分)18.(10分)(1)计算:11()126tan 60|2433-︒+-(2)因式分解:2124(1)a a a +-+-【考点】实数的运算;因式分解-分组分解法;负整数指数幂;特殊角的三角函数值 【分析】(1)根据实数运算的法则计算即可; (2)根据因式分解-分组分解法分解因式即可.【解答】解:(1)11()126tan 60|2433236343213-︒+-=+=;(2)22124(1)(1)4(1)(1)(14)(1)(3)a a a a a a a a a +-+-=-+-=--+=-+. 19.(5分)解方程:267x x +=- 【考点】解一元二次方程-配方法【分析】方程两边都加上9,配成完全平方式,再两边开方即可得. 【解答】解:267x x +=-,26979x x ∴++=-+,即2(3)2x +=,则32x += 32x ∴=-±即132x =-+232x =-20.(8分)如图,以ABC ∆的边BC 为直径作O ,点A 在O 上,点D 在线段BC 的延长线上,AD AB =,30D ∠=︒. (1)求证:直线AD 是O 的切线;(2)若直径4BC =,求图中阴影部分的面积.【考点】切线的判定与性质;扇形面积的计算【分析】(1)连接OA,则得出2260COA B D∠=∠=∠=︒,可求得90OAD∠=︒,可得出结论;(2)可利用OAD∆的面积-扇形AOC的面积求得阴影部分的面积.【解答】(1)证明:连接OA,则2COA B∠=∠,AD AB=,30B D∴∠=∠=︒,60COA∴∠=︒,180603090OAD∴∠=︒-︒-︒=︒,OA AD∴⊥,即CD是O的切线;(2)解:4BC=,2OA OC∴==,在Rt OAD∆中,2OA=,30D∠=︒,24OD OA∴==,23AD=,所以112232322OADS OA AD∆==⨯⨯=,因为60COA∠=︒,所以260223603COASππ⋅==扇形,所以2233OAD COAS S Sπ∆=-=-阴影扇形.21.(10分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有100名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为︒;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?【考点】条形统计图;用样本估计总体;扇形统计图【分析】(1)本次被抽取的学生共3030%100÷=(名);(2)10020301040---=(名),据此补全;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角36030%108︒⨯=︒;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:2040 20001200100+⨯=(名).【解答】解:(1)本次被抽取的学生共3030%100÷=(名),故答案为100;(2)10020301040---=(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角36030%108︒⨯=︒,故答案为108;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生: 204020001200100+⨯=(名), 答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共1200名.22.(10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是 50 千米/小时;轿车的速度是 千米/小时;t 值为 . (2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.【考点】一次函数的应用【分析】(1)观察图象即可解决问题;(2)分别求出得A 、B 、C 的坐标,运用待定系数法解得即可; (3)根据题意列方程解答即可.【解答】解:(1)车的速度是50千米/小时;轿车的速度是:400(72)80÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:(3,240)A ,(4,240)B ,(7,0)C ,设直线OA 的解析式为11(0)y k x k =≠, 80(03)y x x ∴=,当34x 时,240y =,设直线BC 的解析式为2(0)y k x b k =+≠, 把(4,240)B ,(7,0)C 代入得: 22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, 80560y ∴=-+,80(03)240(34)80560(47)x x y x x x ⎧⎪∴=⎨⎪-+⎩;(3)设货车出发x 小时后两车相距90千米,根据题意得: 5080(1)40090x x +-=-或5080(2)40090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米. 23.(12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD 对折,使边AB 与CD 重合,展开后得到折痕EF .如图①:点M 为CF 上一点,将正方形纸片ABCD 沿直线DM 折叠,使点C 落在EF 上的点N 处,展开后连接DN ,MN ,AN ,如图②(一)填一填,做一做:(1)图②中,CMD ∠= 75︒ .线段NF =(2)图②中,试判断AND ∆的形状,并给出证明.剪一剪、折一折:将图②中的AND ∆剪下来,将其沿直线GH 折叠,使点A 落在点A '处,分别得到图③、图④. (二)填一填(3)图③中阴影部分的周长为 .(4)图③中,若80AGN ∠'=︒,则A HD ∠'= ︒. (5)图③中的相似三角形(包括全等三角形)共有 对; (6)如图④点A '落在边ND 上,若A N m A D n'=',则AGAH = (用含m ,n 的代数式表示). 【考点】相似形综合题【分析】(1)由折叠的性质得,四边形CDEF 是矩形,得出EF CD =,90DEF ∠=︒,12DE AE AD ==,由折叠的性质得出2DN CD DE ==,MN CM =,得出60EDN ∠=︒,得出15CDM NDM ∠=∠=︒,323EN DN =,因此75CMD ∠=︒,423NF EF EN =-=-;(2)证明AEN DEN ∆≅∆得出AN DN =,即可得出AND ∆是等边三角形;(3)由折叠的性质得出AG AG '=,A H AH '=,得出图③中阴影部分的周长ADN =∆的周长12=;(4)由折叠的性质得出AGH AGH ∠=∠',AHG A HG ∠=∠',求出50AGH ∠=︒,得出70AHG A HG ∠=∠'=︒,即可得出结果;(5)证明NGM ∆∽△A NM DNH '∆∽,即可得出结论; (6)设A N ma A D n'==',则A N am '=,A D an '=,证明△AGH'∽△HA D ',得出A G A N GNA H DH A D ''=='',设A G AG x '==,A H AH y '==,则4GN x =-,4DH y =-,得出44x am x y y an -==-,解得:44am x y an +=+,得出4242AG am am am an m nAH an am an an m n++++===++++. 【解答】解:(1)由折叠的性质得,四边形CDEF 是矩形, EF CD ∴=,90DEF ∠=︒,12DE AE AD ==, 将正方形纸片ABCD 沿直线DM 折叠,使点C 落在EF 上的点N 处, 2DN CD DE ∴==,MN CM =, 60EDN ∴∠=︒,15CDM NDM ∴∠=∠=︒,EN = 75CMD ∴∠=︒,4NF EF EN =-=-故答案为:75︒,4-(2)AND ∆是等边三角形,理由如下: 在AEN ∆与DEN ∆中,90AE DE AEN DEN EN EN =⎧⎪∠=∠=︒⎨⎪=⎩,()AEN DEN SAS ∴∆≅∆, AN DN ∴=, 60EDN ∠=︒, AND ∴∆是等边三角形;(3)将图②中的AND ∆沿直线GH 折叠,使点A 落在点A '处, AG AG ∴'=,A H AH '=,∴图③中阴影部分的周长ADN =∆的周长3412=⨯=;故答案为:12;(4)将图②中的AND ∆沿直线GH 折叠,使点A 落在点A '处, AGH AGH ∴∠=∠',AHG A HG ∠=∠', 80AGN ∠'=︒, 50AGH ∴∠=︒, 70AHG A HG ∴∠=∠'=︒, 180707040A HD ∴∠'=︒-︒-︒=︒;故答案为:40; (5)如图③,60A N D A ∠=∠=∠=∠'=︒, NMG A MN ∠=∠',A NM DNH ∠'=∠, NGM ∴∆∽△A NM DNH '∆∽, AGH ∆≅△A GH '∴图③中的相似三角形(包括全等三角形)共有4对,故答案为:4; (6)设A N ma A D n'==',则A N am '=,A D an '=, 60N D A A ∠=∠=∠=∠'=︒,120NAG AGN NAG DA H ∴∠'+∠'=∠'+∠'=︒, AGN DA H ∴∠'=∠',∴△AGH '∽△HA D ', ∴A G A N GNA H DH A D''=='', 设A G AG x '==,A H AH y '==,则4GN x =-,4DH y =-,∴44x am xy y an-==-, 解得:44am x y an+=+, ∴4242AG am am am an m nAH an am an an m n++++===++++; 故答案为:22m nm n++.24.(14分)综合与探究如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,2OA =,6OC =,连接AC 和BC . (1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当ACD ∆的周长最小时,点D 的坐标为 1(2,5)- .(3)点E 是第四象限内抛物线上的动点,连接CE 和BE .求BCE ∆面积的最大值及此时点E 的坐标;(4)若点M 是y 轴上的动点,在坐标平面内是否存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【考点】二次函数综合题【分析】(1)由2OA =,6OC =得到(2,0)A -,(0,6)C -,用待定系数法即求得抛物线解析式.(2)由点D 在抛物线对称轴上运动且A 、B 关于对称轴对称可得,AD BD =,所以当点C 、D 、B 在同一直线上时,ACD ∆周长最小.求直线BC 解析式,把对称轴的横坐标代入即求得点D 纵坐标.(3)过点E 作EG x ⊥轴于点G ,交直线BC 与点F ,设点E 横坐标为t ,则能用t 表示EF 的长.BCE ∆面积拆分为BEF ∆与CEF ∆的和,以EF 为公共底计算可得12BCE S EF OB ∆=,把含t 的式子代入计算即得到BCE S ∆关于t 的二次函数,配方即求得最大值和t 的值,进而求得点E 坐标.(4)以AC 为菱形的边和菱形的对角线进行分类画图,根据菱形邻边相等、对边平行的性质确定点N 在坐标.【解答】解:(1)2OA =,6OC = (2,0)A ∴-,(0,6)C -抛物线2y x bx c =++过点A 、C∴420006b c c -+=⎧⎨++=-⎩ 解得:16b c =-⎧⎨=-⎩∴抛物线解析式为26y x x =--(2)当0y =时,260x x --=,解得:12x =-,23x = (3,0)B ∴,抛物线对称轴为直线23122x -+== 点D 在直线12x =上,点A 、B 关于直线12x =对称 12D x ∴=,AD BD = ∴当点B 、D 、C 在同一直线上时,ACD C AC AD CD AC BD CD AC BC ∆=++=++=+最小设直线BC 解析式为6y kx =- 360k ∴-=,解得:2k =∴直线:26BC y x =-12652D y ∴=⨯-=-1(2D ∴,5)-故答案为:1(2,5)-(3)过点E 作EG x ⊥轴于点G ,交直线BC 与点F 设(E t ,26)(03)t t t --<<,则(,26)F t t -2226(6)3EF t t t t t ∴=----=-+22111113327()3(3)()22222228BCE BEF CEF S S S EF BG EF OG EF BG OG EF OB t t t ∆∆∆∴=+=+=+==⨯-+=--+∴当32t =时,BCE ∆面积最大 23321()6224E y ∴=--=-∴点E 坐标为3(2,21)4-时,BCE ∆面积最大,最大值为278.(4)存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形.(2,0)A -,(0,6)C -2226210AC ∴=+=①若AC 为菱形的边长,如图3, 则//MN AC 且,210MN AC ==1(2N ∴-,210),2(2,210)N --,3(2,0)N②若AC 为菱形的对角线,如图4,则44//AN CM ,44AN CN = 设4(2,)N n -222(6)n n ∴-=++解得:103n =- 410(2,)3N ∴--综上所述,点N 坐标为(2-,210),(2,210)--,(2,0),10(2,)3--.。

