四川省成都实验外国语学校西区2018-2019年八年级(上)月考数学试卷(10月份) 含解析
成都市实验外国语学校(西区)八年级数学上册第二单元《全等三角形》测试题(包含答案解析)

一、选择题1.如图,若DEF ABC ≅,点B 、E 、C 、F 在同一条直线上,9BF =,5EC =,则CF 的长为( )A .1B .2C .2.5D .32.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 3.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对4.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 5.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50°6.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等7.下列说法不正确的是( )A .三边分别相等的两个三角形全等B .有两边及一角对应相等的两个三角形全等C .有两角及一边对应相等的两个三角形全等D .斜边和一条直角边分别相等的两个直角三角形全等8.到ABC 的三条边距离相等的点是ABC 的( )A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点 9.如图,已知AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .∠B =2∠DAC C .AD 平分∠EDC D .ED +AC >AD10.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .311.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等12.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABC C .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC二、填空题13.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.14.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).15.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D ,若∠D =20°,则∠A =_____.16.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.17.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.18.如图,ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则ABD △的面积是______19.如图,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依此规律,第n 个图形中有全等三角形的对数是______.20.如图,已知△ABC 的面积为18,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是_____.三、解答题21.如图,已知A ABC ∠=∠,D CBD ∠=∠,ABD CBD ∠=∠,点E 在BC 的延长线上.求证:CD 平分ACE ∠.22.如图,点A 、D 、B 、E 在一条直线上,BC 与DF 交于点G ,AD BE =,//BC EF ,BC EF =.求证:ABC DEF △≌△.23.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.24.如图,在△ABC 中,90ACB ∠=︒,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D . (1)求证:AD =CE(2)AD =6cm ,DE =4cm ,求BE 的长度25.如图,在△ABD 中,∠ABD =90°,AB=BD ,点E 在线段BD 上,延长AB 使BC=BE ,连接AE 、CE 、CD ,点M 在线段AE 上,点N 在线段CD 上,BM ⊥BN ,易证△ABE ≌△DBC ;仔细观察,请逐一找出图中其他的全等三角形,并说明理由.26.如图,已知Rt ABC △中,90ACB ︒∠=,CA CB =,D 是AC 上一点,E 在BC 的延长线上,且CE CD =,BD 的延长线与AE 交于点F .求证:BF AE ⊥.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据全等三角形的对应边相等得到BE=CF ,计算即可.【详解】解:∵△DEF ≌△ABC ,∴BC=EF ,∴BE+EC=CF+EC ,∴BE=CF ,又∵BF=BE+EC+CF=9,EC=5∵CF=12(BF-EC)=12(9-5)=2. 故选:B .【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.2.D解析:D【分析】根据垂直关系,可以判断△AEF 与△CEB 有两对角相等,就只需要添加一对边相等就可以了.【详解】解:∵AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,∴∠AEF=∠CEB=90°,∠ADB=∠ADC=90°,∴∠EAF+∠B=90°,∠BCE+∠B=90°,∴∠EAF=∠BCE .A.在Rt △AEF 和Rt △CEB 中AEF CEB EAF BCE EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;B.在Rt △AEF 和Rt △CEB 中AEF CEB EA ECEAF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF ≌CEB △(ASA ),故正确;C.在Rt △AEF 和Rt △CEB 中 AEF CEB EAF BCE AF CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;D.在Rt △AEF 和Rt △CEB 中 由AEF CEB EAF BCE AFB B ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩不能证明AEF ≌CEB △,故不正确; 故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.3.B解析:B【分析】根据线段垂直平分线的性质得到,AC=AD ,BC=BD ,OC=OD ,然后根据”HL”可判断Rt △AOC ≌Rt △AOD ,Rt △BOC ≌Rt △BOD ;根据“SSS”可判断△ABC ≌△ABD .【详解】解:∵AB 是线段CD 的垂直平分线,∴AC=AD ,BC=BD ,OC=OD ,∴Rt △AOC ≌Rt △AOD (HL ),Rt △BOC ≌Rt △BOD (HL ),△ABC ≌△ABD (SSS ). 故选:B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”“HL”;全等三角形的对应边相等.也考查了线段垂直平分线的性质.4.B解析:B【分析】先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.5.D解析:D【分析】依据SAS 即可得判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠D =∠E =25°,由三角形内角和定理可求出答案.【详解】解:在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠D =∠E ,∵∠D =25°,∴∠E =25°,∴∠ABE =180°﹣∠A ﹣∠E =180°﹣105°﹣25°=50°.故选:D .【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握全等三角形的判定与性质是解题的关键.6.B解析:B【分析】先分别写出这些定理的逆命题,再进行判断即可.【详解】解:A.直角三角形的两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;B.全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C.两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;D.角平分线上的点到角两边的距离相等的逆命题是到角两边的距离相等的点在角平分线上,是真命题.故选:B.【点睛】此题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.7.B解析:B【分析】直接利用三角形全等的判定条件进行判定,即可求得答案;注意而SSA是不能判定三角形全等的.【详解】解:A,三边分别相等的两个三角形全等,故本选项正确;B,两边和一个角对应相等的两个三角形不一定全等,故本选项错误;C,两个角和一个边对应相等的两个三角形,可利用ASA或AAS判定全等,故本选项正确;D,斜边和一条直角边分别相等的两个直角三角形全等,故本选项正确.故选:B【点睛】此题考查了全等三角形的判定.注意普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.8.D解析:D【分析】由于角平分线上的点到角的两边的距离相等,而已知一点到ABC的三条边距离相等,那么这样的点在这个三角形的三条角平分线上,由此即可作出选择.【详解】解:∵到ABC的三条边距离相等,角平分线上的点到角的两边的距离相等,∴这点在这个三角形三条角平分线上,即这点是三条角平分线的交点,故选:D.【点睛】此题主要考查了三角形的角平分线的性质:三条角平分线交于一点,并且这一点到三边的距离相等.9.B解析:B【分析】利用角平分线的性质定理判断A ;利用直角三角形两锐角互余判断B ;证明△AED ≌△ACD ,由此判断C ;利用三角形三边关系得到AC+CD>AD ,由此判断D .【详解】∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE=DC ,∠BAD=∠DAC ,∵BD+DC=BC ,∴BD+ED=BC ,故A 正确;∵∠C=90︒,∴∠B+∠BAC=90︒,∴∠B+2∠DAC=90︒,故B 错误;∵DE ⊥AB ,∴∠AED=∠C=90︒,又∵∠BAD=∠DAC ,DE=CD ,∴△AED ≌△ACD ,∴∠ADE=∠ADC ,∴AD 平分∠EDC ,故C 正确;在△ACD 中,AC+CD>AD ,∴ED +AC >AD ,故D 正确;故选:B .【点睛】此题考查三角形的三边关系,角平分线的性质定理,全等三角形的判定及性质,直角三角形两锐角互余的性质,熟记各知识点并应用解决问题是解题的关键.10.A解析:A【分析】先证明Rt ACD ≌()Rt BED HL ,得CD ED AD AE 6==-=,CAD EBD ∠∠=,再证BE AC ⊥,然后由三角形面积关系求出BF 11.2=,则EF BF BE 1.2=-=.【详解】解:AD 是ABC 的高,AD BC ∴⊥,ADC BDE 90∠∠∴==︒,在Rt ACD 和Rt BED 中,AC BE AD BD =⎧⎨=⎩, Rt ACD ∴≌()Rt BED HL ,CD ED AD AE 826∴==-=-=,CAD EBD ∠∠=,C CAD 90∠∠+=︒,C EBD 90∠∠∴+=︒,BFC 90∠∴=︒,BE AC ∴⊥, ABC 的面积ABD =的面积ACD +的面积,111AC BF AD BD CD AD 222∴⨯=⨯+⨯, AC BF AD BD CD AD ∴⨯=⨯+⨯,即10BF 8886112=⨯+⨯=,BF 11.2∴=,EF BF BE 11.210 1.2∴=-=-=,故选:A .【点睛】本题考查了全等三角形的判定和性质、直角三角形的性质以及三角形面积等知识;证明三角形全等是解题的关键.11.A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A 、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键. 12.B解析:B【分析】本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等;【详解】A 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;B 、符合SSA ,∠BAD 和∠ABC 不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;D 、符合SSS ,能判断两个三角形全等,故该选项不符合题意;故选:B .【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角;二、填空题13.4【分析】当PC 垂直于OB 时PC 最小根据角平分线的性质可求最小值【详解】解:当PC ⊥OB 时PC 最小∵PC ⊥OB ∴PC=PD=4故答案为:4【点睛】本题考查了垂线段最短和角平分线的性质能够根据垂线段最解析:4【分析】当PC 垂直于OB 时,PC 最小,根据角平分线的性质可求最小值.【详解】解:当PC ⊥OB 时,PC 最小,∵AOP BOP ∠=∠,PD OA ⊥,PC ⊥OB ,∴PC=PD=4,故答案为:4.【点睛】本题考查了垂线段最短和角平分线的性质,能够根据垂线段最短的性质判断出点C 的位置,并根据角平分线的性质得出PC=PD 是根关键.14.∠B=∠C (或∠ADC=∠AEB 或AB=AC )【分析】根据已知条件知两个三角形已经具有∠A=∠AAD=AE 两个条件对应相等故再添加一组对应角相等或是AB=AC 即可得到ABE ≌ACD 【详解】∵∠A=∠解析:∠B=∠C (或∠ADC=∠AEB 或AB=AC )【分析】根据已知条件知两个三角形已经具有∠A=∠A ,AD=AE 两个条件对应相等,故再添加一组对应角相等或是AB=AC 即可得到ABE ≌ACD .【详解】∵∠A=∠A ,AD=AE ,∴当∠B=∠C 时,可利用AAS 证明ABE ≌ACD ;当∠ADC=∠AEB 时,可利用ASA 证明ABE ≌ACD ; 当AB=AC 时,可利用SAS 证明ABE ≌ACD ; 故答案为:∠B=∠C (或∠ADC=∠AEB 或AB=AC ).【点睛】 此题考查添加一个条件证明三角形全等,熟记三角形全等的判定定理是解题的关键. 15.40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ∠ACE =2∠DCE 再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ∠A =∠ACE ﹣∠ABC 即得出∠A =2∠D 即得出答案【详解】∵∠ABC解析:40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ,∠ACE =2∠DCE .再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ,∠A =∠ACE ﹣∠ABC .即得出∠A =2∠D ,即得出答案.【详解】∵∠ABC 的平分线交∠ACE 的外角平分线∠ACE 的平分线于点D ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠DCE 是△BCD 的外角,∴∠D =∠DCE ﹣∠DBE ,∵∠ACE 是△ABC 的外角,∠A =∠ACE ﹣∠ABC =2∠DCE ﹣2∠DBE =2(∠DCE ﹣∠DBE ),∴∠A =2∠D =40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.16.AB//CD 【分析】先利用SSS 证明△ABF ≌△CDE 然后根据全等三角形的性质得到∠DCE=∠BAF 最后根据内错角相等两直线平行即可解答【详解】解:∵AE=CF ∴AE+EF=CF+EF 即AF=EC 在解析:AB//CD【分析】先利用SSS 证明△ABF ≌△CDE ,然后根据全等三角形的性质得到∠DCE=∠BAF ,最后根据内错角相等、两直线平行即可解答.【详解】解:∵AE=CF ,∴AE+EF=CF+EF,即AF=EC在△ABF 和△CDE 中,,,,AB CD AF EC BF DE =⎧⎪=⎨⎪=⎩∴△ABF≌△CDE(SSS),∴∠DCE=∠BAF.∴AB//CD.故答案为:AB//CD.【点睛】本题主要考查了全等三角形的判定与性质以及平行线的判定,运用全等三角形的知识得到∠DCE=∠BAF成为解答本题的关键.17.ASA【分析】根据全等三角形的判断方法解答【详解】解:由图可知带第4块去符合角边角可以配一块与原来大小一样的三角形玻璃故答案为:4;ASA 【点睛】本题考查了全等三角形的应用是基础题熟记三角形全等的判解析:ASA【分析】根据全等三角形的判断方法解答.【详解】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.故答案为:4;ASA【点睛】本题考查了全等三角形的应用,是基础题,熟记三角形全等的判定方法是解题的关键.18.5【分析】根据角平分线的性质求出DE根据三角形的面积公式计算即可;【详解】如图:作DE⊥AB于点E∵AD平分∠BAC∠C=90°DE⊥AB∴DE=DC=2∵AB=5∴△ABD的面积=×AB×DE=5解析:5【分析】根据角平分线的性质求出DE,根据三角形的面积公式计算即可;【详解】如图:作DE⊥AB于点E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∵AB=5∴△ABD的面积=1×AB×DE=5,2故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键; 19.【分析】根据图形得出当有1点D 时有1对全等三角形;当有2点DE 时有3对全等三角形;当有3点DEF 时有6对全等三角形;根据以上结果得出当有n 个点时图中有个全等三角形即可【详解】解:当有1点D 时有1对全 解析:)(12n n +【分析】根据图形得出当有1点D 时,有1对全等三角形;当有2点D 、E 时,有3对全等三角形;当有3点D 、E 、F 时,有6对全等三角形;根据以上结果得出当有n 个点时,图中有)(12n n +个全等三角形即可.【详解】解:当有1点D 时,有1对全等三角形;当有2点D 、E 时,有3对全等三角形;当有3点D 、E 、F 时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n 个点时,图中有)(12n n +个全等三角形.故答案为:)(12n n +.【点睛】本题考查了对全等三角形的应用,关键是根据已知图形得出规律,题目比较典型,但有一定的难度.20.9【分析】根据已知条件证得△ABP ≌△DBP 根据全等三角形的性质得到AP =PD 得出S △ABP =S △DBPS △ACP =S △DCP 推出S △PBC =S △ABC 代入求出即可【详解】解:如图延长AP 交BC 于点解析:9【分析】根据已知条件证得△ABP ≌△DBP ,根据全等三角形的性质得到AP =PD ,得出S △ABP =S △DBP ,S △ACP =S △DCP ,推出S △PBC =12S △ABC ,代入求出即可. 【详解】解:如图,延长AP 交BC 于点D ,∵BP 平分∠ABC∴∠ABP =∠DBP ,且BP =BP ,∠APB =∠DPB∴△ABP ≌△DBP (ASA )∴AP =PD ,∴S △ABP =S △BPD ,S △APC =S △CDP ,∴S △PBC =12S △ABC =9, 故答案为:9.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.三、解答题21.见解析【分析】根据题意,先证明//AB CD ,然后由平行线的性质以及等量代换,得到ACD DCE ∠=∠,即可得到结论成立.【详解】证明:D CBD ∠=∠,ABD CBD ∠=∠,D ABD ∴∠=∠,//AB CD ∴ABC DCE ∴∠=∠,A ACD ∠=∠又A ABC ∠=∠,ACD DCE ∴∠=∠,CD ∴平分ACE ∠.【点睛】本题考查了平行线的判定和性质,角平分线的判定,解题的关键是掌握所学的知识,正确得到//AB CD .22.见解析【分析】由AD BE =,得AB=DE ,由//BC EF ,得ABC E ∠=∠,根据SAS 可证.【详解】证明:∵AD BE =,∴AD BD BE BD +=+,∴AB DE =,∵//BC EF ,∴ABC E ∠=∠,在ABC 和DEF 中,AB DE ABC E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌.【点睛】本题考查了用“边角边”定理判断两个三角形全等,解题关键是挖掘题目隐含的全等条件,根据判定定理证明.23.见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS证明三角形全等,是解题的关键.24.(1)证明见解析;(2)2cm .【分析】(1)先根据垂直的定义可得90ADC E ∠=∠=︒,再根据直角三角形的两锐角互余、等量代换可得CAD BCE ∠=∠,然后根据三角形全等的判定定理与性质即可得证;(2)先结合(1)的结论可得6CE cm =,再根据线段的和差可得2CD cm =,然后根据全等三角形的性质即可得.【详解】(1),AD CE BE CE ⊥⊥,90ADC E ∠=∠=∴︒,90CAD ACD ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,CAD BCE ∴∠=∠,在ACD △和CBE △中,ADC E CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴≅,AD CE ∴=;(2)由(1)已证:AD CE =,6AD cm =,6CE cm ∴=,4DE cm =,2CD CE DE cm ∴=-=,又由(1)已证:ACD CBE ≅,2BE CD cm ∴==.【点睛】本题考查了直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.25.△ABM ≌△DBN ,△BME ≌△BNC ,理由见解析.【分析】观察图形,可找出△ABM ≌△DBN ,△BME ≌△BNC .①由△ABE ≌△DBC 可得到∠BAE=∠BDC ,根据BM ⊥BN 可得到∠AMB+∠MBE =∠DBN+∠MBE ,继而得到∠AMB=∠DBN ,AB=BD ,可得△ABM ≌△DBN ;②由△ABM ≌△DBN 可得BM=BN ,根据∠NBE+∠MBE =∠NBE+∠NBC ,可得∠MBE =∠NBC ,继而可证得△BME ≌△BNC .【详解】解:全等三角形:△ABM ≌△DBN ,△BME ≌△BNC ,理由如下:由题意知△ABE ≌△DBC ,∴∠BAE=∠BDC ,∵BM ⊥BN ,∴∠MNB=90︒,∴∠ABM+∠MBE =∠DBN+∠MBE ,∴∠ABM=∠DBN ,AB=BD ,∴△ABM ≌△DBN ,∴BM=BN,∵∠NBE+∠MBE =∠NBE+∠NBC ,∴∠MBE =∠NBC ,∵BE=BC ,∴△BME ≌△BNC .【点睛】本题考察全等三角形的判定与性质,熟知全等三角形的判定与性质是解题关键. 26.证明见解析【分析】根据题意可以得到△ACE ≌△BCD ,然后根据全等三角形的性质和垂直的定义可以证明结论成立.【详解】证明:∵90ACB ︒∠=∴90ACE BCD ︒∠=∠=在ACE △和BCD △中,CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩∴()ACE BCD SAS =∴CAE CBD ∠=∠∵Rt ACE △中,90CAE E ︒∠+∠=,∴90CBD E ︒∠+∠=,∴90BFE ︒∠=∴BF AE ⊥【点睛】本题考查了全等三角形的判定与性质、垂直的定义,解题的关键是明确题意,利用全等三角形的判定和性质、数形结合的思想作答.。
成都市实验外国语学校(西区)八年级上册压轴题数学模拟试卷含详细答案

成都市实验外国语学校(西区)八年级上册压轴题数学模拟试卷含详细答案一、压轴题1.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.2.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.3.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.4.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.5.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABFACF S S 的值.6.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明.7.探究:如图①,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若∠B =30°,则∠ACD 的度数是 度;拓展:如图②,∠MCN =90°,射线CP 在∠MCN 的内部,点A 、B 分别在CM 、CN 上,分别过点A 、B 作AD ⊥CP 、BE ⊥CP ,垂足分别为D 、E ,若∠CBE =70°,求∠CAD 的度数;应用:如图③,点A 、B 分别在∠MCN 的边CM 、CN 上,射线CP 在∠MCN 的内部,点D 、E 在射线CP 上,连接AD 、BE ,若∠ADP =∠BEP =60°,则∠CAD +∠CBE +∠ACB = 度.8.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.9.如图,Rt ACB △中,90ACB ∠=︒,AC BC =,E 点为射线CB 上一动点,连结AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FD AC ⊥交AC 于D 点,求证:FD BC =;(2)如图2,连结BF 交AC 于G 点,若3AG =,1CG =,求证:E 点为BC 中点. (3)当E 点在射线CB 上,连结BF 与直线AC 交于G 点,若4BC =,3BE =,则AG CG=______.(直接写出结果) 10.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?11.对x y 、定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中mn 、均为非零常数).例如:()1,133T m n =+.(1)已知()()1,10,0,28T T -==.①求mn 、的值; ②若关于p 的不等式组()()2,244,32T p p T p p a ⎧->⎪⎨-≤⎪⎩恰好有3个整数解,求a 的取值范围; (2)当22x y ≠时,()(),,T x y T y x =对任意有理数,x y 都成立,请直接写出mn 、满足的关系式.学习参考:①()a b c ab ac +=+,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②()()a b m n am an bm bn ++=+++,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加. 12.Rt △ABC 中,∠C =90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=60°,则∠1+∠2= ;(2)若点P 在线段AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为 ; (3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.13.已知:如图1,直线//AB CD ,EF 分别交AB ,CD 于E ,F 两点,BEF ∠,DFE ∠的平分线相交于点K .(1)求K ∠的度数;(2)如图2,BEK ∠,DFK ∠的平分线相交于点1K ,问1K ∠与K ∠的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作1BEK ∠,1DFK ∠的平分线相交于点2K ,作2BEK ∠,2DFK ∠的平分线相交于点3K ,依此类推,作n BEK ∠,n DFK ∠的平分线相交于点1n K +,请用含的n 式子表示1n K ∠+的度数.(直接写出答案,不必写解答过程)14.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有________条对称轴,非正方形的长方形有________条对称轴,等边三角形有___________条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1-2和图1-3都可以看作由图1-1修改得到的,仿照类似的修改方式,请你在图1-4和图1-5中,分别修改图1-2和图1-3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.15.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.16.已知:MN ∥PQ ,点A ,B 分别在MN ,PQ 上,点C 为MN ,PQ 之间的一点,连接CA ,CB .(1)如图1,求证:∠C=∠MAC+∠PBC ;(2)如图2,AD ,BD ,AE ,BE 分别为∠MAC ,∠PBC ,∠CAN ,∠CBQ 的角平分线,求证:∠D+∠E=180°;(3)在(2)的条件下,如图3,过点D 作DA 的垂线交PQ 于点G ,点F 在PQ 上,∠FDA=2∠FDB ,FD 的延长线交EA 的延长线于点H ,若3∠C=4∠E ,猜想∠H 与∠GDB 的倍数关系并证明.17.(1)如图1,ABC 和DCE 都是等边三角形,且B ,C ,D 三点在一条直线上,连接AD ,BE 相交于点P ,求证:BE AD =.(2)如图2,在BCD 中,若120BCD ∠<︒,分别以BC ,CD 和BD 为边在BCD 外部作等边ABC ,等边CDE △,等边BDF ,连接AD 、BE 、CF 恰交于点P . ①求证:AD BE CF ==;②如图2,在(2)的条件下,试猜想PB ,PC ,PD 与BE 存在怎样的数量关系,并说明理由.18.探究发现:如图①,在ABC 中,内角ACB ∠的平分线与外角ABD ∠的平分线相交于点E .(1)若80A ∠=︒,则E ∠= ;若50A ∠=︒,则E ∠= ;(2)由此猜想:A ∠与E ∠的关系为 (不必说明理由).拓展延伸:如图②,四边形ABCD 的内角DCB ∠与外角ABE ∠的平分线相交于点F ,//BF CD .(3)若125A ∠=︒,95D ∠=︒,求F ∠的度数,由此猜想F ∠与A ∠,D ∠之间的关系,并说明理由.19.(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点且AE=CD ,BD 与EC 交于点F ,则∠BFE 的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).20.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线, 112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119; 由(2)可得:11582922R Q ;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.2.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(8,0).【解析】【分析】(1)根据A,B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)A,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12×, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=∴OD=OA−DA=8,∴点D 的坐标为(8-,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.3.