2013-2018齐齐哈尔中考数学试题分类-三角形与四边形

2013-2018齐齐哈尔中考数学试题分类-三角形与四边形

1.(3分)(2013•齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC 为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线④∠EAM=∠ABC,其中正确结论的个数是()A.4个B.3个C.2个D.1个直线BD折叠,点C落在点E处,BE与AD相交于点F,连接AE,下列结论:①△FED是等腰三角形;②四边形ABDE是等腰梯形;③图中共有6对全等三角形;④四边形BCDF的周长为cm;⑤AE的长为cm.其中结论正确的个数为()A.2个B.3个C.4个D.5个3.(3分)(2015•齐齐哈尔)如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取18.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD 翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1.4.(2016•齐齐哈尔)BC中点D,AC中点N,连接DN、DE、DF.下列结论:①EM=DN;②S△CDN=S四边形ABDN;③DE=DF;④DE⊥DF.其中正确的结论的个数是()A.1个B.2个C.3个D.4个5.(2017•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△AC D∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.6.(2017•齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.7.(2018•齐齐哈尔)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°。

齐齐哈尔市历年数学中考题

齐齐哈尔市历年数学中考题

二○○九年齐齐哈尔市初中毕业学业考试数 学 试 卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、单项选择题(每题3分,满分30分)1.17-的绝对值是( ) A .17 B .17- C .7 D .7-2.如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是( )A .20米B .15米C .10米D .5米3.下列运算正确的是( )A3= B .0(π 3.14)1-= C .1122-⎛⎫=- ⎪⎝⎭D3=±4.一组数据4,5,6,7,7,8的中位数和众数分别是( ) A .7,7 B .7,6.5 C .5.5,7 D .6.5,75.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23B .32C .34D .436.梯形ABCD 中,AD BC ∥,1AD =,4BC =,70C ∠=°,40B ∠=°,则AB 的长为( )A .2B .3C .4D .57.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( ) A .4种 B .3种 C .2种 D .1种8.一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空,水池中的水量3(m )v 与时间(h)t 之间的函数关系如图,则关于三个水管每小时的水流量下列判断正确的是( )A .乙>甲B .丙>甲C .甲>乙D .丙>乙9.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程OA B第2题图第5题图h第8题图D A B C OEF H第10题图第9题20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数( ) A .4个 B .3个 C .2个 D .1个10.在矩形ABCD中,1AB AD AF ==,平分DAB ∠,过C 点作CE BD ⊥于E ,延长AF EC 、交于点H ,下列结论中:AF FH =①;BO BF =②;CA CH =③;④3BE E D =,正确的是( )A .②③B .③④C .①②④D .②③④二、填空题(每题3分,满分30分)11.中国齐齐哈尔SOS 儿童村座落在齐齐哈尔市区西部,建成于1992年3月,是由国际SOS 儿童村资助,以家庭形式收养、教育孤儿的社会福利事业单位,占地面积为37000平方米,这个数用科学记数法表示为___________平方米. 12.函数y =中,自变量x 的取值范围是_____________. 13.在英语句子“Wish you success!”(祝你成功!)中任选一个字母,这个字母为“s ”的概率是____________. 14.反比例函数(0)my m x=≠与一次函数(0)y kx b k =+≠的图象如图所示,请写出一条正确的结论:______________.15.已知相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,则这两个圆的圆心距是______________.16.当x =_____________时,二次函数222y x x =+-有最小值.17.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是_____________.18.已知102103m n ==,,则3210m n+=____________. 19.如图,边长为1的菱形ABCD 中,60DAB ∠=°.连结对角线AC ,以AC 为边作第二个菱形11ACC D ,使160D AC ∠=°;连结1AC ,再以1AC 为边作第三个菱形122AC C D ,使2160D AC ∠=°;……,按此规律所作的第n 个菱形的边长为___________.20.用直角边分别为3和4的两个直角三角形拼成凸四边形,所得的四边形的周长是____________. 三、解答题(满分60分) 21.(本小题满分5分)先化简:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,当1b =-时,请你为a 任选一个适当的数代入求值.ADCB第17题图C 1D 1D 2C 2D C AB 第19题图22.(本小题满分6分)如图,在平面直角坐标系中,ABC △的顶点坐标为(23)A -,、(32)B -,、(1,1)C -.(1)若将ABC △向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的111A B C △; (2)画出111A B C △绕原点旋转180°后得到的222A B C △;(3)A B C '''△与ABC △是中心对称图形,请写出对称中心的坐标:___________; (4)顺次连结12C C C C '、、、,所得到的图形是轴对称图形吗?23.(本小题满分6分)在直角边分别为5cm 和12cm 的直角三角形中作菱形,使菱形的一个内角恰好是三角形的一个角,其余顶点都在三角形的边上,求所作菱形的边长.24.(本小题满分7分)为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是_________(填“全面调查”或“抽样调查”); (2)写出折线统计图中A 、B 所代表的值; A :_____________;B :_____________;(3)求该地区喜爱娱乐类节目的成年人的人数. 25.(本小题满分8分)邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计.(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案. (2)求小王从县城出发到返回县城所用的时间. (3)李明从A 村到县城共用多少时间?节目 新闻 娱乐 动画 图二:成年人喜爱的节目统计图 新闻娱乐 动画 108°26.(本小题满分8分)如图1,在四边形ABCD 中,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,分别与BA CD 、的延长线交于点M N 、,则BME CNE ∠=∠(不需证明).(温馨提示:在图1中,连结BD ,取BD 的中点H ,连结HE HF 、,根据三角形中位线定理,证明HE HF =,从而12∠=∠,再利用平行线性质,可证得BME CNE ∠=∠.)问题一:如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB CD =,E F 、分别是BC AD 、的中点,连结EF ,分别交DC AB 、于点M N 、,判断OMN △的形状,请直接写出结论.问题二:如图3,在ABC △中,AC AB >,D 点在AC 上,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,与BA 的延长线交于点G ,若60EFC ∠=°,连结GD ,判断AGD △的形状并证明.AC BD FE NM O B D H A F N M 1 2 图1图2 图3 A B D F G27.(本小题满分10分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?28.(本小题满分10分)直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.2009年齐齐哈尔市初中毕业学业考试数学试卷参考答案及评分标准一、选择题1.A 2.D 3.B 4.D 5.A 6.B 7.C 8.C 9.C 10.D二、填空题(多答案题全部答对得3分,否则不得分,带单位的答案,不写单位扣1分) 11.43.710⨯ 12.x ≥0且1x ≠ 13.2714.正确即可 15.(4 16.1- 17.218cm 18.72 19.1n - 20.14或16或18 三、解答题21.原式=22()()2()a b a b a ab b a a b a ⎛⎫+-++÷ ⎪-⎝⎭······································································· 1分 =2()a b a a a b ++· ········································· 1分 =1a b+ ······················································· 1分 a 值正确(01)a a ≠≠±、给1分,计算结果正确给22.画出平移后的图形 ·························· 2分,画出旋转后的图形 ·································· 2分, 写出坐标(0,0) ·································· 1分,答出“是轴对称图形” ·························· 1分. 23. ····························································································· 1分, 边长60cm 17························································································································· 1分, ······························································································· 1分, 边长156cm 25··························································································································· 1分 ······························································································· 1分, 边长65cm 18························································································································· 1分. 24.抽样调查 ·························································································································· 1分 2040A B ==, ············································································································ 各1分,5300000150000352⨯=++ ··························································································· 1分,10830%360= ························································································································ 1分, 15000030%45000⨯= ········································································································ 2分25.(1)4千米 ··················································································································· 2分, (2)解法一:61180604-=- ·································································································· 1分6608414+= ··························································································································· 1分 84+1=85 ··································································································································· 1分 解法二:求出解析式,1214s t =-+ ··············································································· 1分,084s t ==, ····················································································································· 1分,84+1=85 ··································································································································· 1分 (3)写出解析式1520s t =-+ ····························································································· 1分 620s t ==-, ······················································································································ 1分20+85=105 ······························································································································· 1分 26.(1)等腰三角形 ·············································································································· 1分 (2)判断出直角三角形 ········································································································ 1分 证明:如图连结BD ,取BD 的中点H ,连结HF HE 、, ·············································· 1分 F 是AD 的中点,HF AB ∴∥,12HF AB =, 13∴∠=∠.同理,12HE CD HE CD =∥,, 2EFC ∴∠=∠. AB CD = , ∴HF HE =,12∴∠=∠. ························································································································· 1分60EFC ∠= °,360EFC AFG ∴∠=∠=∠=°, AGF ∴△是等边三角形. ···································································································· 2分AF FD = ,GF FD ∴=,30FGD FDG ∴∠=∠=° 90AGD ∴∠=°即AGD △是直角三角形. ··································································································· 2分27.(1)解:设今年三月份甲种电脑每台售价x 元100000800001000x x =+ ················································································································· 1分解得:4000x = ···················································································································· 1分 经检验:4000x =是原方程的根, ······················································································ 1分所以甲种电脑今年每台售价4000元.A BCD F G H E12 3(2)设购进甲种电脑x 台,4800035003000(15)50000x x +-≤≤ ·········································································· 2分 解得610x ≤≤ ···················································································································· 1分因为x 的正整数解为6,7,8,9,10,所以共有5种进货方案 ········································· 1分 (3)设总获利为W 元,(40003500)(38003000)(15)(300)1200015W x a x a x a=-+---=-+- ······························································ 1分当300a =时,(2)中所有方案获利相同. ········································································· 1分 此时,购买甲种电脑6台,乙种电脑928.(1)A (8,0)B (0,6) ·················· 1分(2)86OA OB == , 10AB ∴=点Q 由O 到A 的时间是881=(秒)∴点P 的速度是61028+=(单位/秒) ·· 1分 当P 在线段OB 上运动(或03t ≤≤)时,OQ t =,2S t = ····································································································································· 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ····································· 1分 21324255S OQ PD t t ∴=⨯=-+ ························································································· 1分 (自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ···················································································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ································································· 3分 注:本卷中各题,若有其它正确的解法,可酌情给分.。