(123【解析】【分析】(1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中, ===AMB CNA MAB NCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴;(2)分别过点B ,C 向l 1作垂线,交l 1于P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC ,在△AMB 和△CNA 中,===AMB CNA ABM NAC AB AC ∠∠⎧⎪∠∠⎨⎪⎩, ∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b ,∴2221=4a a +,2222=4b b +, 解得:3=3a ,23=3b , ∴222323⎛⎫+ ⎪ ⎪⎝⎭43 ∴22AP BP +()22AM PM BP ++221(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中,BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BCN ≌△CAM (AAS ),∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP ,在△BPN 中,222BP NP BN +=,即22224NP NP +=,解得:23 ∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=,即22234QM QM +=,解得:3∴AM=23,∴43 在△BPC 中,BP 2+CP 2=BC 2,即BC=222243221233BP CP⎛⎫+=+=⎪⎪⎝⎭,∴AB=BC=221 3.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.4.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=12CF=3.【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等边三角形,∴∠B=60°,∴△BEF是等边三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF与△CAD中,EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△CAD (AAS ),∴EF=AD ,∴AD=BE ;(3)连接AF ,如图3所示:∵DE=DC ,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF 平分∠ABC ,∴∠ABF=∠CBF ,在△ABF 和△CBF 中,AB BC ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩, △ABF ≌△CBF (SAS ),∴AF=CF ,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH ⊥CD ,∴AH=12AF=12CF=3, ∵∠DEC=∠ABC+∠BDE ,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.5.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt △BFD 中,∵∠FBD =30°,∴BF =2DF ,∵BF =2AF ,∴BF =AD ,∵∠BAE =∠FBC ,AB =BC ,∴△BFC ≌△ADB ,∴∠BFC =∠ADB =90°,∴BF ⊥CF(2)在BF 上截取BK =AF ,连接AK .∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK , ∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.6.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.7.探究:30;(2)拓展:20°;(3)应用:120【解析】【分析】(1)利用直角三角形的性质依次求出∠A,∠ACD即可;(2)利用直角三角形的性质直接计算得出即可;(3)利用三角形的外角的性质得出结论,直接转化即可得出结论.【详解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案为:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案为120.【点睛】此题是三角形的综合题,主要考查了直角三角形的性质,三角形的外角的性质,垂直的定义,解本题的关键是充分利用直角三角形的性质:两锐角互余,是一道比较简单的综合题.8.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q -综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.9.(1)见解析;(2)见解析;(3)113或53【解析】【分析】(1)证明△AFD ≌△EAC ,根据全等三角形的性质得到DF=AC ,等量代换证明结论; (2)作FD ⊥AC 于D ,证明△FDG ≌△BCG ,得到DG=CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD ⊥AG 的延长线交于点D ,根据全等三角形的性质得到CG=GD ,AD=CE=7,代入计算即可.【详解】解:(1)证明:∵FD ⊥AC ,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE ,在△AFD 和△EAC 中, AFD EAC ADF ECA AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△EAC (AAS ),∴DF=AC ,∵AC=BC ,∴FD=BC ;(2)作FD ⊥AC 于D ,由(1)得,FD=AC=BC ,AD=CE ,在△FDG 和△BCG 中,90FDG BCG FGD BGCFD BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△FDG ≌△BCG (AAS ),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E点为BC中点;(3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴4 1.5111.53 AGCG+==,同理,当点E在线段BC上时,4 1.551.53 AGCG-==,故答案为:113或53.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.10.(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)154;(4)经过803s点P与点Q第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP、CQ的长;(2)利用SAS可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.11.(1)①11mn=⎧⎨=⎩;②42≤a<54;(2)m=2n【解析】【分析】(1)①构建方程组即可解决问题;②根据不等式即可解决问题;(2)利用恒等式的性质,根据关系式即可解决问题.【详解】解:(1)①由题意得()0 88m nn⎧--=⎨=⎩,解得11mn=⎧⎨=⎩,②由题意得()()()() 222424 432464p p p pp p p p a ⎧+-+->⎪⎨+-+-≤⎪⎩,解不等式①得p>-1.解不等式②得p≤18 12a-,∴-1<p≤18 12a-,∵恰好有3个整数解,∴2≤1812a-<3.∴42≤a<54;(2)由题意:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵对任意有理数x,y都成立,∴m=2n.【点睛】本题考查一元一次不等式、二元一次方程组、恒等式等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.12.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可;(2)同(1)方法即可;(3)利用平角的定义和三角形的内角和即可得出结论;(4)利用三角形的内角和和外角的性质即可得出结论.【详解】解:(1) ∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案为:150;(2) ∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如图3,设DP与BE的交点为F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如图4,设PE与AC的交点为G,∵∠PGD=∠EGC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α.【点睛】此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题.13.(1)90︒;(2)12K K ∠∠=,证明见解析;(3)111902n n K ∠++=⨯︒ 【解析】【分析】(1) 过 K 作KG ∥AB ,交 EF 于 G ,证出//AB CD ∥KG ,得到BEK EKG ∠∠=,GKF KFD ∠∠=,根据角平分线的性质及平行线的性质得到()2180BEK DFK ∠∠+=,即可得到答案;(2)根据角平分线的性质得到1112BEK KEK KEB ∠∠∠==,1112KFK DFK DFK ∠∠∠==,根据90BEK KFD ∠∠+=求出1145KEK KFK ∠∠+=,根据()()111180K KEF EFK KEK KFK ∠∠∠∠∠=-+-+求出答案;(3)根据(2)得到规律解答即可.【详解】(1) 过 K 作KG ∥AB ,交 EF 于 G ,∵//AB CD ,∴//AB CD ∥KG ,BEK EKG ∠∠∴=,GKF KFD ∠∠=,EK ,FK 分别为BEF ∠与EFD ∠的平分线,BEK FEK ∠∠∴=,EFK DFK ∠∠=,∵//AB CD ,180BEK FEK EFK DFK ∠∠∠∠∴+++=,()2180BEK DFK ∠∠∴+=,90BEK DFK ∠∠∴+=,则 90EKF EKG GKF ∠∠∠=+=;(2) 12K K ∠∠=,理由为:BEK ∠,DFK ∠的平分线相交于点1K ,1112BEK KEK KEB ∠∠∠∴==,1112KFK DFK DFK ∠∠∠==, 180BEK FEK EFK DFK ∠∠∠∠+++=,即 ()2180BEK KFD ∠∠+=, 90BEK KFD ∠∠∴+=,1145KEK KFK ∠∠∴+=,()()11118045K KEF EFK KEK KFK ∠∠∠∠∠∴=-+-+=,12K K ∠∠∴=;(3)由(2)知90K ∠=;1119022K K ∠∠==⨯ 同理可得2112K K ∠∠==14K ∠1904=⨯, ∴111902n n K ∠++=⨯. 【点睛】此题考查平行线的性质:两直线平行,内错角相等;平行公理的推论:平行于同一直线的两直线平行;角平分线的性质;(3)是难点,注意总结前两问的做题思路得到规律进行解答.14.(1)1,2,3;(2)答案见解析;(3)答案见解析;(4)答案见解析.【解析】【分析】(1)根据等腰三角形的性质、矩形的性质以及等边三角形的性质进行判断即可; (2)中图1-2和图1-3都可以看作由图1-1修改得到的,在图1-4和图1-5中,分别仿照类似的修改方式进行画图即可;(3)长方形具有两条对称轴,在长方形的右侧补出与左侧一样的图形,即可构造出一个恰好有2条对称轴的凸六边形;(4)在等边三角形的基础上加以修改,即可得到恰好有3条对称轴的凸六边形.【详解】解:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴,故答案为1,2,3;(2)恰好有1条对称轴的凸五边形如图中所示.(3)恰好有2条对称轴的凸六边形如图所示.(4)恰好有3条对称轴的凸六边形如图所示.15.(1)AE//BF;QE=QF ;(2)QE=QF ,证明见解析;(3)结论成立,证明见解析.【解析】【分析】(1)根据AAS 得到AEQ BFQ ∆≅∆,得到AEQ BFQ ∠=∠、QE=QF ,根据内错角相等两直线平行,得到AE//BF ;(2)延长EQ 交BF 于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明;(3)延长EQ 交FB 的延长于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明.【详解】(1)AE//BF ;QE=QF(2)QE=QF证明:延长EQ 交BF 于D ,,AE CP BF CP ⊥⊥//AE BF ∴AEQ BDQ ∴∠=∠AQE BQD AEQ BDQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEQ BDQ ∴∆≅∆EQ DQ ∴=90BFE ︒∠=QE QF ∴=(3)当点P 在线段BA 延长线上时,此时(2)中结论成立证明:延长EQ 交FB 的延长于D因为AE//BF所以AEQ BDQ ∠=∠AQE BQD AEQ BDQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩AEQ BDQ ∴∆≅∆EQ=QF90BFE ︒∠=QE QF ∴=【点睛】本题考查了三角形全等的判定方法:AAS ,平行线的性质,根据P 点位置不同,画出正确的图形,找到AAS 的条件是解决本题的关键.16.(1)见解析;(2)见解析;(3)猜想:∠H= 3∠GDB ,证明见解析.【解析】【分析】(1)作辅助线:过C 作EF ∥MN ,根据平行的传递性可知这三条直线两两平行,由平行线的性质得到内错角相等∠MAC=∠ACF ,∠BCF=∠PBC ,再进行角的加和即可得出结论;(2)根据角平分线线定理得知11,22MAD MAC NAE NAC ∠=∠∠=∠,利用平角为180°得到∠DAE=90°,同理得90DBE ∠=︒,再根据四边形内角和180°,得出结论;(3)由(1)(2)中的结论进行等量代换得到3∠ADB=2∠E ,并且两角的和为180°,由此得到两个角的度数分别为72°和108°,利用角的和与差得到∠HDA=36°,∠H=54°,由此得到倍数关系. 【详解】(1)如图:过C 作EF ∥MN ,∵MN ∥PQ , ∴MN ∥EF ∥PQ ,∴∠MAC=∠ACF ,∠BCF=∠PBC ,∴∠ACF+∠BCF=∠MAC+∠PBC ,即∠ACB=∠MAC+∠PBC .(2)∵AD ,AE 分别为∠MAC ,∠CAN 的角平分线,∴11,22MAD MAC NAE NAC ∠=∠∠=∠, ∴11118090222MAD NAE MAC NAC ∠+∠=∠+∠=⨯︒=︒,于是∠DAE=90° 同理可得:90PBD QBE ∠+∠=︒,由(1)可得:∵ 180D E MAD PBD NAE QBE ∠+∠=∠+∠+∠+∠=︒.(3)猜想:∠H= 3∠GDB.理由如下:由(1)可知:2()2C MAC PBC MAD PBD ADB ∠=∠+∠=∠+∠=∠, ∵3∠C=4∠E ,∴6∠ADB=4∠E ,∴3∠ADB=2∠E ,∵∠ADB+∠E=180°,∴∠ADB=72°,∠E=108°,∵DG ⊥DA ,∴∠GDB=18°,∵∠FDA=2∠FDB ,∴∠ADF=144°,∴∠HDA=36°,∵DA ⊥AE ,∴∠H=54°,∴∠H=3∠GDB .【点睛】考查平行线中角度的关系,学生要熟悉掌握平行线的性质以及角平分线定理,结合角的和。
成都市实验外国语学校(西区)八年级数学上册第二单元《全等三角形》测试(有答案解析)