2019年黑龙江省齐齐哈尔市中考数学一模试卷(解析版)

2019年黑龙江省齐齐哈尔市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.9的平方根是()A. 3B. ±3C. ±√3D. 812.下面四个图案中,是中心对称图形的是()A. B. C. D.3.下列计算正确的是()A. a4⋅a2=a8B. a4+a2=a8C. (a2)4=a8D. a4÷a2=2a4.代数式3x2-4x-5的值为7,则x2-43x-5的值为()A. 4B. −1C. −5D. 75.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A. 12B. 13C. 16D. 186.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是()A. 2和2B. 4和2C. 2和3D. 3和27.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12:00开始到12:30止,y与t之间的函数图象是()A. B.C. D.8.某校九年级(1)班为了筹备演讲比赛,准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔15元/支,在钱全部用完的条件下,购买的方案共有()A.4种B. 5种C. 6种D. 7种9.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=-4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A. 3B. 4C. 5D. 610.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(3,0),其部分图象如图所示,现有下列结论:①abc>0:②b2-4ac<0;③a+b>0;④当x>0时,y随x的增大而减小;⑤3a+c=0;⑥c<4b.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共7小题,共21.0分)11.近年来日本发生的一次地震及海啸给日本带来16万亿日元到25万亿日元的经济损失,25万亿日元用科学记数法表示为______日元.12.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为______个.13.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,则折痕BD的长为______.14.若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是______cm.15.关于x的分式方程1−ax−2=a2的解是正数,则a的取值范围是______.16.矩形ABCD的边AB=6,BC=12,点P为矩形ABCD边上一点,连接AP,若线段AP、BD交点为点H,△PAB为等腰三角形,则AH的长为______.17.在平面直角坐标系中,点A在x轴正半轴上,点B在y轴正半轴上,O为坐标原点,OA=OB=1,过点O作OM1⊥AB于点M1:过点M1作M1A1⊥OA于点A1:过点A作M1A2⊥AB于点M2;过点M2作M2A2⊥OA于点A2…以类推,点M2019的坐标为______.三、解答题(本大题共8小题,共69.0分)18.计算:√186−|√3−3|+2sin60°−(√2)−119.因式分解:a2-4-3(a+2)20.解方程:x2-4x-9=021.Rt△ABC中,∠C=90°,点E在AB上,BE=12AE=2,以AE为直径作⊙O交AC于点F,交BC于点D,且点D为切点,连接AD、EF.(1)求证:AD平分∠BAC;(2)求阴影部分面积.(结果保留π)22.某中学为了解学生业余时间的活动情况,从看电视、看书、上网、运动四个方面进行了统计调查,随机调查了某班所有同学(每名同学必选且只能选一项最喜欢的活动),并将调查结果绘成了如下两个不完整的统计图,请根据图中信息回答下列问题:(1)被调查的班级学生共有______名(2)补全条形统计图;(3)扇形统计图中“上网”的学生所对应的圆心角是______度;(4)该校一共有1200名学生,根据抽样调查结果,请你计算出该校大约有多少名学生喜欢“运动”?23.周末,小明从家步行去书店看书,出发14小时后距家1.8千米时,爸爸驾车从家沿相同路线追赶小明,在A地追上小明后,二人驾车继续前行到达书店,小明在书店B看书,爸爸去单位C地办事.如图是小明与爸爸两人之间距离S(千米)与小明出发的时t(小时)之间的函数图象,(小明步行速度与爸爸驾车速度始终保持不变,彼此交流时间忽略不计),请根据图象回答下列问题(1)小明步行速度是______千米/小时,爸爸驾车速度是______千米/小时;(2)图中点A的坐标是______;(3)求书店与家的路程;(4)求爸爸出发多长时间,两人相距3千米.24.旋转是图形变化的方法之一,借助旋转知识可以解决线段长、角的大小、取值范围、判断三角形形状等问题,在实际生活中也有十分重要的地位和作用.问题背景:一块等边三角形建筑材料内一点到三角形三个顶点的距离满足一定条件时,我们可以用所学的知识帮助工人师傅在没有刻度尺的情况下求出等边三角形的边长.数学建模如图1,等边三角形ABC内有一点P,已知PA=2√3,PB=4,PC=2√7.问题解决(1)如图2,将△ABP绕点B顺时针旋转60°得到△CBP',连接PP',易证∠BP'P=______°,△______为等边三角形,∠______=90°,∠BPA=______°:(2)点H为直线BP'上的一个动点,则CH的最小值为______;(3)求AB长;拓展延伸已知:点P在正方形ABCD内,点Q在平面,BP=BQ=1,BP⊥BQ.(4)在图3中,连接PA、PC、PQ、QC,AP=√3,若点A、P、Q在一条直线上,则cos∠PCQ=______;(5)若AB=2,连接DP,则______≤DP<______;连接PQ,当D、P、Q三点同一条直线上时,△BDQ的面积为______.25.综合与探究:如图,抛物线y=ax2+bx-4与x轴交于A(-3,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线解析式;(2)抛物线对称轴上存在一点H,连接AH、CH,当|AH-CH|值最大时,求点H坐标;(3)若抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,求点P坐标;(4)若点M是∠BAC平分线上的一点,点N是平面内一点,若以A、B、M、N为顶点的四边形是矩形,请直接写出点N坐标.答案和解析1.【答案】B【解析】解:±=±3,故选:B.根据平方与开平方互为逆运算,可得一个正数的平方根.本题考查了平方根,根据平方求出平方根,注意一个正数的平方跟有两个.2.【答案】B【解析】解:A.此图案是轴对称图形,不是中心对称图形,不合题意;B.此图案是中心对称图形,符合题意;C.此图案是轴对称图形,不是中心对称图形,不合题意;D.此图案是轴对称图形,不是中心对称图形,不合题意;故选:B.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】C【解析】解:A、a4•a2=a6,故此选项错误;B、a4+a2,无法计算,故此选项错误;C、(a2)4=a8,正确;D、a4÷a2=a2,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.此题主要考查了直接利用同底数幂的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:∵3x2-4x-5的值为7,3x2-4x=12,代入x2-x-5,得(3x2-4x)-5=4-5=-1.故选:B.根据题意列出等式,变形后求出x2-x的值,代入原式计算即可得到结果.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.5.【答案】C【解析】解:∴一共有12种情况,有2种情况两次都摸到红球,∴两次都摸到红球的概率是=.故选:C.列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】D【解析】解:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,9),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选:D.根据平均数的定义得到关于x的方程,求x,再根据中位数和众数的定义求解.本题为统计题,考查平均数、众数与中位数的意义,解题要细心.7.【答案】A【解析】解:∵从12:00开始时针与分针的夹角为0°,而分针每分钟转动6°,时针每分钟转动0.5°,∴y越来越大,而分针每分钟转动6°,时针每分钟转动0.5°,∴从12:00开始到12:30止,y=(6-0.5)×30=165.故选:A.由于从12:00开始时针与分针的夹角为0°,而分针每分钟转动6°,时针每分钟转动0.5°,由此得到时针与分针的夹角越来越大,可以根据已知条件计算夹角的大小.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.8.【答案】C【解析】解:设购买了日记本x本,钢笔y支,根据题意得:10x+15y=200,化简整理得:2x+3y=40,得x=20-y,∵x,y为正整数,∴,,,,,,∴有6种购买方案:方案1:购买了日记本17本,钢笔2支;方案2:购买了日记本14本,钢笔4支;方案3:购买了日记本11本,钢笔6支;方案4:购买了日记本8本,钢笔8支;方案5:购买了日记本5本,钢笔10支;方案6:购买了日记本2本,钢笔12支.故选:C.设购买了日记本x本,钢笔y支,根据准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔15元/支,钱全部用完可列出方程,再根据x,y为正整数可求出解.本题考查了二元一次方程的应用,关键是读懂题意,根据题意列出二元一次方程,然后根据解为正整数确定出x,y的值.9.【答案】A【解析】解:连接OA、OB,如图,∵AB∥x轴,∴S△OAP =×|-4|=2,S△OBP =×|2|=1,∴S△OAB=3,∵AB∥OC,∴S△CAB=S△OAB=3.故选:A.连接OA、OB,如图,由于AB∥x轴,根据反比例函数k的几何意义得到S△OAP=2,S△OBP=1,则S△OAB=3,然后利用AB∥OC,根据三角形面积公式即可得到S△CAB=S△OAB=3.本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x 轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.10.【答案】B【解析】解:①由抛物线开口方向向下知,a<0.由抛物线对称轴位于y轴右侧知,a、b异号,即ab<0,抛物线与y轴交于正半轴,则c>0.则abc<0.故错误;②由抛物线与x轴有两个不同的交点知,b2-4ac>0.故错误;③由对称轴x=-=1知b=-2a,则a+b=a-2a=-a>0,即a+b>0.故正确;④如图所示,当x>1时,y随x的增大而减小,故错误;⑤如图所示,根据抛物线的对称性知,抛物线与x轴的另一交点坐标是(-1,0).所以当x=-1时,y=a-b+c=a+2a+c=3a+c=0,即3a+c=0,故正确;⑥如图所示,当x=2时,y=4a+2b+c=2×(-3b)+2b+c=c-4b>0,而点(2,c-4b)在第一象限,∴c-4b>0,∴c>4b.故错误.综上所述,其中正确的结论有2个.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查了二次函数的图象与系数的关系,还考查了同学们从函数图象中获取信息的能力,以及考查二次函数的图象和性质.11.【答案】2.5×1013【解析】解:25万亿=2.5×1013.故答案为:2.5×1013.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.12.【答案】8【解析】解:综合主视图和俯视图,底层最少有5个小立方体,第二层最少有2个小立方体,第三层至少有1个,因此搭成这个几何体的小正方体的个数最少是8个.故答案为:8.