一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n 3.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等4.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组5.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .16.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,E 是边AB 上一点,若6CD =,则DE 的长可以是( )A .1B .3C .5D .77.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等8.如图所示,已知∠A =∠C ,∠AFD =∠CEB ,那么给出的条件不能得到ADF CBE △≌△是( )A .∠B =∠D B .EB=DFC .AD=BCD .AE=CF9.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .310.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等11.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b 12.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题13.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.14.如图所示,在ABC 中,D 是BC 的中点,点A 、F 、D 、E 在同一直线上.请添加一个条件,使BDE CDF ≌(不再添其他线段,不再标注或使用其他字母),并给出证明.你添加的条件是______15.如图,ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则ABD △的面积是______16.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____17.如图,AB =8cm ,AC =5cm ,∠A =∠B ,点P 在线段AB 上以2cm/s 的速度由点A 向B 运动,同时,点Q 以x cm/s 的速度从点B 出发在射线BD 上运动,则△ACP 与△BPQ 全等时,x 的值为_____________18.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.19.如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.20.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).三、解答题21.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .22.如图,AD 是ABC 的角平分线,AB AC >,求证:AB AC BD CD ->-.23.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =80°,试求:(1)∠EDC 的度数.(2)若∠BCD =n °,试求∠BED 的度数.(用含n 的式子表示)(3)类比探究:已知AB ∥CD ,BE 、DE 分别是∠ABC 、∠ADC 的n 等分线,ABE ∠=1ABC n ∠,1CDE ADC n∠=∠,∠BAD =α,∠BCD =β,请猜想∠BED = .24.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.25.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,若9AD =,6DE =,求BE 的长.26.如图,在四边形ABCD 中,//AD BC ,E 为AC 的中点,连接DE 并延长,交BC 于点F .(1)求证:DE EF =.(2)若12AD =,:2:3BF CF =,求BC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】当EP ⊥BC 时,EP 最短,根据角平分线的性质,可知EP=EA=ED=12AD ,由AD =14,求出即可.【详解】解:当EP ⊥BC 时,EP 最短,∵AB ∥CD ,AD ⊥AB ,∴AD ⊥CD ,∵BE 平分∠ABC ,AE ⊥AB ,EP ⊥BC ,∴EP=EA ,同理,EP=ED ,此时,EP=12AD=12×14=7, 故选A .【点睛】本题考查了角平分线的性质和垂线段最短,熟练找到P 点位置并应用角平分线性质求EP 是解题关键. 2.D解析:D【分析】根据角平分线的性质及第二象限内点的坐标特点即可得出结论.【详解】解:∵由题意可知,点C 在∠AOB 的平分线上,∴m=-n .故选:D .【点睛】本题考查的是作图−基本作图,熟知角平分线的作法及其性质是解答此题的关键.3.C解析:C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A、如果ab=0,那么a=0或b=0或a、b同时为0,本选项说法是假命题,不符合题意;B、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.4.C解析:C【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【详解】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.5.D解析:D【分析】根据三角形的高线、角平分线的性质及全等三角形的判定分析各个选项即可.【详解】解:①只有当三角形是锐角三角形时,三条高才在三角形的内部,此选项错误;②有两边及一角对应相等的两个三角形全等,此选项错误;③有两角和一边对应相等,满足AAS 或ASA ,此选项正确;④在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点; 在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.则到三角形三边所在直线距离相等的点有4个,此选项错误;⑤两边及第三边上的高对应相等的两个三角形不一定全等,此选项错误.正确的有一个③,故选:D .【点睛】本题考查了全等三角形的判定方法及三角形的角平分线,垂心等概念,熟练掌握概念和性质是解题的关键.6.D解析:D【分析】过点D 作DF AB ⊥于点F ,根据角平分线的性质定理得6CD DF ==,而DE 的长一定是大于等于点D 到AB 的距离也就是DF 的长,即可得出结果.【详解】解:如图,过点D 作DF AB ⊥于点F ,∵AD 平分BAC ∠,DF AB ⊥,90C ∠=︒,∴6CD DF ==,∵DE DF ≥,∴6DE ≥,则只有D 选项符合.故选:D .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质定理.7.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A 、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B 、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C 、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D 、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A解析:A【分析】直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS 、SAS 、AAS 、ASA ;【详解】A ∵∠A=∠C ,∠AFD=∠CEB ,∠B=∠D ,三个角相等,不能判定三角形全等,该选项不符合题意;B ∵∠A=∠C ,∠AFD=∠CEB ,EB=DF ,符合AAS 的判定,该选项符合题意;C ∵∠A=∠C ,∠AFD=∠CEB ,AD=BC ,符合AAS 的判定,该选项符合题意;D ∵∠A=∠C ,∠AFD=∠CEB ,AE=CF ,∴AF=CE ,符合ASA 的判定,该选项符合题意; 故选:A .【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;9.A解析:A【分析】先证明Rt ACD ≌()Rt BED HL ,得CD ED AD AE 6==-=,CAD EBD ∠∠=,再证BE AC ⊥,然后由三角形面积关系求出BF 11.2=,则EF BF BE 1.2=-=.【详解】解:AD 是ABC 的高,AD BC ∴⊥,ADC BDE 90∠∠∴==︒,在Rt ACD 和Rt BED 中,AC BE AD BD =⎧⎨=⎩, Rt ACD ∴≌()Rt BED HL ,CD ED AD AE 826∴==-=-=,CAD EBD ∠∠=,C CAD 90∠∠+=︒,C EBD 90∠∠∴+=︒,BFC 90∠∴=︒,BE AC ∴⊥, ABC 的面积ABD =的面积ACD +的面积,111AC BF AD BD CD AD 222∴⨯=⨯+⨯, AC BF AD BD CD AD ∴⨯=⨯+⨯,即10BF 8886112=⨯+⨯=,BF 11.2∴=,EF BF BE 11.210 1.2∴=-=-=,故选:A .【点睛】本题考查了全等三角形的判定和性质、直角三角形的性质以及三角形面积等知识;证明三角形全等是解题的关键.10.A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A 、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键. 11.B解析:B【分析】在线段AC 上作AF=AB ,证明△AEF ≌△AEB 可得∠AFE=∠B ,∠AEF=∠AEB ,再证明△CEF ≌△CED 可得CD=CF ,即可求得四边形ABDC 的周长.【详解】解:在线段AC 上作AF=AB ,∵AE是BAC∠的平分线,∴∠CAE=∠BAE,又∵AE=AE,∴△AEF≌△AEB(SAS),∴∠AFE=∠B,∠AEF=∠AEB,∵AB∥CD,∴∠D+∠B=180°,∵∠AFE+∠CFE=180°,∴∠D=∠CFE,∵AE CE⊥,∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,∴∠CEF=∠CED,在△CEF和△CED中∵D CFECEF CEDCE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEF≌△CED(AAS)∴CE=CF,∴四边形ABDC的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=2a b+,故选:B.【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键.12.C解析:C【分析】在△ACD和△ABD中,AD=AD,AB=AC,由全等三角形判定定理对选项一一分析,排除不符合题意的选项即可.【详解】解:添加A选项中条件可用HL判定两个三角形全等,故选项A不符合题意;添加B选项中的条件可用SSS判定两个三角形全等,故选项B不符合题意;添加C选项中的条件∠1=∠2可得∠CDA=∠BDA,结合已知条件不SS判定两个三角形全等,故选项C符合题意;添加D选项中的条件可用SAS判定两个三角形全等,故选项D不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,判定三角形全等的方法:SSS、SAS、ASA、AAS,判断直角三角形全等的方法:“HL”.二、填空题13.50【分析】过点B作BE⊥DC交DC的延长线于点E先证明∠CBE=∠ACD从而证明∆ACD≅∆CBE进而即可求解【详解】过点B作BE⊥DC交DC的延长线于点E∵BE⊥CE∴∠BEC=∠CDA=90°解析:50【分析】过点B作BE⊥DC交DC的延长线于点E,先证明∠CBE=∠ACD,从而证明∆ ACD≅∆ CBE,进而即可求解.【详解】过点B作BE⊥DC交DC的延长线于点E,∵BE⊥CE,∴∠BEC=∠CDA=90°,∴∠CBE+∠BCE=90°,又∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在∆ ACD与∆ CBE中,∵CBE ACDCEB ADC BC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ ACD ≅∆ CBE (AAS ),∴BE=CD=10,∴BCD ∆的面积=12CD∙BE=12×10×10=50, 故答案是50.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的性质,添加辅助线,构造“一线三垂直”模型,是解题的关键. 14.ED=FD (答案不唯一∠E=∠CFD 或∠DBE=∠DCF )【分析】根据三角形全等的判定方法SAS 或AAS 或ASA 定理添加条件然后证明即可【详解】解:∵D 是的中点∴BD=DC①若添加ED=FD 在△BD解析:ED=FD (答案不唯一,∠E=∠CFD 或∠DBE=∠DCF )【分析】根据三角形全等的判定方法SAS 或AAS 或ASA 定理添加条件,然后证明即可.【详解】解:∵D 是BC 的中点,∴BD=DC①若添加ED=FD在△BDE 和△CDF 中,BD CD BDE CDF ED FD =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CDF (SAS );②若添加∠E=∠CFD在△BDE 和△CDF 中,BDE CDF E CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CDF (AAS );③若添加∠DBE=∠DCF在△BDE 和△CDF 中,BDE CDF BD CD DBE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CDF (ASA );故答案为:ED=FD (答案不唯一,∠E=∠CFD 或∠DBE=∠DCF ).【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键. 15.5【分析】根据角平分线的性质求出DE 根据三角形的面积公式计算即可;【详解】如图:作DE ⊥AB 于点E ∵AD 平分∠BAC∠C=90°DE⊥AB∴DE=DC=2∵AB=5∴△ABD的面积=×AB×DE=5解析:5【分析】根据角平分线的性质求出DE,根据三角形的面积公式计算即可;【详解】如图:作DE⊥AB于点E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∵AB=5∴△ABD的面积=1×AB×DE=5,2故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键;16.【分析】先添加辅助线过点作交的延长线于点过点作交的延长线于点过点作于点根据角平分线的判定性质定义以及三角形外角的性质邻补角的定义角的和差等可求得【详解】解:过点作交的延长线于点过点作交的延长线于点过解析:46︒【分析】⊥交AC的先添加辅助线“过点D作DE AB⊥交AB的延长线于点E,过点D作DF AC⊥于点G”,根据角平分线的判定、性质、定义以及三延长线于点F,过点D作DG BC角形外角的性质、邻补角的定义、角的和差等可求得()1462ADB CBE BAC ∠=∠-∠=︒. 【详解】 解:过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ,如图:∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥∴12BAD BAC ∠=∠,DE DF = ∵136ACD ∠=︒ ∴18044DCF ACD ∠=︒-∠=︒∵44BCD ∠=︒,92ACB ACD BCD ∠=∠-∠=︒∴CD 平分BCF ∠∵DF AC ⊥,DG BC ⊥∴DF DG =∴DE DG =∵DE AB ⊥,DG BC ⊥ ∴BD 平分CBE ∠∴12DBE CBE ∠=∠ ∴ADB DBE BAD ∠=∠-∠1122CBE BAC =∠-∠ ()12CBE BAC =∠-∠ 12BCA =∠ 46=︒.故答案是:46︒【点睛】本题考查了角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等,熟练掌握相关知识点是解题的关键.17.2或【分析】由∠A=∠B可知△ACP与△BPQ全等时CP和PQ是对应边则分AP=BQ和AP=PB两种情况进行讨论即可【详解】设动点的运动时间为t秒则AP=2tBP=AB-AP=8-2tBQ=xt∵∠解析:2或5 2【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8-2t,BQ=xt,∵∠A=∠B,∴CP和PQ是对应边,当△ACP与△BPQ全等时,①AP=BQ,即:2t= xt,解得:x=2,②AP=PB,即:2t=8-2t,解得:t=2,此时,BQ=AC,xt=5,即:2x=5,解得:x=5 2故填:2或52.