主视图、俯视图是分别从物体正面、上面看,所得到的图形.考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.13.【答案】3√5【解析】解:∵∠C=90°,AC=8,BC=6,∴AB=10.根据折叠的性质,BC=BC′,CD=DC′,∠C=∠AC′D=90°.∴AC′=10-6=4.在△AC′D中,设DC′=x,则AD=8-x,根据勾股定理得(8-x)2=x2+42.解得x=3.∴CD=3.∴BD===3.根据勾股定理易求AB=10.根据折叠的性质有BC=BC′,CD=DC′,∠C=∠AC′D=90°.在△AC′D中,设DC′=x,则AD=8-x,AC′=10-6=4.根据勾股定理可求x.在△BCD中,运用勾股定理求BD.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.14.【答案】9【解析】解:设母线长为l,则=2π×3解得:l=9.故答案为:9.利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.【答案】a>0且a≠1【解析】解:去分母得:2-2a=ax-2a得ax=2即:x=∵关于x 的分式方程的解是正数∴>0 即a>0又∵原分式方程有解,∴x≠2∴≠2即a≠1故答案为a>0且a≠1.关于x 的分式方程的解是正数,首先表明分式方程有解,不能让分母等于0,所以x≠2;再考虑解是正数,才能求出正确结果.本题考查的是解分式方程,并把握分式方程有解的条件,本题中往往容易遗漏对方程有解的检验,导致范围不正确.16.【答案】4√2或2√17【解析】解:分两种情况:①当P在BC上时,如图1所示∵四边形ABCD是矩形,∴∠ABP=90°,AD=BC=4,AD∥BC,CD=AB=2,∴△ADE∽△PBE,∴=,∵△ABP是等腰三角形,∴PB=AB=6,∴=2,∴=,由勾股定理得:AP==6,∴AE=4;②当P在CD上时,P为CD的中点,如图2所示:则PD=CD=3,∴AP==3,∵AB∥CD,∴△ABE∽△DPE,∴=2,∴AE=2PE,∴AE=AP=2;综上所述,AE的长为4或2;故答案为:4或2.根据题意画出图形,分两种情况:①当P在BC上时;②当P在CD上时,P为CD的中点;由矩形的性质和勾股定理以及相似三角形的性质即可得出结果.本题考查了矩形的性质、等腰三角形的性质、相似三角形的判定与性质、比例的性质;熟练掌握矩形的性质,证明三角形相似得出比例式是解决问题的关键.17.【答案】(1-122019,122019)【解析】解:∵OA=OB,OM1⊥AB,∴点M1是AB的中点,∵M1A1⊥OA,∴A1是OA的中点,∴点M1的坐标为(,),同理,点M2的坐标为(1-,),点M3的坐标为(1-,),……点M2019的坐标为(1-,),故答案为:(1-,).根据等腰三角形的性质得到点M1是AB的中点,根据三角形中位线定理求出点M1的坐标,总结规律,根据规律解答即可.本题考查的是点的坐标规律,掌握等腰直角三角形的性质、点的坐标性质是解题的关键.18.【答案】解:原式=3√26−(3−√3)+2×√32−√22=√22−3+√3+√3−√22=2√3−3.【解析】先分别计算二次根式、绝对值、三角函数值、负整数指数幂,然后算加减法.本题考查了实数的运算,熟练掌握二次根式、绝对值、三角函数值、负整数指数幂的运算是解题的关键.19.【答案】解:原式=(a+2)(a-2)-3(a+2)=(a+2)(a-5).【解析】利用平方差公式和提取公因式法进行因式分解.考查了公式法和提取公因式法进行因式分解,能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.20.【答案】解:配方得:x2-4x+4=13,即(x-2)2=13,开方得:x-2=±√13,解得:x1=2+√13,x2=2-√13.【解析】方程移项配方后,开方即可求出解.考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.【答案】(1)证明:连接OD交EF于M.∵BC切⊙O于D,∴OD⊥BC,∴∠ODB =90°, ∵∠C =90°, ∴∠ODB =∠C , ∴OD ∥AC , ∴∠DAC =∠ODA , ∵OD =OA , ∴∠OAD =∠ODA , ∴∠OAD =∠DAC , ∴AD 平分∠ABC .(2)连接OF .∵AE 是直径, ∴∠AFE =90°, ∵EF ∥BC , ∴CF AF =BE AE =12,∵∠C =∠AFE =∠ODC =90°, ∴四边形DMFC 是矩形, ∴DM =CF =12AF , ∵OM =DM =12OD =12OE , ∴∠OEM =30°, ∴∠EOF =120°, ∵BE =12AE =2, ∴OE =2,∴OM =1,EM =√3,EF -2√3,∴S 阴=S 扇形OEF -S △OEF =120⋅π⋅22360-12×2√3×1=4π3-√3. 【解析】(1)欲证明AD 平分∠BAC ,只要证明∠DAO=∠DAC 即可. (2)根据S 阴=S 扇形OEF-S △OEF ,计算即可.本题考查扇形的面积,角平分线的定义,垂径定理,勾股定理,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 22.【答案】50 72【解析】解:(1)被调查的班级学生共有18÷36%=50(人), 故答案为:50;(2)看书的人数为50×28%=14(人),运动的人数为50-(18+14+10)=8(人), 补全图形如下:(3)扇形统计图中“上网”的学生所对应的圆心角是360°×=72°, 故答案为:72;(4)该校喜欢“运动”的学生约有1200×=192(人). (1)由看电视的人数及其所占百分比可得总人数;(2)总人数乘以看书对应的百分比求得其人数,再根据各情况人数之和等于总人数求得运动的人数,从而补全图形;(3)用360°乘以上网人数所占比例;(4)用总人数乘以样本中运动人数所占比例即可得.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】7.2 48 (2380,0)【解析】解:(1)小明步行速度为(千米/小时); 爸爸驾车速度为(千米/小时);故答案为:7.2;48;(2)1.8÷48=(小时),(小时),故点A的坐标是(,0),故答案为:(,0);(3)48×(千米);(4),C (,8),故直线BC的解析式为y=48x-24,当48x-24=3时,x=,(小时).答:爸爸出发小时后,两人相距3千米.(1)根据“速度=路程÷时间”即可解答;(2)根据(1)中爸爸驾车速度以及行驶的路程即可求出行驶时间,进而求出点A的坐标;(3)用“爸爸驾车速度×时间”即可求出书店与家的路程;(4)求出直线BC的解析式,再把相应数据代入解析式即可解答.本题主要考查了一次函数图象上的点所表示的意义,结合实际求出问题.24.【答案】60 BPP' PP'C150 √3√1552√2-1 √5√15+14【解析】解:(1)∵△ABC是等边三角形∴AB=BC,∠ABC=60°∵△ABP绕点B顺时针旋转60°得到△CBP'∴△ABP≌△CBP',∠PBP'=∠ABC=60°,∴BP'=BP,CP'=AP=,∠BP'C=∠BPA ∴△BPP'是等边三角形∴∠BP'P=60°,PP'=BP=4∵PC=∴CP'2+PP'2=()2+42=28=PC2∴∠PP'C=90°∴∠BP'C=∠BP'P+∠PP'C=60°+90°=150°∴∠BPA=∠BP'C=150°故答案为:60;BPP';PP'C;150.(2)如图1,当CH⊥BP'时,CH 最小∵∠BP'C=150°,CP'=2,∠CHP'=90°∴∠CP'H=180°-∠BP'C=30°∴CH=CP'=故答案为:(3)如图1,过点C作CH⊥BP'于点H∵Rt△CP'H中,CH=,CP'=∴P'H=∵BP'=BP=4∴BH=BP'+P'H=7∴Rt△BCH 中,BC=∴AB=BC=(4)∵四边形ABCD是正方形∴AB=BC,∠ABC=90°∵BP=BQ=1,BP⊥BQ∴∠PBQ=90°∴∠BPQ=∠BQP=45°,PQ=,∠PBQ=∠ABC∴∠APB=180°-∠BPQ=135°,∠PBQ-∠PBC=∠ABC-∠PBC即∠CBQ=∠ABP在△CBQ与△ABP中,∴△CBQ≌△ABP(SAS)∴CQ=AP=,∠BQC=∠BPA=135°∴∠PQC=∠BQC-∠BQP=90°∴PC=∴cos∠PCQ=故答案为:(5)①∵BP=1,点P在正方形ABCD内∴点P在以B为圆心、BP长为半径且在正方形内的圆周上∴如图2,当B、P、D在一条直线上时,PD最短PD=BD-BP=-BP=2-1如图3,当P很接近AB或BC时,PD取极大值PD=∴2-1≤DP <②如图4,过点B作BE⊥PQ于点E∴∠BED=90°∵BP=BQ=1,∠PBQ=90°∴BE=PE=EQ=PQ=∴DE=∴DQ=DE+EQ=∴S△BDQ =DQ•BE=故答案为:-1;;.(1)根据题目给的填空提示,先证明△BPP'是等边三角形,再用勾股定理逆定理证明∠PP'C=90°,求得∠BP'C即得到∠APB的度数.(2)由点到直线的距离垂线段最短可知,当CH⊥BP'时,CH最小,用特殊三角函数值即求得CH的长.(3)由(2)的结论,可利用CH⊥BP'构造直角三角形,用勾股定理求BC,即求得AB的长.(4)由点A、P、Q在一条直线上,可得关键条件∠APB=135°,易证△CBQ≌△ABP即有∠BQC=∠BPA=135°,进而得到∠PQC=90°,所以cos∠PCQ即为CQ与PC的比.(5)由BP=1可知点P在以B为圆心、BP长为半径且在正方形内的圆周上运动,所以P在AB上时DP 最大,B、P、D在一条直线上时,DP最短,画出具体图形即求出DP的最值;当D、P、Q三点同一条直线上时,△BDQ的面积可用DQ为底来求,故作BE⊥DQ,利用等腰Rt△BPQ的性质和勾股定理求BE 和DQ的长,即求得面积.本题考查了旋转的性质,等边三角形的判定和性质,勾股定理和勾股定理逆定理,点到直线距离,全等三角形的判定和性质,正方形的性质,三角函数.解题关键由等边三角形的解题方法转化到正方形的运用.动点题要发挥想象,把极值情况画出再进行思考.25.【答案】解:(1)∵抛物线与y轴交于点C,∴点C坐标为(0,-4),把A(-3,0)、B(4,0)坐标代入y=ax2+bx-4得{0=16a+4b−40=9a−3b−4解得{a=13b=−13∴抛物线解析式为:y=13x2−13x−4.(2)抛物线的对称轴为:x=12,由三角形任意两边之差小于第三边,可知抛物线对称轴上存在一点H,连接AH、CH,当|AH-CH|值最大时,点H 为AC直线与对称轴的交点,由A(-3,0)、C(0,-4)易得直线AC解析式为:y=−43x−4,当x=12时,y=−143,故点H的坐标为:(12,-143).(3)∵抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,∴点P(m,n)只能位于第一象限,C(0,-4)∴n=4∴由4=13x2−13x-4解得x=1+√972或x=1−√972(舍)故点P 坐标为(1+√972,4).(4)若以A 、B 、M 、N 为顶点的四边形是矩形,则点M 和点N 的位置有两种如图所示点M 和点M ’点N 和点N ’易得OA =3,OC =4,AC =5,点M 是∠BAC 平分线上的一点,作QF ⊥AC ,则OQ =QF ,12OA ×OC =12OA ×OQ +12AC ×QF ∴OQ =QF =1.5,∴在直角三角形AOQ 和直角三角形ABM 中,OQAO =BM AB,∴1.53=BM 7,∴BM =3.5, ∴点N (-3,-3.5)同理在直角三角形AEN ’和直角三角形ABN ’中,可解得点N ’(-85,145). 故点N 的坐标为(-3,-3.5)或(-85,145). 【解析】(1)把点A 和点B 坐标代入抛物线解析式解出a 和b 即可;(2)由三角形任意两边之差小于第三边,可知抛物线对称轴上存在一点H ,连接AH 、CH ,当|AH-CH|值最大时,点H 为AC 直线与对称轴的交点,从而可解;(3)由mn >0,当S △ABC =S △ABp ,可知点P 位于第一象限,且其纵坐标与点C 的纵坐标为相反数,从而可解;(4)画图,利用角平分线的性质定理,用面积法解出点OQ ,从而利用同角的三角函数值相等可解. 本题属于二次函数的综合题,考查了待定系数法求解析式,三角形三边关系求最值,角平分线的性质定理,解三角形等知识点,难度较大.。