【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.18.25°【分析】利用三角形内角和定理得出∠BAC的度数进而得出∠ADC的度数再利用三角形内角和定理和外角性质得出即可【详解】解:∵∠B=35°∠ACB=85°∴∠BAC=60°∵AD平分∠BAC∴∠B解析:25°【分析】利用三角形内角和定理得出∠BAC的度数,进而得出∠ADC的度数,再利用三角形内角和定理和外角性质得出即可.【详解】解:∵∠B=35°,∠ACB=85°,∴∠BAC=60°,∵AD平分∠BAC,∴∠BAD=30°,∴∠ADC=35°+30°=65°,∵∠EPD=90°,∴∠E的度数为:90°-65°=25°.故答案为:25°.【点睛】此题主要考查了三角形内角和定理以及角平分线的性质和三角形外角的性质,根据已知得出∠BAD度数是解题关键.19.6【分析】过点P作PH⊥AMPQ⊥AN连接AP根据角平分线上的点到角两边的距离相等可得PH=PE=PQ再根据三角形的面积求出BC然后求出AC+AB再根据S△ABC=S△ACP+S△ABP-S△BPC解析:6【分析】过点P作PH⊥AM,PQ⊥AN,连接AP,根据角平分线上的点到角两边的距离相等可得PH=PE=PQ,再根据三角形的面积求出BC,然后求出AC+AB,再根据S△ABC= S△ACP+ S△ABP-S△BPC即可得解.【详解】解:如图,过点P作PH⊥AM,PQ⊥AN,连接AP∵BP和CP为∠MBC和∠NCB角平分线∴PH=PE,PE=PQ∴PH=PE=PQ=3∵S△BPC=12×BC×PE=7.5∴BC=5∵S△ABC= S△ACP+ S△ABP-S△BPC=12×AC×PQ+12×AB×PH-7.5=12×3(AC+AB)-7.5∵AC+AB+BC=14,BC=5∴AC+AB=9∴S △ABC=12×3×9-7.5=6 cm 2 【点睛】本题考查了角平分线上点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于S △ABC 的面积的表示.20.①③【分析】由四边形内角和定理可求出;若DM 平分∠EDF 则∠EDM=60°从而得到∠ABC 为等边三角形条件不足不能确定故②错误;由题意可知∠EAD=∠FAD=30°故此可知ED=ADDF=AD 从而可解析:①③【分析】由四边形内角和定理可求出120EDF ∠=︒;若DM 平分∠EDF ,则∠EDM=60°,从而得到∠ABC 为等边三角形,条件不足,不能确定,故②错误;由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明③正确;连接BD 、DC ,然后证明△EBD ≌△CFD ,从而得到BE=FC ,从而可得AB+AC=2AE ,故可判断④.【详解】解:如图所示:连接BD 、DC .(1)∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°,∵∠EAF=60°,∠EAF+∠AED+∠AFD+∠EDF=360°∴∠EDF=360°-∠EAF-∠AED-∠AFD=360°-60°-90°-90°=120°,故①正确;②由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC 是否等于60°不知道,∴不能判定MD 平分∠EDF ,故②错误;③∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .故③正确.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④错误.因此正确的结论是:①③,故答案为:①③.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质以及四边形的内角和等知识,掌握本题的辅助线的作法是解题的关键.三、解答题21.(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可;(2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a ,故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.22.见解析【分析】在 AB 上取 AE = AC ,然后证明ADC ≌()SAS ADE △,根据全等三角形对应边相等得到DC DE =,再根据三角形的任意两边之差小于第三边证明即可.【详解】证明:如解图,在AB 上截取AE AC =,连接DE ,∵ AD 是ABC 的角平分线,∴ CAD EAD ∠=∠.在ADC 和ADE 中,,,,AC AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴ ADC ≌()SAS ADE △.∴ DC DE =.∵在BDE 中,BE BD ED >-,∵ AB AE BE -=,∴ AB AC BD CD ->-.【点睛】本题主要考查全等三角形的判定和全等三角形对应边相等的性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.23.(1)40︒;(2)1402BED n ∠=︒+︒;(3)1()αβ+n【分析】(1)根据平行线的性质及角平分线的性质即可得解;(2)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,由AB ∥CD ,BE 平分∠ABC ,推出12BEF ABE n ∠=∠=︒,利用EF ∥CD ,求得∠FED =∠EDC =40°,即可得到 1402BED n ∠=︒+︒; (3)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,利用AB ∥CD 推出∠ABC =∠BCD =β,∠ADC =∠BAD =α,求得1ABE n β∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=,利用EF ∥AB ,求出1BEF ABE n β∠=∠=,即可得到1()BED n αβ∠=+. 【详解】解:(1)∵AB ∥CD ,∴∠ADC =∠BAD =80°,又∵DE 平分∠ADC ,∴1402EDC ADC ∠=∠=︒; (2)如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =n °,又∵BE 平分∠ABC ,∴12ABE n ∠=︒, ∵EF ∥AB , ∴12BEF ABE n ∠=∠=︒, ∵EF ∥CD ,∴∠FED =∠EDC =40°,∴1402BED n ∠=︒+︒. (3)1()αβ+n.如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =β,∠ADC =∠BAD =α,∴1ABE nβ∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=,∵EF ∥AB , ∴1BEF ABE n β∠=∠=, ∴1()BED nαβ∠=+. 故答案为:1()αβ+n.【点睛】此题考查平行线的性质,角平分线的性质,熟记平行线的性质并正确引出辅助线解决问题是解题的关键.24.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中, ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.25.3【分析】根据同角的余角相等可得EBC DCA ∠=∠,根据“AAS”可证CEB △≌ADC ,可得9AD CE ==,即可求BE 的长.【详解】解:∵BE CE ⊥,AD CE ⊥,∴90E ADC ∠=∠=︒,∴90EBC BCE ∠+∠=︒.∵90BCE ACD ∠+∠=︒,∴EBC DCA ∠=∠.在CEB △和ADC 中,E ADC EBC ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CEB △≌ADC (AAS ),∴BE CD =,9AD CE ==,∴963BE CD CE DE ==-=-=.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,熟练运用全等三角形的判定是本题的关键.26.(1)见解析;(2)20【分析】(1)根据平行线的性质可得:EAD ECF ∠=∠,EDA EFC ∠=∠,继而根据全等三角形的判定证得()ADE CFE AAS ≅△△,继而即可求证结论;(2)由全等三角形的性质可得:12AD CF ==,求得8BF =,继而即可求解.【详解】(1)证明:∵//AD BC ,∴EAD ECF ∠=∠,EDA EFC ∠=∠.∵E 为AC 的中点,∴AE CE =.在ADE 和CFE 中,,,,EAD ECF EDA EFC AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ADE CFE AAS ≅△△.∴DE EF =.(2)解:∵ADE CFE ≅,∴12AD CF ==.∵:2:3BF CF =,∴8BF =,∴81220BC BF CF =+=+=.【点睛】 本题考查全等三角形的判定和性质,平行线的性质,解题的关键是熟练掌握全等三角形的判定方法和性质.。
四川省成都市实验外国语学校2019-2020年八上学期第一次阶段性考试数学试卷(Word版,无答案)

四川省成都市实验外国语学校2019-2020年八上学期第一次阶段性考试数学试卷(Word 版,无答案)3 8355 3 y - 8 5 2019-2020 上学年成都实验外国语学校八年级上学期数学第一次阶段性考试题卷测试时间:120 分钟 满分:150 分A 卷(100 分)一、选择题.(每小题 3 分,共 30 分)第 9 题 第 10 题二、填空题.(每小题 4 分,共 16 分)1.下列五个数:3.14,π, 理数有( ) , ,0.1010010001…(相邻两个 1 之间 0 的个数依次加 1),其中无11.若实数 P 的平方根为 4a + 3和3 - 5a ,则= . A 2 个 B 3 个 C 4 个 D 5 个2.下列各方程中,二元一次方程是( ) 12.若代数式x -1 有意义,则 x 的取值范围是.x - 2A 2x + yB 1+ y = 3xC x =y+1 2D xy + x = 13.△ABC 的三边为 a 、b 、c ,满足(a + b )(a - b )= c 2,则三角形的形状是( )A 锐角三角形B 直角三角形C 钝角三角形D 不能确定4.下列说法:① - a 2一定没有平方根;②任何实数的立方根有且只有一个;③平方根与立方根相间的数 14.在△ABC 中,AB=17,AC=10,BC 边上的高 AD=8,则边 BC 的长为.三、解答题(共 54 分)15.计算(共 18 分) 是 0 和 1;④实数与数轴上的点一一对应.其中正确结论的序号是( )A ②④B ①②C ③④D ①③5.在 Rt ∆ABC 中,有两边的长分别为 1 和 2,则第三边的长( )ABC 2 3 或 D或6.估算 - 7 的值在()C 6 和 7 之间D 7 和 8 之间A 4B 2C - 2D - 48.实数 x 、y 满足 x - 4 + = 0 ,则以x 、y 为边长的等腰三角形的周长是( )A 16B 20C 20 或 16D 以上答案均不对9.如图,在 Rt ∆ABC 中, ∠ACB = 90,BC=3,AC=4,AB 的垂直平分线 DE 交 BC 的延长线于点 E , 则 CE 的长为( )3 A 2B225 7 CD6610.如图,长方体的长为 15,宽为 10,高为 20,点 B 离点 C 的距离为 5,蚂蚁如果要沿着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是( )A 35B 10 + 5C 25D 5 8 3P 528 21⎩22⎩ 16.解方程(共 6 分)⎧3x + 2 y = 20 (1) ⎨x - 3 y = 3(2)3x + 2 y 12= 3y - 2x= 1 520(10 分)如图,△ABC 中, ∠C = 90,AB=5 cm ,BC=3 cm ,若点 P 从点 A 出发,以每秒 2 cm 的 速度沿折线 A → C → B → A 运动,设运动时间为t (t > 0)秒. (1)若点 P 恰好在∠BAC 的角平分线上,求t 的值;(2)若△CBP 为等腰三角形,求t 的值.17.(6 分)已知 x -1 y +1 y ,求 + x x - 2 的值. yB 卷(50 分)一、填空题(每小题 4 分,共 20 分)21.已知 a 、b 均为有理数,并满足3a + 4 - 3 3a = b-12 ,则 ab 的算术平方根为.⎧4x - 3y = k22.方程组⎨2x + 3y = 5 - 2k的解 x 与 y 的值相等,则 k = .19.(8 分)如图,五边形 ABCDE 是学校的一块种植基地示意图,这块基地可以分成正方形 BCDE 和Rt ∆ABE ,已知这个五边形的周长为 88 米,正方形 BCDE 的面积为400 平方米.(1)求正方形 BCDE 的周长; (2)求点 A 到 CD 边的距离.24.如图,在△ABC 中,AB=13,BC=14,AC=15,点 D 是线段 AC 上任意一点,分别过点 A 、C 作直线 BD 的垂线,垂足为 E 、F ,AE= m ,CF= n ,则 m + n 的最大值是 ,最小值是 . 25.如图,用 4 个全等的直角三角形与 1 个小正方形镶嵌而成的正方图案,已知大正方形面积为 10,小正方形面积为 2,若用 x 、y 表示直角三角形的两直角边(x > y ),下列四个说法:① x 2+ y 2= 10 ;②xy = 2;③ x - y = 2 ;④ x + 2 y =4 .其中说法正确的有.(只填序号)第 24 题 第 25 题25 -1 1 二、解答题(共 30 分)26.(8 分)已知 a =(1)求 x + 的值; y,且 a 的整数部分为 x ,小数部分为 y .28.(12 分)(1)发现:如图 1,点 A 为线段 BC 外一动点,且 BC= a ,AB= b (a > b > 0),当点 A 位于时,线段 AC 的长取得最大值,最大值为(用含 a 、b 的式子表示);(2)应用:如图 2,点 A 为线段 BC 外一动点,BC=4,AC=2,以 AB 为边作等边△ABD ,连接 CD , 求线段 CD 长的最大值;(3)拓展:如图 3,线段 AB=3,点 P 为线段 AB 外一动点,且 AP=2,PM=PB , ∠BPM = 90,求 (2)求 xy 4+11y 3- 7 y 2+ x + y + 2019 的值.27.(10 分)已知,△ABC 和△ADE 都是等腰直角三角形, ∠BAC = ∠DAE = 90.(1)如图 1,点 D 、E 都在△ABC 外部,连接 BD 、CE 、CD 、EB 、BD 与 CE 相交于 F 点,判断 BD 与 CE 的关系,说明理由,若 BD=10,求四边形 BCDE 的面积;(2)如图 2,点 D 在△ABC 内部,点 E 在△ABC 外部,连结 BD 、CD 、BE 、CE ,当 AE=1,AC=2时,求 BE 2 + CD 2的值.线段 AM 长的最大值及此时△PBM 的面积.。
成都市实验外国语学校八年级数学上册第十四章《整式的乘法与因式分解》经典练习卷(答案解析)

一、选择题1.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c b d =ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ). A .2B .3C .4D .6 2.多项式2425a ma ++是完全平方式,那么m 的值是( ) A .10± B .20± C .10D .20 3.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 4.已知3x y +=,1xy =,则23x xy y -+的值是( )A .7B .8C .9D .12 5.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( )A .2-B .2C .1-D .1 6.已知25y x -=,那么()2236x y x y --+的值为( )A .10B .40C .80D .210 7.下列运算正确的是( ). A .()2326ab a b = B .()325a a = C .236a a a ⋅= D .347a a a += 8.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( ) A .7 B .9C .-63D .12 9.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.7510.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29 11.下列计算正确的是( ) A .()222x y x y +=+ B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=-12.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .13.下列运算中,正确的是( )A .()23294x y x y = B .3362x x x += C .34x x x ⋅= D .22(3)(3)3x y x y x y +-=-14.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .615.a ,b ,c 在数轴上的位置如下图所示,则下列代数式中值为正的是( )A .()()1a c b --B .()11c a b c ⎛⎫-- ⎪⎝⎭C .()1a a c b ⎛⎫+- ⎪⎝⎭D .()1ac bc -二、填空题16.已知2a -b +2=0,则1-4a +2b 的值为______.17.已知210x x +-=,则代数式3222020x x ++的值为________.18.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.19.若()2340x y -++=,则x y -=______.20.因式分解:316m m -=________.21.分解因式:32520=x xy -________________.22.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示)23.因式分解()2228ac bc abc -+=______.24.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.25.若方程22(1)8m x mx x --+=是关于x 的一元一次方程,则代数式2008|1|m m --的值为________.26.分解因式:2a 2﹣8=______.三、解答题27.计算:4a 2·(-b )-8ab ·(b -12a ). 28.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF ,CF ,AC .(1)用含a 、b 的代数式表示GC =______;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长; (3)若8a =,AFC △的面积为S ,求S 的值.29.计算:(1)x 2·x (2)(x 3)5(3)(-2x 3)230.已知将32()(34)x mx n x x ++-+化简的结果不含3x 和2x 项.(1)求m 、n 的值;(2)当m 、n 取第(1)小题的值时,求22242m mn n -+的值.。
四川省德阳中学2018-2019学年八年级(上)月考数学试卷(10月份)(解析版)

2018-2019学年四川省德阳中学八年级(上)月考数学试卷(10月份)一、选择题(本大题共12小题,每小题3分,共36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的1.(3分)下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.2.(3分)以下列长度的三条线段为边,能组成三角形的是()A.3,3,3B.3,3,6C.3,2,5D.3,2,63.(3分)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()A.边角边B.角边角C.边边边D.角角边4.(3分)在下列条件下,不能判定△ABC≌△AB′C′()A.∠A=∠A′,AB=A′B′,BC=B′C′B.∠A=∠A′,∠C=∠C′,AC=A′C′C.∠B=∠B′,∠C=∠C′,AC=A′C′D.BA=B′A′,BC=B′C′,AC=A′C′5.(3分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定6.(3分)已知△ABC中,∠A,∠B,∠C三个角的比例如下,其中能说明△ABC是直角三角形的是()A.2:3:4B.1:2:3C.4:3:5D.1:2:27.(3分)已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定8.(3分)已知△ABC中,∠A=80°,∠B、∠C的平分线的夹角是()A.130°B.60°C.130°或50°D.60°或120°9.(3分)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或710.(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°11.(3分)已知在△ABC中,AB=3,AC=4,AD是BC边上的中线,则AD的取值范围()A.3<AD<4B.1<AD<7C.AD>3D.0.5<AD<3.5 12.(3分)如图,∠E=∠F=90°,∠B=∠C,AE=AF,结论①EM=FN,②CD=DN,③∠FAN=∠EAM,④△ACN≌△ABM中,正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分,将答案填在答题卡对应的题号后的橫线上)13.(3分)要使一个五边形木架稳定,至少应钉木条根.14.(3分)若将多边形边数增加1条,则它的内角和增加.15.(3分)如图,已知AE∥CF,AE=CF,要用ASA判定方法使△ABE≌△CDF,可添加的条件是.16.(3分)如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G=.17.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.18.(3分)已知a、b、c分别是△ABC的三边的长,化简|a+b﹣c|﹣|a﹣b﹣c|的结果为.19.(3分)如图所示,以六边形的每个顶点为圆心,1为半径画圆,则图中阴影部分的面积为.20.(3分)如图,在矩形ABCD中,AB=4Cm,BC=6m,点E为AB中点,如果点P在线段BC上以每秒2cm的速度由点B向点C运动,同时,点Q在线段CD上由点C向点D运动,设点P的运动时间为t秒,若某一时刻△BPE与△CQP全等,则点Q的运动速度是.三、解答题(共60分,解答应写出文字说明、证明过程或推演步骤)21.(8分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.22.(8分)如图所示,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm 和30cm的两部分,求三角形各边的长.23.(8分)如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.24.(10分)如图,D是△ABC的边AB上一点,E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.若CF=6.BD=2,求AB的长.25.(12分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.26.(14分)如图,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E.求证:(1)△ACD≌△BAE;(2)BC垂直平分DE.2017-2018学年四川省德阳中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的1.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BD是△ABC的高.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.2.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选:A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.3.【分析】由于已知O是AA′、BB′的中点O,再加对顶角相等即可证明△OAB≌△OA′B′,所以全等理由就可以知道了.【解答】解:△OAB与△OA′B′中,∵AO=A′O,∠AOB=∠A′OB′,BO=B′O,∴△OAB≌△OA′B′(SAS).故选:A.【点评】此题主要考查全等三角形的判定方法,此题利用了SAS,做题时要认真读图,找出有用的条件是十分必要的.4.【分析】关键全等三角形的判定SSS,AAS,ASA,SAS判断即可.【解答】解:A、若AB=A'B',BC=B'C',∠B=∠B',根据SAS推出△ABC≌△AB′C′,故本选项正确;B、根据ASA即可推出△ABC≌△AB′C′,故本选项错误;C、根据AAS即可推出△ABC≌△AB′C′,故本选项错误;D、根据SSS即可推出△ABC≌△AB′C′,故本选项错误.故选:A.【点评】本题考查了全等三角形的判定定理的理解,能熟练地运用判定定理进行推理是解此题的关键.5.【分析】根据三角形的高的特点对选项进行一一分析,即可得出答案.【解答】解:A、锐角三角形,三条高线交点在三角形内,故错误;B、钝角三角形,三条高线不会交于一个顶点,故错误;C、直角三角形的直角所在的顶点正好是三条高线的交点,可以得出这个三角形是直角三角形,故正确;D、能确定C正确,故错误.故选:C.【点评】此题主要考查了三角形的高,用到的知识点是钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高所在的直线的交点在三角形的内部;直角三角形的三条高所在的直线的交点是三角形的直角顶点.6.【分析】根据三角形的内角和公式分别求得各角的度数,从而判断其形状.【解答】解:A、设三个角分别为2x,3x,4x,根据三角形内角和定理得三个角分别为:40°,60°,80°,所以不是直角三角形;B、设三个角分别为x,2x,3x,根据三角形内角和定理得三个角分别为:30°,60°,90°,所以是直角三角形;C、设三个角分别为3x,4x,5x,根据三角形内角和定理得三个角分别为:45°,60°,75°,所以不是直角三角形;D、设三个角分别为x,2x,2x,根据三角形内角和定理得三个角分别为:36°,72°,72°,所以不是直角三角形.故选:B.【点评】本题通过设适当的参数,根据三角形内角和定理建立方程求出三个内角的度数后判断.7.【分析】此外角可能是顶角的外角,也可能是底角的外角,需要分情况考虑,再结合三角形的内角和为180°,可求出顶角的度数.【解答】解:①若100°是顶角的外角,则顶角=180°﹣100°=80°;②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.故选:C.【点评】当外角不确定是底角的外角还是顶角的外角时,需分两种情况考虑,再根据三角形内角和180°、三角形外角的性质求解.8.【分析】作出图形,设两角平分线相交于点O,根据三角形的内角和定理求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后在△BOC中利用三角形的内角和定理求解即可得到∠BOC的度数,再分夹角为钝角与锐角两种情况解答.【解答】解:如图,∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣80°=100°,∵BD、CE分别为∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×100°=50°,在△BOC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°,又∵180°﹣130°=50°,∴角平分线的夹角是130°或50°.故选:C.【点评】本题考查了三角形的角平分线的定义,三角形的内角和定理,整体思想的利用比较关键,要注意夹角有钝角与锐角两种情况.9.【分析】首先求得内角和为720°的多边形的边数,即可确定原多边形的边数.【解答】解:如图,剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6.则原多边形的边数为5或6或7.故选:D.【点评】本题考查了多边形的内角和定理,理解分三种情况是关键.10.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选:D.【点评】本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.11.【分析】延长AD到E,使DE=AD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得CE=AB,然后根据三角形任意两边之和大于第三边,两边之差小于第三边求出AE的取值范围,然后即可得解.【解答】解:如图,延长AD到E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△ABD和△ECD中,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=3,AC=4,∴4﹣3<AE<4+3,即1<AE<7,∴0.5<AD<3.5.故选:D.【点评】本题考查了三角形的三边关系,全等三角形的判定与性质,遇中点加倍延,作辅助线构造出全等三角形是解题的关键.12.【分析】先证明△AEB≌△AFC得∠EAB=∠FAC即可推出③正确,由△AEM≌△AFN即可推出①正确,由△CMD≌△BND可以推出②错误,由△ACN≌△ABM可以推出④正确,由此即可得出结论.【解答】解:在△AEB和△AFC中,,∴△AEB≌△AFC,∴∠EAB=∠FAC,EB=CF,AB=AC,∴∠EAM=∠FAN,故③正确,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正确,∵AC=AB,∴CM=BN,在△CMD和△BNC中,,∴△CMD≌△BND,∴CD=DB,故②错误,在△ACN和△ABM中,,∴△ACN≌△ABM,故④正确,故①③④正确,故选:C.【点评】本题考查全等三角形的判定和性质,解题的关键是灵活应用全等三角形的判定和性质解决问题,题目中全等三角形比较多,证明方法不唯一,属于中考常考题型.二、填空题(每小题3分,共24分,将答案填在答题卡对应的题号后的橫线上)13.【分析】根据三角形具有稳定性,钉上木条后把五边形分成三角形即可.【解答】解:如图,至少还要再钉上2根木条,把五边形分成三个三角形.故答案为:2.【点评】本题考查了三角形具有稳定性,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.14.【分析】设原来的多边形是n,则新的多边形的边数是n+1.根据多边形的内角和定理即可求得.【解答】解:n边形的内角和是(n﹣2)•180°,边数增加1,则新的多边形的内角和是(n+1﹣2)•180°.则(n+1﹣2)•180°﹣(n﹣2)•180°=180°.故它的内角和增加180°.故答案为:180°.【点评】本题考查多边形的内角和计算公式,解答时要会根据公式进行正确运算、变形和数据处理.15.【分析】由平行可得∠AEB=∠CFD,要使△ABE≌△CDF,已知AE=CF,要使△ABC≌△DEF,已知AB=ED,∠AEB=∠CFD,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:如∠A=∠C.∵AE∥CF,∴∠AEB=∠CFD,又∵AE=CF,∴△ABE≌△CDF(ASA).故答案为:∠A=∠C.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.16.【分析】根据五边形的内角和即可得到结论.