2019年中考数学试题分类汇编:统计(含答案解析,精美排版)

统计一.选择题1.(2019安徽)某校九年级(1)班全体学生2019年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误..的是 A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分2.(2019广东)3. 一组数据2,6,5,2,4,则这组数据的中位数是 A.2 B.4 C.5 D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。

3.(孝感)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为 20 18 17 10 15 10,,,,,.对于这组数据,下列说法错误..的是 A .平均数是15 B .众数是10C .中位数是17D .方差是3444.(湖南常德)某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为2141.7S 甲=,2433.3S 乙=,则产量稳定,适合推广的品种为:A 、甲、乙均可B 、甲C 、乙D 、无法确定 【解答与分析】这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定: 答案为B5.(衡阳)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( C ). A .50元,30元 B .50元,40元 C .50元,50元 D .55元,50元6. )(2019•益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动平均数为:=3.8星手机的销售情况四个同学得出的以下四个结论,其中正确的为A . 4月份三星手机销售额为65万元B . 4月份三星手机销售额比3月份有所上升C . 4月份三星手机销售额比3月份有所下降D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额8.(野西南州)已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是A .1B .34C .0D .2 9.二.填空题1.(2019•厦门)已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s = nk(用只含有k 的代数式表示).2.(2019•梅州)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图(1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.考点:条形统计图;用样本估计总体;中位数;众数.. 分析:(1)众数就是出现次数最多的数,据此即可判断; (2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解. 解答:解:(1)众数是:30元,故答案是:30元; (2)中位数是:50元,故答案是:50元; (3)调查的总人数是:6+12+10+8+4=40(人), 则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3.(汕尾)在“全民读书月活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图。

2021年黑龙江省齐齐哈尔市中考数学真题(原卷+解析版)

二零二一年齐齐哈尔市中考数学真题(原卷+解析)二零二一年齐齐哈尔市中考数学试卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分3.使用答题卡的考生,请将答案填写在答题卡的指定位置一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1. 实数2021的相反数是( )A. 2021B.C.D. 2. 下面四个图形中,既是轴对称图形也是中心对称图形的是( )A. B. C. D.3. 下列计算正确的是( )A.B. C. D.4. 喜迎建党100周年,某校将举办小合唱比赛,七个参赛小组人数如下:5,5,6,7,x ,7,8.已知这组数平均数是6,则这组数据中位数( )A. 5B. 5.5C. 6D. 75. 把直尺与一块三角板如图放置,若,则的度数为( )A. B. C. D.6. 某人驾车匀速从甲地前往乙地,中途停车休息了一段时间,出发时油箱中有40升油,到乙地后发现油箱中还剩4升油.则油箱中所剩油y (升)与时间t (小时)之间函数图象大致是( )A. B.的2021-1202112021-4=±()2234636m n m n =24833a a a ⋅=33xy x y -=147∠=︒2∠43︒47︒133︒137︒C. D.7. 由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为( )A. 7个B. 8个C. 9个D. 10个8. 五张不透明卡片,正面分别写有实数,5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A. B. C. D. 9. 周末,小明的妈妈让他到药店购买口罩和消精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有( )A. 3种B. 4种C. 5种D. 6种10. 如图,二次函数图象的一部分与x 轴的一个交点坐标为,对称轴为,结合图象给出下列结论:①;②;③关于x 的一元二次方程的两根分别为-3和1;④若点,,均在二次函数图象上,则;⑤(m 为任意实数).其中正确的结论有( )的1-115152535452(0)y ax bx c a =++≠()1,01x =-0a b c ++=20a b c -+<20(a 0)++=≠ax bx c ()14,y -()22,y -()33,y 123y y y <<()a b m am b -<+A. 1个B. 2个C. 3个D. 4个二、填空题(每小题3分,满分21分)11. 随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 0007(毫米2),这个数用科学记数法表示为__________.12. 如图,,,要使,应添加条件是_________.(只需写出一个条件即可)13. 一个圆锥的底面圆半径为6cm ,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为_____cm . 14. 若关于x的分式方程的解为正数,则m 的取值范围是_________. 15. 若直角三角形其中两条边的长分别为3,4,则该直角三角形斜边上的高的长为________.16. 如图,点A 是反比例函数图象上一点,轴于点C 且与反比例函数的图象交于点B , ,连接OA ,OB ,若的面积为6,则_________.的AC AD =12∠=∠ABC AED ≌△△3211x m x x=+--1(0)k y x x=<AC x ⊥2(0)k y x x =<3AB BC =OAB V 12k k +=17. 如图,抛物线解析式为,点的坐标为,连接:过A 1作,分别交y 轴、抛物线于点、:过作,分别交y 轴、抛物线于点、;过作,分别交y 轴、抛物线于点、…:按照如此规律进行下去,则点(n 为正整数)的坐标是_________.三、解答题(本题共7道大题,共69分)18. (1)计算:(2)因式分解:.19. 解方程:.的2y x =1A ()1,11OA 111A B OA ⊥1P 1B 1B 1211B A A B ⊥2P 2A 2A 2212A B B A ⊥3P 2B n P ()201 3.144cos 4512π-⎛⎫-+-+︒-- ⎪⎝⎭3312xy xy -+(7)8(7)x x x -=-20. 某中学数学兴趣小组为了解本校学生对A :新闻、B :体育、C :动画、D :娱乐、E :戏曲五类电视节目的喜爱情况,随机抽取了部分学生进行调查(被调查的学生只选一类并且没有不选的),并将调查结果绘制成如图所示的不完整的条形图和扇形图.请根据图中所给出的信息解答下列问题:(1)本次抽样调查的样本容量是__________;(2)请补全条形图;(3)扇形图中,_________,节目类型E 对应的扇形圆心角的度数是__________;(4)若该中学有1800名学生,那么该校喜欢新闻类节目的学生大约有多少人?21. 如图,AB 为⊙O 的直径,C 为⊙O 上的一点,AE 和过点C 的切线CD 互相垂直,垂足为E ,AE 与⊙O 相交于点F ,连接AC .(1)求证:AC 平分;(2)若,.求OB 的长. 22. 在一条笔直的公路上依次有A ,C ,B 三地,甲、乙两人同时出发,甲从A 地骑自行车去B 地,途经C 地休息1分钟,继续按原速骑行至B 地,甲到达B 地后,立即按原路原速返回A 地;乙步行从B 地前往A 地.甲、乙两人距A 地的路程y (米)与时间x (分)之间的函数关系如图所示,请结合图象解答下列问题:m =EAB ∠12AE=tan CAB ∠=(1)请写出甲的骑行速度为 米/分,点M 的坐标为 ;(2)求甲返回时距A 地的路程y 与时间x 之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A 地之前,经过多长时间两人距C 地的路程相等.23. 综合与实践数学实践活动,是一种非常有效的学习方式.通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思推空间,丰富数学体验.让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣. 折一折:将正方形纸片ABCD 折叠,使边AB 、AD 都落对角线AC 上,展开得折痕AE 、AF ,连接EF ,如图1.(1)_________,写出图中两个等腰三角形:_________(不需要添加字母);转一转:将图1中的绕点A 旋转,使它的两边分别交边BC 、CD 于点P 、Q ,连接PQ ,如图2. (2)线段BP 、PQ 、DQ 之间的数量关系为_________;(3)连接正方形对角线BD ,若图2中的的边AP 、AQ 分别交对角线BD 于点M 、点N .如图3,则________; 剪一剪:将图3中的正方形纸片沿对角线BD 剪开,如图4.在EAF ∠=︒EAF ∠PAQ ∠CQ BM=(4)求证:.24. 综合与探究如图,在平面直角坐标系中,抛物线与x 轴交于点A 、B ,与y 轴交于点C ,连接BC ,,对称轴为,点D 为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C ,D 两点之间的距离是__________;(3)点E 是第一象限内抛物线上的动点,连接BE 和CE .求面积的最大值;(4)点P 在抛物线对称轴上,平面内存在点Q ,使以点B 、C 、P 、Q 为顶点的四边形为矩形,请直接写出点Q 的坐标.222BM DN MN +=2()20y ax x c a =++≠1OA =2x =BCE V二零二一年齐齐哈尔市中考数学试卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分3.使用答题卡的考生,请将答案填写在答题卡的指定位置一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1. 实数2021的相反数是( )A. 2021B. C. D. 【答案】B【解析】【分析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案.【详解】解:2021的相反数是:.故选:B .【点睛】本题主要考查相反数的定义,正确掌握其概念是解题关键.2. 下面四个图形中,既是轴对称图形也是中心对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形和中心对称图形的定义,逐一判断选项,即可.【详解】解:A .既不是轴对称图形也不是中心对称图形,B .是轴对称图形但不是中心对称图形,C .既不是轴对称图形也不是中心对称图形,D .既是轴对称图形也是中心对称图形.故选D .【点睛】本题主要考查中心对称图形和轴对称图形,掌握中心对称图形和轴对称图形的定义,是解题的关键.3. 下列计算正确的是( )A. B.2021-1202112021-2021-4=±()2234636m n m n =C.D.【答案】A【解析】 【分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【详解】A 、,正确,故该选项符合题意;B 、,错误,故该选项不合题意;C 、,错误,故该选项不合题意;D 、与不是同类项,不能合并,故该选项不合题意;故选:A .【点睛】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.4. 喜迎建党100周年,某校将举办小合唱比赛,七个参赛小组人数如下:5,5,6,7,x ,7,8.已知这组数平均数是6,则这组数据的中位数( )A 5 B. 5.5 C. 6 D. 7【答案】C【解析】【分析】根据平均数的定义,先求出x ,再将数据从小到大排序,找出最中间的数,即为中位数.【详解】根据题意得:,解得: ,排序得:,故中位数为:6,故选:C .【点睛】本题考查了平均数和中位数,掌握平均数和中位数的概念是解题关键.5. 把直尺与一块三角板如图放置,若,则的度数为( ).24833a a a ⋅=33xy x y -=4=±()2234639m n m n =24633a a a ⋅=3xy 3x 55677876x ++++++=´4x =4,5,5,6,7,7,8147∠=︒2∠A.B. C. D.【答案】D【解析】 【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【详解】解:∵∠1=47°,∴∠3=90°−∠1=90°−47°=43°,∴∠4=180°−43°=137°,∵直尺的两边互相平行,∴∠2=∠4=137°.故选:D .【点睛】本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,是基础题,准确识图是解题的关键.6. 某人驾车匀速从甲地前往乙地,中途停车休息了一段时间,出发时油箱中有40升油,到乙地后发现油箱中还剩4升油.则油箱中所剩油y (升)与时间t (小时)之间函数图象大致是( )A. B.C. D.【答案】C【解析】【分析】由题意可将行程分为3段:停车休息前、停车休息中、停车休息后.根据停车前和停车后,油箱中油量随时间的增加而减少;停车休息中,时间增加但油箱中的油量不变.表示在函数图象上即可.43︒47︒133︒137︒【详解】解:∵某人驾车匀速从甲地前往乙地,中途停车休息了一段时间,∴休息前油箱中的油量随时间增加而减少,休息时油量不发生变化.∵再次出发油量继续减小,到乙地后发现油箱中还剩4升油,∴只有符合要求.故选:.【点睛】本题考查了用图象法表示函数关系,明确三段行程油量随时间增加发生的变化情况是解题的关键.7. 由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为( )A. 7个B. 8个C. 9个D. 10个【答案】A【解析】 【分析】根据几何体主视图,在俯视图上表上数字,即可得出搭成该几何体的小正方体最多的个数.【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故选:A .【点睛】此题考查了由三视图判断几何体,在俯视图上表示出正确的数字是解本题的关键.8. 五张不透明的卡片,正面分别写有实数,5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A. B. C. D. 【答案】B【解析】【分析】通过有理数和无理数的概念判断,然后利用概率计算公式计算即可.的C C 1 11515253545【详解】有理数有:,,5.06006000600006……;则取到的卡片正面的数是无理数的概率是, 故选:B .【点睛】本题主要考查了有理数、无理数的概念和简单概率计算,先判断后计算概率即可.9. 周末,小明的妈妈让他到药店购买口罩和消精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有( )A. 3种B. 4种C. 5种D. 6种 【答案】B【解析】【分析】设购买口罩包,酒精湿巾包,根据总价单价数量,即可列出关于的二元一次方程,结合均为正整数,即可得出购买方案的个数.【详解】解:设购买口罩包,酒精湿巾包,依据题意得: 均为正整数,或或或 小明共有4种购买方案.故选:B .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题关键. 10. 如图,二次函数图象的一部分与x 轴的一个交点坐标为,对称轴为,结合图象给出下列结论:①;②;③关于x 的一元二次方程的两根分别为-3和1;④若点,,均在二次函数图象上,则;⑤(m 为任意实数).1-11525x y =⨯,x y ,x y x y 3230x y +=2103x y ∴=- ,x y 83x y =⎧∴⎨=⎩66x y =⎧⎨=⎩49x y =⎧⎨=⎩212x y =⎧⎨=⎩∴2(0)y ax bx c a =++≠()1,01x =-0a b c ++=20a b c -+<20(a 0)++=≠ax bx c ()14,y -()22,y -()33,y 123y y y <<()a b m am b -<+其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据二次函数的图像及性质逐项分析即可判断.【详解】解:∵二次函数图象的一部分与x 轴的一个交点坐标为, ∴当x =1时,,故结论①正确;根据函数图像可知,当,即,对称轴为,即, 根据抛物线开口向上,得,∴,∴,即,故结论②正确;根据抛物线与x 轴的一个交点为,对称轴为可知:抛物线与x 轴的另一个交点为(-3,0),∴关于x 的一元二次方程的两根分别为-3和1,故结论③正确;根据函数图像可知:,2(0)y ax bx c a =++≠()1,00a b c ++=10x y =-<,0a b c -+<1x =-12b a -=-0a >20b a =>0a b c b -+-<20a b c -+<()1,01x =-20(a 0)++=≠ax bx c 213y y y <<故结论④错误;当时,,∴当时,,即,故结论⑤错误,综上:①②③正确,故选:C .【点睛】本题主要考查二次函数图像与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系.二、填空题(每小题3分,满分21分)11. 随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 0007(毫米2),这个数用科学记数法表示为__________.【答案】7×10-7【解析】【详解】考点:科学记数法—表示较小的数.分析:科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.本题0.000 000 7<1时,n 为负数. 解:0.000 000 7=7×10-7.故答案为7×10-7.12. 如图,,,要使,应添加的条件是_________.(只需写出一个条件即可)【答案】或或(只需写出一个条件即可,正确即得分)【解析】【分析】根据已知的∠1=∠2,可知∠BAC =∠EAD,两个三角形已经具备一边一角的条件,再根据全等三x m =2()y am bm c m am b c =++=++1m =-()a b c m am b c -+=++()a b m am b -=+AC AD =12∠=∠ABC AED ≌△△B E ∠=∠C D ∠=∠AB AE =角形的判定方法,添加一边或一角的条件即可.【详解】解:如图所所示,∵∠1=∠2,∴∠1+∠BAD =∠2+∠BAD .∴∠BAC =∠EAD .(1)当∠B =∠E 时,(2)当∠C =∠D 时,(3)当AB =AE 时,故答案为:∠B =∠E 或∠C =∠D 或AB =AE【点睛】本题考查的是全等三角形的判定方法,熟知全等三角形的各种判定方法及适用条件是解题的关键.13. 一个圆锥的底面圆半径为6cm ,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为_____cm .