【解答】解:连接AE,则∠1+∠2=∠F+∠G,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠C+∠D+∠E+∠1+∠2=540°,故答案为:540°.【点评】本题考查三角形外角的性质及四边形的内角和定理,解答的关键是沟通外角和内角的关系.17.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.18.【分析】根据三角形的三边关系判断出a+b﹣c及a﹣b﹣c的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c是△ABC的三边的长,∴a+b﹣c>0,a﹣b﹣c<0,∴原式=a+b﹣c﹣(﹣a+b+c)=a+b﹣c+a﹣b﹣c=2a﹣2c.故答案为:2a﹣2c.【点评】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.19.【分析】先求出六边形的内角和,再根据扇形的面积公式即可求出.【解答】解:六边形的内角和=(6﹣2)×180°=720°,阴影面积=π×12=2π.故答案为:2π.【点评】本题主要考查了扇形的面积公式,学会把图中不规则图形的面积由几何关系转化为规则图形的面积.20.【分析】设点Q的运动速度为vcm/s,先根据时间、速度表示路程:BP=2t,CP=6﹣2t,CQ=vt.根据点E为AB中点表示BE=2,根据△BPE与△CQP全等的不确定性,分两种情况:分别根据对应边相等,列方程可得结论.【解答】解:设点Q的运动速度为vcm/s,则BP=2t,CP=6﹣2t,BE=2,CQ=vt.由题可分两种情况:(i)△BPE≌△CPQ,则BP=CP,BE=CQ,∴2t=6﹣2t,2=vt,∴t=1.5,v=;(ii)△BPE≌△CQP,则BP=CQ,BE=CP,∴2t=vt,2=6﹣2t.∴t=2,v=2.综上所述,t的值为1.5秒时,Q点的速度为cm/s;或t的值为2秒,Q点的速度为2 cm/s.故答案为:cm/s或2cm/s.【点评】此题是几何动点问题,此类题有难度,本题主要考查的是全等三角形的性质和判定、矩形的性质、一元一次方程的综合应用,根据题意列方程是解题的关键.三、解答题(共60分,解答应写出文字说明、证明过程或推演步骤)21.【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵∠AFE=90°,∴∠AEF=90°﹣∠A=90°﹣35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.答:∠ACD的度数为83°.【点评】三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.22.【分析】设AB=AC=2x,BC=y,进而得出AD=CD=AC=x,再分两种情况,建立方程组求解,最后判定能否构成三角形.【解答】解:设AB=AC=2x,BC=y,∵点D是AC的中点,∴AD=CD=AC=x,∵AC边上的中线把三角形的周长分为24cm和30cm的两部分,∴①,解得,,∴AB=AC=2x=16,BC=22,能构成三角形,②,解得,,∴AB=AC=2x=20,BC=14,能构成三角形,即:三角形的各边是16,16,22或20,20,14.【点评】此题主要考查了等腰三角形的性质,三角形的周长,分类讨论的思想,解本题的关键是建立方程组求解.23.【分析】根据平行线的性质,可得内错角相等,根据角的和差,可得∠ABC、∠BAC,根据三角形的内角和公式,可得答案.【解答】解:因为BD∥AE,所以∠DBA=∠BAE=57°.所以∠ABC=∠DBC﹣∠DBA=82°﹣57°=25°.在△ABC中,∠BAC=∠BAE+∠CAE=57°+15°=72°,所以∠C=180°﹣∠ABC﹣∠BAC=180°﹣25°﹣72°=83°.【点评】本题考查了方向角,方向角是相互的,先求出∠ABC、∠BAC,再求出答案.24.【分析】根据平行线的性质得出∠A=∠FCE,∠ADE=∠F,求出AE=CE,根据全等三角形的判定得出△ADE≌△FCE,根据全等三角形的性质得出AD=CF,即可求出答案.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,∵E是AC的中点,∴AE=CE,在△ADE和△FCE中∴△ADE≌△FCE(AAS),∴AD=CF,∵CF=6.BD=2,∴AB=BD+AD=BD+CF=2+6=8.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能求出△ADE≌△FCE是解此题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.25.【分析】先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD 中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.【解答】证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;等量减等量差相等的利用是解答本题的关键.26.【分析】(1)根据AAS即可证明△DBP≌△EBP;(2)想办法证明△DBP≌△EBP(SAS)即可解决问题;【解答】证明:(1)在△ADC中,∠DAH+∠ADH=90°,∠ACH+∠ADH=90°,∴∠DAH=∠DCA,∵∠BAC=90°,BE∥AC,∴∠CAD=∠ABE=90°.又∵AB=CA,∴在△ABE与△CAD中,,∴△ABE≌△CAD(ASA).(2)∵△ABE≌△CAD,∴AD=BE,又∵AD=BD,∴BD=BE,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,故∠ABC=45°.∵BE∥AC,∴∠EBD=90°,∠EBF=90°﹣45°=45°,∴△DBP≌△EBP(SAS),∴DP=EP,即可得出BC垂直且平分DE.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、线段的垂直平分线的判定等知识,此题关键在于转化为证明出△DBP≌△EBP.通过利用图中所给信息,证明出两三角形全等,而证明全等可以通过证明角相等和线段相等来实现.。
成都市实验外国语学校(西区)八年级数学上册第一单元《三角形》测试(有答案解析)
一、选择题1.下列命题中,是假命题的是( ) A .直角三角形的两个锐角互余 B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 2.一个多边形的外角和是360°,这个多边形是( )A .四边形B .五边形C .六边形D .不确定3.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25° 4.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .115.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( ) A .20cm B .7cm C .5cm D .2cm 6.若过六边形的一个顶点可以画n 条对角线,则n 的值是( ) A .1 B .2 C .3 D .4 7.一个多边形的内角和外角和之比为4:1,则这个多边形的边数是( )A .7B .8C .9D .108.将一个多边形纸片剪去一个内角后得到一个内角和是外角和4倍的新多边形,则原多边形的边数为( ) A .9 B .10 C .11 D .以上均有可能 9.下列长度的线段能组成三角形的是( )A .2,3,5B .4,6,11C .5,8,10D .4,8,4 10.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 11.下列长度的三条线段,能组成三角形的是( )A .3,5,6B .3,2,1C .2,2,4D .3,6,1012.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .5二、填空题13.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.14.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.15.如图,将纸片ABC 沿DE 折叠,点A 落在点P 处,已知12124+∠=∠︒,A ∠=___________.16.七边形的外角和为________.17.如果点G 是ABC ∆的重心,6AG =,那么BC 边上的中线长为_______________________.18.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABCS=,则BEF S =△______.19.如图,已知AE 是ABC 的边BC 上的中线,若8AB cm =,ACE △的周长比AEB △的周长多2cm ,则AC =______cm .20.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.三、解答题21.已知AB ∥CD ,CF 平分∠ECD .(1)如图1,若∠DCF =25°,∠E =20°,求∠ABE 的度数.(2)如图2,若∠EBF =2∠ABF ,∠CFB 的2倍与∠CEB 的补角的和为190°,求∠ABE 的度数.22.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.23.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数; (2)若36DCE ∠=︒,求ACB ∠的度数.24.如图,四边形ABCD 中,ABC ∠和BCD ∠的平分线交于点O . (1)如果130A ∠=︒,110D ∠=︒,求BOC ∠的度数; (2)请直接写出BOC ∠与A D ∠+∠的数量关系.25.(问题引入)(1)如图1,△ABC ,点O 是∠ABC 和∠ACB 相邻的外角平分线的交点,若∠A=40°,请求出∠BOC 的度数. (深入探究)(2)如图2,在四边形ABDC 中,点O 是∠BAC 和∠ACD 的角平分线的交点,若∠B+∠D=110°,请求出∠AOC 的度数.(类比猜想)(3)如图3,在△ABC 中,∠CBO=13∠DBC ,∠BCO= 13∠ECB ,∠A=α,则∠BOC=___(用α的代数式表示,直接写出结果,不需要写出解答过程).(4)如果BO ,CO 分别是△ABC 的外角∠DBC ,∠ECB 的n 等分线,它们交于点O ,∠CBO=∠1n DBC ∠BCO=1n∠ECB ,则∠BOC=___(用n 、a 的代数式表示,直接写出结果,不需要写出解答过程).26.如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用三角形外角的性质、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】解:A. 直角三角形的两个锐角互余,正确,是真命题;B. 在同一个平面内,垂直于同一条直线的两条直线平行,正确,是真命题;C. 同旁内角互补,两直线平行,正确,是真命题;D. 三角形的一个外角大于任何一个内角,错误,是假命题;故选:D.【点睛】本题考查了命题与定理的知识,三角形外角的性质、平行线的性质及直角三角形的性质,熟悉相关性质是解题的关键.2.D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D.【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.3.B解析:B【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,由平行线的性质可得∠2=30°,∠1=∠3-∠2=45°-30°=15°.故选:B.【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.4.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.5.A解析:A【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】A、15+8=23>20,能组成三角形,符合题意;B、7+8=15,不能组成三角形,不合题意;C、5+8=13<15,不能组成三角形,不合题意;D、2+8=10<15,不能组成三角形,不合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.但通常不需一一验证,其简便方法是将较短两边之和与较长边比较.6.C解析:C【分析】根据从一个n边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可.【详解】解:6-3=3(条).答:从六边形的一个顶点可引出3条对角线.故选:C.【点睛】本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3.7.D解析:D【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和4倍可得方程180(n﹣2)=360×4,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n﹣2)=360×4,解得:n=10,故选:D.【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).8.D解析:D【分析】将一个多边形纸片剪去一个内角可以多三种情况比原多边形边数少1,不变,多1,利用内角和公式求出内角的和与外角关系即可求出.【详解】如图将一个多边形纸片剪去一个内角∠BCF后,多边形的边数和原多边形边数相同为n,()21804360n-⨯︒=⨯︒,n=10,如图将一个多边形纸片剪去一个内角∠BCF后,多边形的边数比原多边形边数少1为n-1,()n--⨯︒=⨯︒,121804360n=11,如图将一个多边形纸片剪去一个内角∠GCF后,多边形的边数比原多边形边数多1为n+1,()n-⨯︒=⨯︒,+121804360n=9,原多边形的边数为9,10,11.故选择:D.【点睛】本题考查多边形剪去一个角问题,掌握剪去一个角后对多边形的边数分类讨论是解题关键.9.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+6<11,不能组成三角形,不符合题意;C、5+8>10,能组成三角形,符合题意;D、4+4=8,不能够组成三角形,不符合题意.故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.10.B解析:B 【分析】根据角的度数之比,求得最大角的度数,根据最大角的性质判断即可. 【详解】∵三个内角的度数之比为11:13:24,∴最大角的度数为°24180111324⨯++=90°,∴三角形是直角三角形, 故选B. 【点睛】本题考查了三角形按角的分类,根据度数之比求得最大角的度数是解题的关键.11.A解析:A 【分析】根据三角形三边长关系,逐一判断选项,即可得到答案. 【详解】A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,D. ∵3+6<10,∴长度为3,6,10的三条线段不能组成三角形,故该选项不符合题意, 故选A 【点睛】本题主要考查三角形三边长的关系,掌握三角形任意两边之和大于第三边,是解题的关键.12.B解析:B 【分析】根据三角形的稳定性,要使它不变形,只需每一条边都分别在一个三角形之中即可 【详解】解:要使六边形木框不变形,则需每一条边都分别在一个三角形之中,观察图形可得,至少还需要再钉上3根木条 故选:B 【点睛】本题考查了三角形的稳定性,观察图形如何使每一条边都分别在一个三角形之中是解决本题的关键二、填空题13.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12 【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数. 【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形, ∴AD=DB=BC ,∠ADB=∠DBC , ∴四边形ACBD 为等腰梯形, ∴BD ∥AC , ∴∠1==30ACB ∠︒, ∴正多边形的边数为:360=1230︒︒, 故答案为:12. 