【答案】9.B E BAC EAD AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC AED AAS ≅∴△△.C D AC ADBAC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC AED ASA ≅∴△△.AB AE BAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩()ABC AED SAS ≅∴△△.【解析】【详解】试题分析:求得圆锥的底面周长,利用弧长公式即可求得圆锥的母线长:∵圆锥的底面周长为:2π×6=12π,∴圆锥侧面展开图的弧长为12π.设圆锥的母线长为R , ∴,解得R=9cm . 考点:圆锥的计算. 14. 若关于x 的分式方程的解为正数,则m 的取值范围是_________. 【答案】且【解析】【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可.【详解】解:方程两边同时乘以得:,解得:,∵x 为正数,∴,解得,∵,∴,即,∴m 的取值范围是且,故答案为:且.【点睛】本题考查的是根据分式方程的解的情况求参数,可以正确用m 表示出x 的值是解题的关键. 15. 若直角三角形其中两条边的长分别为3,4,则该直角三角形斜边上的高的长为________.【答案】2.4【解析】【分析】分两种情况:直角三角形的两直角边为3、4或直角三角形一条直角边为3,斜边为4,首先根据勾股定理即可求第三边的长度,再根据三角形的面积即可解题.【详解】若直角三角形的两直角边为3、4,设直角三角形斜边上的高为h , 24012180R ππ⨯=n 3211x m x x =+--2m <-3m ≠-(1)x -32(1)x m x =-+-2x m =--2m -->02m <-1x ≠21m --≠3m ≠-2m <-3m ≠-2m <-3m ≠-5=, ∴.若直角三角形一条直角边为3,斜边为4设直角三角形斜边上的高为h, , ∴. 故答案为:2.4【点睛】本题考查了勾股定理和直角三角形的面积,熟练掌握勾股定理是解题的关键.16. 如图,点A 是反比例函数图象上一点,轴于点C 且与反比例函数的图象交于点B , ,连接OA ,OB ,若的面积为6,则_________.【答案】【解析】【分析】利用反比例函数比例系数k 的几何意义得到S △AOC =||=-,S △BOC =||=-,利用AB =3BC 得到S △ABO =3S △OBC =6,所以-=2,解得=-4,再利用-=6+2得=-16,然后计算+的值.【详解】解:∵AC ⊥x 轴于点C ,与反比例函数y =(x <0)图象交于点B , 1134522h ⨯⨯=⨯ 2.4h ==113422h ⨯=⨯ h =1(0)k y x x=<AC x ⊥2(0)k y x x =<3AB BC =OAB V 12k k +=20-121k 112k 122k 212k 212k 2k 112k 1k 1k 2k 2k x而<0,<0,∴S △AOC=||=-,S △BOC =||=-, ∵AB =3BC ,∴S △ABO =3S △OBC =6,即-=2,解得=-4, ∵-=6+2,解得=-16, ∴+=-16-4=-20.故答案为:-20.【点睛】本题考查了反比例函数比例系数k 的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k |,且保持不变. 17. 如图,抛物线的解析式为,点的坐标为,连接:过A 1作,分别交y 轴、抛物线于点、:过作,分别交y 轴、抛物线于点、;过作,分别交y 轴、抛物线于点、…:按照如此规律进行下去,则点(n 为正整数)的坐标是_________.【答案】【解析】 1k 2k 121k 112k 122k 212k 212k 2k 112k 1k 1k 2k 122y x =1A ()1,11OA 111A B OA ⊥1P 1B 1B 1211B A A B ⊥2P 2A 2A 2212A B B A ⊥3P 2B n P ()20,n n +【分析】根据待定系数法分别求出直线、、、……的解析式,即可求得、P 2、P 3……的坐标,得出规律,从而求得点P n 的坐标.【详解】解:∵点的坐标为, ∴直线的解析式为,∵,∴,∴,设的解析式为,∴,解得, 所以直线解析式为, 解,求得,∵,设的解析式为,∴,∴,∴,解求得,设的解析式为,∴,∴,∴,...的1OA 11A P 12B P 23A P 1P 1A ()1,11OA y x =111A B OA ⊥12OP =1(0,2)P 11A P 1y kx b =+1112k b b +=⎧⎨=⎩112k b =-⎧⎨=⎩11A P 2y x =-+22y x y x =-+⎧⎨=⎩1(24)B -,121B P OA ∥12B P 2y x b =+224b -+=26b =2(06)P ,26y x y x =+⎧⎨=⎩2(3,9)A 23A P 3y x b =-+339b -+=312b =3(0,12)P故答案为:.【点睛】本题考查了二次函数的性质,二次函数图像上点的坐标特征,待定系数法求一次函数解析式,根据一次函数图像上点的坐标特征得出规律是解题的关键. 三、解答题(本题共7道大题,共69分)18. (1)计算:(2)因式分解:.【答案】(1)2)【解析】【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可;(2)先提取公因式,再利用平方差公式分解因式即可.【详解】(1)解:原式(2)解:原式【点睛】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键.19. 解方程:.【答案】,【解析】【分析】先移项再利用因式分解法解方程即可.【详解】解:∵,∴,∴,()20,n n +()201 3.144cos 4512π-⎛⎫-+-+︒-- ⎪⎝⎭3312xy xy -+6+3(2)(2)xy y y -+-4141)=++--411=+++6=23(4)xy y =--3(2)(2)xy y y =-+-(7)8(7)x x x -=-17x =28x =-(7)8(7)x x x -=-(7)8(7)0x x x -+-=(7)(8)0x x -+=【点睛】本题考查了解一元二次方程-因式分解法,解题的关键是找准公因式.20. 某中学数学兴趣小组为了解本校学生对A :新闻、B :体育、C :动画、D :娱乐、E :戏曲五类电视节目的喜爱情况,随机抽取了部分学生进行调查(被调查的学生只选一类并且没有不选的),并将调查结果绘制成如图所示的不完整的条形图和扇形图.请根据图中所给出的信息解答下列问题:(1)本次抽样调查的样本容量是__________;(2)请补全条形图;(3)扇形图中,_________,节目类型E 对应的扇形圆心角的度数是__________;(4)若该中学有1800名学生,那么该校喜欢新闻类节目学生大约有多少人?【答案】(1)300;(2)见解析;(3)35,18°;(4)180人【解析】【分析】(1)从条形统计图中可得喜欢B 类节目的人数为60人,从扇形统计图中可得此部分人数占调查人数的20%,可求出调查人数;(2)总人数减去喜爱A ,B ,D ,E 类电视节目的人数,可得喜爱C 类节目的人数,从而补全条形统计图; (3)根据百分比=所占人数÷总人数,可得m 的值,节目类型E 对应的扇形圆心角的度数等于360°乘以节目类型E 的百分比;(4)利用样本估计总体的思想,用1800乘以样本中喜欢新闻类节目的学生的百分比即可求得该校1800名学生中喜欢新闻类节目的学生人数.【详解】(1)由条形统计图可知,喜爱B 类节目的学生有60人,从扇形统计图可得此部分人数占调查总人数的20%,故本次抽样调查的样本容量是:(人);故答案为:300;(2)喜爱C 类节目的人数为:(人),的m =6020%300÷=30030601051590----=补全统计图如下:(3), 故m =35, 节目类型E 对应的扇形圆心角的度数为:, 故答案为:35,18;(4)该校1800名学生中喜欢新闻类节目的学生有:(人). 【点睛】本题考查的是条形统计图和扇形统计图的综合应用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21. 如图,AB 为⊙O 的直径,C 为⊙O 上的一点,AE 和过点C 的切线CD 互相垂直,垂足为E ,AE 与⊙O 相交于点F ,连接AC .(1)求证:AC 平分;(2)若,.求OB 的长. 【答案】(1)见解析;(2)8【解析】【分析】(1)连接OC ,由CD 是⊙O 的切线,,可证,可证;105%100%35%300m ==1536018300°´=°301800180300⨯=EAB ∠12AE=tan CAB ∠=AE CD ⊥//OC AE CAO EAC ∠=∠(2)连接BC ,由AB 是⊙O 的直径,可得,由, 可得可求,由勾股定理求,即可.【详解】(1)证明:连接OC ,∵CD 是⊙O 的切线,,∴,∴,∴,∵,∴,∴,∴AC 平分,(2)解:连接BC ,∵AB 是⊙O 的直径,∴,∵,,, ∴,即, ∴在Rt △ACE 中,∴又∵,,即90ACB ∠=︒tan CAB ∠=tan EAC ∠=CE =AC =16AB =AE CD ⊥90OCD AEC ∠=∠=︒//OC AE OCA EAC ∠=∠OA OC =ACO CAO ∠=∠CAO EAC ∠=∠EAB ∠90ACB ∠=︒tan CAB ∠=CAB EAC ∠=∠12AE =tan EAC ∠=CE AE =CE =AC ==90ACB ∠=︒tan CAB ∠=BC AC =∴,∴, ∴.【点睛】本题考查圆的切线性质,等腰三角形性质,直径所对圆周角是直角,锐角三角函数,勾股定理等知识,熟练掌握和灵活运用相关知识是解题的关键.22. 在一条笔直的公路上依次有A ,C ,B 三地,甲、乙两人同时出发,甲从A 地骑自行车去B 地,途经C 地休息1分钟,继续按原速骑行至B 地,甲到达B 地后,立即按原路原速返回A 地;乙步行从B 地前往A 地.甲、乙两人距A 地的路程y (米)与时间x (分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为 米/分,点M 的坐标为 ;(2)求甲返回时距A 地的路程y 与时间x 之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A 地之前,经过多长时间两人距C 地的路程相等.【答案】(1)240,(6,1200);(2)y=﹣240x+2640;(3)经过4分钟或6分钟或8分钟时两人距C 地的路程相等.【解析】【分析】(1)根据函数图象得出AB 两地的距离,由行程问题的数量关系由路程时间=速度就可以求出结论;(2)先由行程问题的数量关系求出M 、N 的坐标,设y 与x 之间的函数关系式为y=kx+b,由待定系数法就可以8BC=16AB ==182OB AB ==÷求出结论;(3)设甲返回A地之前,经过x分两人距C地的路程相等,可得乙的速度:1200÷20=60(米/分),分别分①当0<x≤3时②当3<x<﹣1时③当<x≤6时④当x=6时⑤当x>6时5种情况讨论可得经过多长时间两人距C地的路程相等.【详解】(1)由题意得:甲的骑行速度为: =240(米/分),240×(11﹣1)÷2=1200(米),则点M的坐标为(6,1200),故答案为240,(6,1200);(2)设MN的解析式为:y=kx+b(k≠0),∵y=kx+b(k≠0)的图象过点M(6,1200)、N(11,0),∴,解得,∴直线MN的解析式为:y=﹣240x+2640;即甲返回时距A地的路程y与时间x之间的函数关系式:y=﹣240x+2640;(3)设甲返回A地之前,经过x分两人距C地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200﹣1020=180,分5种情况:①当0<x≤3时,1020﹣240x=180﹣60x,x=>3,此种情况不符合题意;②当3<x<﹣1时,即3<x<,甲、乙都在A、C之间,∴1020﹣240x=60x﹣180,x=4,③当<x≤6时,甲在B、C之间,乙在A、C之间,∴240x ﹣1020=60x ﹣180,x=<,此种情况不符合题意;④当x=6时,甲到B 地,距离C 地180米,乙距C 地的距离:6×60﹣180=180(米),即x=6时两人距C 地的路程相等,⑤当x >6时,甲在返回途中,当甲在B 、C 之间时,180﹣[240(x ﹣1)﹣1200]=60x ﹣180,x=6,此种情况不符合题意,当甲在A 、C 之间时,240(x﹣1)﹣1200﹣180=60x﹣180,x=8,综上所述,在甲返回A 地之前,经过4分钟或6分钟或8分钟时两人距C 地路程相等.【点睛】本题考查了待定系数法一次函数的解析式的运用,一次函数与二元一次方程组的关系的运用,行程问题的数量关系的运用,注意由图像得出有用的信息及分类讨论思想在解题时的应用..23. 综合与实践数学实践活动,是一种非常有效的学习方式.通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思推空间,丰富数学体验.让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣. 折一折:将正方形纸片ABCD 折叠,使边AB 、AD 都落在对角线AC 上,展开得折痕AE 、AF ,连接EF ,如图1.(1)_________,写出图中两个等腰三角形:_________(不需要添加字母);转一转:将图1中的绕点A 旋转,使它的两边分别交边BC 、CD 于点P 、Q ,连接PQ ,如图2. (2)线段BP 、PQ 、DQ 之间的数量关系为_________;(3)连接正方形对角线BD ,若图2中的的边AP 、AQ 分别交对角线BD 于点M 、点N .如图3,的EAF ∠=︒EAF ∠PAQ ∠则________; 剪一剪:将图3中的正方形纸片沿对角线BD 剪开,如图4.(4)求证:.【答案】(1)45,,;(2);(3;(4)见解析【解析】【分析】(1)由翻折的性质可知:,,根据正方形的性质:, ,则,为等腰三角形; (2)如图:将顺时针旋转,证明全等,即可得出结论; (3)证明即可得出结论; (4)根据半角模型,将顺时针旋转,连接,可得,通过得出,为直角三角形,结合勾股定理即可得出结论.【详解】(1)由翻折的性质可知:为正方形,为等腰三角形(2)如图:将顺时针旋转,CQ BM=222BM DN MN +=ABC V ADC V BP DQ PQ +=,DAF FAC BAE EAC ∠=∠∠=∠EAF FAC EAC ∠=∠+∠AB BC CD AD ===90BAD DAF FAC BAE EAC ∠=︒=∠+∠+∠+∠1452EAF BAD ∠=∠=︒,ABC ADC V V ADQ △90︒APQ '△A P Q≌△ABM △A CQ ∽△ADN △90︒MN 'DN BN '=AMN '△A M N ≌△MN MN '='△B M N ,DAF FAC BAE EAC ∠=∠∠=∠ ABCD 90BAD ∴∠=︒AB BC CD AD ===,ABC ADC ∴V V BAD DAF FAC BAE EAC ∠=∠+∠+∠+∠()2BAD FAC EAC ∴∠=∠+∠EAF FAC EAC ∠=∠+∠ 11904522EAF BAD ∴∠=∠=⨯︒=︒ADQ △90︒由旋转的性质可得:,由(1)中结论可得为正方形,在和中(3)为正方形对角线,,AQ AQ '=DQ BQ '=DAQ BAQ '∠=∠45PAQ ∠=︒ABCD 90BAD ∠=︒45BAP DAQ ∴∠+∠=︒45BAQ BAP '∴∠+∠=︒PAQ PAQ '∴∠=∠∴APQ V APQ '△AP AP PAQ PAQ AQ AQ '=⎧⎪∠=∠⎨='⎪⎩APQ APQ '∴△≌△PQ PQ '∴=PQ BQ BP ''=+ PQ DQ BP ∴=+,BD ACABCD AC ∴=45ABM ACQ ∴∠=∠=︒45BAC ∠=︒45PAQ ∠=︒ 45BAM PAC ∴∠=︒-∠45CAQ PAC ∠=︒-∠BAM CAQ ∴∠=∠∴ABM ACQ △∽△(4)如图:将顺时针旋转,连接,由(2)中的结论可证根据旋转的性质可得:,在中有【点睛】本题是四边形的综合题,考查了正方形的性质,折叠的性质,旋转变换的性质,全等三角形的判定和性质,以及相似三角形的判定和性质,勾股定理等知识,能够综合运用这些性质是解题关键. 24. 综合与探究如图,在平面直角坐标系中,抛物线与x 轴交于点A 、B ,与y 轴交于点C ,连接BC ,,对称轴为,点D 为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C ,D 两点之间的距离是__________;CQ AC BM AB∴==ADN △90︒MN 'AMN '△A M N ≌△MN MN '∴=45,45D ABD ∠=︒∠=︒ 45D ABN '∠=∠=︒DN BN '=90MBN ABD ABN ''∴∠=∠+∠=︒∴Rt '△M B N 222BM BN MN ''+=∴222BM DN MN +=2()20y ax x c a =++≠1OA =2x =。

齐齐哈尔市中考数学试卷

齐齐哈尔市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七上·南浔期末) -3的相反数是()A .B . 3C . -3D .2. (2分)如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A .B .C .D .3. (2分) (2017九上·肇源期末) 如果把分式中的正数x,y,z都扩大2倍,则分式的值()A . 不变B . 扩大为原来的两倍C . 缩小为原来的D . 缩小为原来的4. (2分)历史上,雅各布.伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在0.5左右摆动,那么投掷一枚硬币10次,下列说法正确的是()A . “正面向上”必会出现5次B . “反面向上”必会出现5次C . “正面向上”可能不出现D . “正面向上”与“反面向上”出现的次数必定一样,但不一定是5次5. (2分)我国第六次人口普查显示,全国总人口为1370536875人,将这个总人口数(保留三个有效数字)用科学计数法表示为()A . 1.37×109B . 1.371×109C . 13.7×108D . 0.137×10106. (2分) (2019八下·东莞期中) 已知直角三角形的两直角边长分别为3和4,则斜边上的高为()A . 5B . 3C .D .7. (2分)在实数0.1,﹣5,0,﹣,π中,负数的个数是()A . 2B . 1C . 3D . 48. (2分) (2019八下·宁化期中) 下列图形中,有可能是中心对称图形的是()A .B .C .D .9. (2分)如图,在矩形ABCD中,CD=1,∠DBC=30°.若将BD绕点B旋转后,点D落在DC延长线上的点E处,点D经过的路径,则图中阴影部分的面积是()A .B .C .D .10. (2分) (2019九下·惠州月考) 如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A ,图2是点P运动时,线段BP的长度y随时间x变化的函数关系图象,其中M为曲线部分的最低点下列说法错误的是()A . △ABC是等腰三角形B . AC边上的高为4C . △ABC的周长为16D . △ABC的面积为10二、填空题 (共8题;共8分)11. (1分)(2017·南开模拟) 若使二次根式有意义,则x的取值范围是________.12. (1分)(2020·无锡模拟) 因式分解: = ________13. (1分) (2019七上·下陆月考) 如图所示是计算机某计算程序,若开始输入,则最后输出的结果是________.14. (1分)(2019·金华模拟) 如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为________.15. (1分)(2019·大庆) 归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为________.16. (1分)如图,AB是斜靠在墙角的长梯,梯角B距墙0.8m,长梯上一点D距墙0.7m,BD长0.55m,则梯子的长度是________ m.17. (1分) (2016八上·安陆期中) 如图,线段AB与线段CD关于直线L对称,点P是直线L上一动点,测得:点D与点A之间的距离为8cm,点B与点D之间的距离为5cm,那么PA+PB的最小值是________.18. (1分)(2020·硚口模拟) 二次函数的图象经过点,,,与轴的负半轴相交,且交点在的上方.下列四个结论中一定正确的是________.① ;② ;③ ;④ .(填序号即可)三、解答题 (共8题;共83分)19. (10分)(2017·邗江模拟)(1) +()﹣1﹣2cos60°+(2﹣π)0(2)解不等式组.20. (5分)(2018·泸州) 如图,甲建筑物AD,乙建筑物BC的水平距离为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).21. (13分)(2017·湖州模拟) 李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2) C类女生有________名,D类男生有________名,将下面条形统计图补充完整________;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22. (10分)(2019·临海模拟) 如图,函数y=x的图象与函数y= (x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y= (x>0)的图象相交于点B,求线段AB长.23. (10分)(2020·宜兴模拟) 如图,AB是⊙O的直径,点C是⊙O上一点,AC平分∠DAB,直线DC与AB 的延长线相交于点P,AD与PC延长线垂直,垂足为D,CE平分∠ACB,交⊙O于E.(1)求证:PC与⊙O相切;(2)若AC=6,tan∠BEC= ,求BE的长度以及图中阴影部分面积.24. (10分)(2017·花都模拟) 某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购进这两种型号的跳绳共50根,并且A型跳绳的数量不多于B型跳绳数量的3倍,请设计书最省钱的购买方案,并说明理由.25. (15分) (2017九上·鄞州月考) 如图,直线与x轴交于点A,与直线 y=kx-3交于点C(c,6),直线与y轴交于点B,连接AB.(1)求k的值;(2)求证:∠CAO=∠BAO;(3) P为OA上一点,连结PB,M为PB中点,延长MO交直线AC于点N,若OP=x, ,求y关于x的函数表达式.26. (10分) (2019九上·榆树期末) 如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A (﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y= (k≠0)与矩形OADB的边BD交于点E.(1)求OA的长,k的值,点E的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2014年)现测得齐齐哈尔市扎龙自然保护区六月某五天的最高气温分别为27、30、27、32、34(单
位:℃),这组数据的众数和中位数分别是( )
A.34、27 B.27、30 C.27、34 D.30、27
【分析】根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据
从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),即可得出答案.
解:27出现了2次,出现的次数最多,则众数是27;
把这组数据从小到大排列:27,27,30,32,34,最中间的数是30,则中位数是30;
故选:B.
【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到
大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).
2.(2015年)下列是某校教学活动小组学生的年龄情况:13,15,15,16,13,15,14,15(单位:岁).这
组数据的中位数和极差分别是( )
A.15,3 B.14,15 C.16,16 D.14,3
【分析】根据中位数与极差的定义分别求出即可解答.找中位数要把数据按从小到大的顺序排列,位于
最中间的一个数(或两个数的平均数)为中位数;极差就是这组数中最大值与最小值的差.
解:按从小到大的顺序排列为:13,13,14,15,15,15,15,16,故中位数为(15+15)÷2=15,
极差为16﹣13=3.
故选:A.
【点评】本题为统计题,考查中位数与极差的意义,中位数是将一组数据从小到大(或从大到小)重新
排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握
得不好,不把数据按要求重新排列,就会出错.极差是指一组数据中最大数据与最小数据的差.极差=
最大值﹣最小值.
3.(2016年)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的
次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差
6个.”上面两名同学的议论能反映出的统计量是( )
A.平均数和众数 B.众数和极差
C.众数和方差 D.中位数和极差
【分析】根据众数和极差的概念进行判断即可.
解:一班同学投中次数为6个的最多反映出的统计量是众数,
二班同学投中次数最多与最少的相差6个能反映出的统计量极差,
故选:B.
【点评】本题考查的是统计量的选择,平均数、众数、中位数和极差、方差在描述数据时的区别:①
数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平
均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一
组数据波动范围的大小,一组数据极差越大,则它的波动范围越大.
4.(2018年)我们家乡的黑土地全国特有,肥沃的土壤、绿色的水源是优质大米得天独厚的生长条件,因
此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的
大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进
价和销售价都相同,则米店老板最应该关注的是这些数据(千克数)中的( )
A.众数 B.平均数 C.中位数 D.方差
【分析】众数是一组数据中出现次数最多的数,可能不止一个,对这个米店老板来说,他最关注的是数
据的众数.
解:对这个米店老板来说,他最应该关注的是这些数据(千克数)中的哪一包装卖得最多,即是这组数
据的众数.
故选:A.
【点评】考查了众数、平均数、中位数和方差意义,比较简单,属于基础题.
5.(2019年)小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比
较两人成绩稳定程度的是( )
A.平均数 B.中位数 C.方差 D.众数
【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比
较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.
解:能用来比较两人成绩稳定程度的是方差,
故选:C.
【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中
程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的
运用.

相关文档
最新文档