【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键.14.19【分析】根据从n 边形的一个顶点出发连接这个点与其余各顶点可以把一个n 边形分割成(n-2)个三角形的规律作答【详解】解:∵一个多边形从一个顶点出发连接其余各顶点可以把多边形分成(n-2)个三角形∴解析:19 【分析】根据从n 边形的一个顶点出发,连接这个点与其余各顶点,可以把一个n 边形分割成(n-2)个三角形的规律作答. 【详解】解:∵一个多边形从一个顶点出发,连接其余各顶点,可以把多边形分成(n-2)个三角形, ∴n -2=17, ∴19n =. 故答案为:19. 【点睛】本题主要考查多边形的性质,解题关键是熟记多边形顶点数与分割成的三角形个数的关系.15.【分析】根据折叠得到由此得到利用计算得出再根据三角形的内角和定理求出结果【详解】解:∵∴∴∵∴∴故答案为:【点睛】此题考查折叠的性质三角形内角和定理正确理解折叠的性质得到对应角相等是解题的关键 解析:62︒.【分析】根据折叠得到ADE EDP ∠=∠,AED DEP ∠=∠,由此得到122()360ADE AED ∠+∠+∠+∠=︒,利用12124+∠=∠︒,计算得出118ADE AED ∠+∠=︒,再根据三角形的内角和定理求出结果.【详解】解:∵ADE EDP ∠=∠,AED DEP ∠=∠,∴1222180180ADE AED ∠+∠+∠+∠+︒=︒,∴122()360ADE AED ∠+∠+∠+∠=︒,∵12124+∠=∠︒,∴118ADE AED ∠+∠=︒,∴180()62A ADE AED ∠=︒-∠+∠=︒.故答案为:62︒.【点睛】此题考查折叠的性质,三角形内角和定理,正确理解折叠的性质得到对应角相等是解题的关键.16.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵ 多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键; 17.【分析】根据三角形的重心到一顶点的距离等于到对边中点距离的2倍求得DG=3继而求得边上的中线长为9【详解】∵三角形的重心到顶点的距离是其到对边中点的距离的2倍∴DG=AG=×6=3∴AD=AG+GD解析:9【分析】根据三角形的重心到一顶点的距离等于到对边中点距离的2倍求得DG=3,继而求得BC边上的中线长为9.【详解】∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=12AG=12×6=3,∴AD=AG+GD=6+3=9.即BC边上的中线长为9.故答案为:9.【点睛】本题考查的是三角形重心的性质,熟知三角形的重心到顶点的距离是其到对边中点的距离的2倍是解决问题的关键.18.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC∴S△ABD=S△ADC=×6=3(cm2)∵AE=DE∴S△AEB=S△AEC=×3=(cm2)∴S△BEC解析:3 2【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC,∴S△ABD=S△ADC=12×6=3(cm2),∵AE=DE,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S△BEF=12×3=32(cm2),故答案为32.【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.10【分析】依据AE是△ABC的边BC上的中线可得CE=BE再根据AE=AE△ACE的周长比△AEB的周长多2cm即可得到AC的长【详解】解:∵AE 是△ABC的边BC上的中线∴CE=BE又∵AE=A解析:10【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.【详解】解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC-AB=2cm,即AC-8=2cm,∴AC=10cm,故答案为:10;【点睛】本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键.20.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:1 5(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°.故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.三、解答题21.(1)∠ABE=30°;(2)∠ABE=30°【分析】(1)假设CE与AB相交于点G,由题意易得∠DCE=50°,则有∠CGA=∠BGE=130°,然后根据三角形内角和可求解;(2)假设CE与AB、BF相交于点M、N,设∠ABF=x,∠DCF=∠FCE=y,则有∠EBF=2x,∠ABE=3x,∠DCE=2y,根据题意可得∠AMC=180°-2y,∠E=2y-3x,2∠CFB-∠CEB=10°,进而根据三角形内角和及角的和差关系可求解.【详解】解:(1)假设CE与AB相交于点G,如图所示:∵CF平分∠DCE,∠DCF=25°,∴∠DCE=50°,∵AB∥DC,∴∠DCE+∠AGC=180°,∴∠AGC=130°,∴∠EGB=∠AGC=130°,∵∠E=20°,∴∠ABE=30°;(2)假设CE与AB、BF相交于点M、N,如图所示:设∠ABF=x,∠DCF=y,∵∠EBF=2∠ABF,CF平分∠DCE,∴∠EBF=2x,∠ABE=3x,∠FCE=y,∠DCE=2y,∵AB∥DC,∴∠DCE+∠AMC=180°,∴∠EMB=∠AMC=180°-2y,∵∠E+∠EMB+∠ABE=180°,∴∠E=2y-3x,∵∠E+∠ENB+∠FBE=180°,∴∠ENB=180°+x-2y,∵∠CFB+∠CNF+∠FCE=180°,∴∠CFB=y-x,∵∠CFB 的2倍与∠CEB 的补角的和为190°,∴2∠CFB-∠CEB=10°,∴()()22310y x y x ---=︒,解得:10x =︒,∴∠ABE=30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.22.21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 23.(1)120°;(2)36°.【分析】(1)根据角平分线的定义求出∠ACB ,再根据三角形的内角和定理列式计算即可得解; (2)设∠A=∠ACB=x ,根据直角三角形两锐角互余求出∠CDE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列方程求解即可.【详解】(1)∵CD 为△ABC 的角平分线,∴∠ACB=2∠DCB=2×15°=30°,∵∠A=∠ACB ,∴∠CBD=180°-∠A-∠ACB=180°-30°-30°=120°;(2)设∠A=∠ACB=x ,∵CE 是△ABC 的高,∠DCE=36°,∴∠CDE=90°-36°=54°,∵CD 为△ABC 的角平分线,∴∠ACD=12∠ACB=12x , 由三角形的外角性质得,∠CDE=∠A+∠ACD , ∴1542x x +=︒, 解得x =36°,即∠ACB=36°.【点睛】 本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 24.(1)120°;(2)1()2BOC A D ∠=∠+∠ 【分析】(1)先由四边形内角和定理求出∠ABC+∠DCB=120°,再由角平分线定义得出∠OBC+∠OCB=60°,最后根据三角形内角和定理求出∠O=120°即可;(2)方法同(1)【详解】解:(1)∵∠A+∠ABC+∠BCD+∠D=360°,且∠A+∠D=130°+110°=240°,∴∠ABC+∠BCD=360°-(∠A+∠D )=360°-240°=120°,∵OB ,OC 分别是∠ABC 和∠BCD 的平分线, ∴∠OBC+∠OCB=111(221)1206220AB ABC DC C BCD B ∠+∠=⨯+∠︒=∠=︒ , ∴∠O=180°-(∠OBC+∠OCB )=180°-60°=120°; (2)1()2BOC A D ∠=∠+∠ 证明:在四边形ABCD 中,360A B C D ∠+∠+∠+∠=︒∴360()ABC DCB A D ∠+∠=︒-∠+∠∵OB ,OC 分别是∠ABC 和∠BCD 的平分线,∴∠OBC+∠OCB=1111((222)180)2ABC BCD AB D A C D CB ∠+∠=︒-∠∠=+∠∠+ ∴180(1)()2O BOC BC OCB A D ∠+∠=︒-∠=∠+∠ 【点睛】 此题主要考查了四边形内角和定理,三角形的内角和定理以及角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°;一个角的角平分线把这个角分成两个大小相等的角.25.(1)70°;(2)55°;(3)120°-13α;(4)()11801n n nα-⨯︒-【分析】(1)由三角形内角和定理可求得∠ABC+∠ACB ,再利用邻补角可求得∠DBC+∠ECB ,根据角平分线的定义可求得∠OBC+∠OCB ,在△BOC 中利用三角形内角和定理可求得∠BOC ; (2)根据三角形内角和等于180°,四边形内角和等于360°,结合角平分线的定义即可得到∠AOC 与∠B+∠D 之间的关系;(3)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=120°-3α;(4)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=()11801n n nα-⨯︒-. 【详解】(1)∵∠A=40°,∴∠ABC+∠ACB=180°-∠A=140°,∴∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-140°=220°,∵BO 、CO 分别平分∠DBC 和∠ECB ,∴∠OBC+∠OCB=12(∠DBC+∠ECB) =12×220°=110°, ∴∠BOC=180°-(∠OBC+∠OCB )=180°-110°=70°;(2)∵点O 是∠BAC 和∠ACD 的角平分线的交点,∴∠OAC=12∠CAB ,∠OCA=12∠ACD , ∴∠AOC=180°-(∠OAC+∠OCA) =180°-12(∠CAB+∠ACD) =180°-12(360°-∠B-∠D) =12(∠B+∠D), ∵∠B+∠D=110°, ∴∠AOC=12(∠B+∠D)=55°; (3)在△OBC 中,∠BOC=180°-(∠OBC+∠OCB)=180°-13(∠DBC+∠ECB) =180°-13(∠A+∠ACB+∠A+∠ABC)=180°-13(∠A+180°)=120°-13α;故答案为:120°-13α;(4)在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-1n(∠DBC+∠ECB)=180°-1n(∠A+∠ACB+∠A+∠ABC)=180°-1n(∠A+180°)=()11801nn nα-⨯︒-.故答案为:()11801nn nα-⨯︒-.【点睛】本题考查了三角形的内角和定理,三角形的外角性质,角平分线的定义,整体思想的利用是解题的关键.26.这个多边形的边数是9【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1260度.n边形的内角和可以表示成(n−2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【详解】设这个多边形的边数为n,根据题意,得(n−2)•180=360×3+180,解得:n=9.则这个多边形的边数是9.【点睛】此题考查了多边形内角与外角,此题要结合多边形的内角和公式寻求等量关系,构建方程即可求解.。
成都市实验外国语学校八年级数学上册第一单元《三角形》测试卷(有答案解析)
一、选择题1.如图,下列结论中正确的是( )A .12A ∠>∠>∠B .12A ∠>∠>∠C .21A ∠>∠>∠D .21A ∠>∠>∠ 2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( ) A .6B .3C .2D .11 3.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD∠的度数为( )A .25︒B .85︒C .60︒D .95︒ 4.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( )A .2.4B .3C .5D .8.55.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为( )A .8B .9C .10D .11 6.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( )A .2mB .3mC .5mD .7m 7.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52α C .2α D .32α 8.下列长度的三条线段能组成三角形的是( )A .3,3,4B .7,4,2C .3,4,8D .2,3,5 9.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 10.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( )A .10B .8C .6D .4 11.已知直线//a b ,含30角的直角三角板按如图所示放置,顶点A 在直线a 上,斜边BC 与直线b 交于点D ,若135∠=︒,则2∠的度数为( )A .35︒B .45︒C .65︒D .75︒12.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米二、填空题13.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.14.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________15.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.16.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.17.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.18.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长2020次后得到的△A 2020B 2020C 2020的面积为_____.19.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.20.如图,ABC 的角平分线OB 、OC 相交于点O ,40A ∠︒=,则BOC ∠=______.三、解答题21.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于E ,已知80ACB ∠=︒,24B ∠=︒,求P ∠的度数.22.已知a ,b ,c 为三角形三边的长,化简:a b c b c a c a b +++-----. 23.如图,是A 、B 、C 三个村庄的平面图,已知B 村在A 村的南偏西65°方向,C 村在A 村的南偏东15°方向,C 村在B 村的北偏东85°方向,求从C 村观测A 、B 两村的视角ACB ∠的度数.24.如图,AD ,AE 分别是△ABC 的高和角平分线.(1)已知∠B =40°,∠C =60°,求∠DAE 的度数;(2)设∠B =α,∠C =β(α<β).请直接写出用α、β表示∠DAE 的关系式 .25.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.26.如图,AD 、AE 分别是ABC 的高和角平分线.(1)已知∠B =40°,∠C =60°,求∠DAE 的度数;(2)设∠B =α,∠C =β(α<β),请用含α,β的代数式表示∠DAE ,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.【详解】解:∵∠2是△BCD 的外角,∴∠2>∠1,∵∠1是△ABC 的外角,∴∠1>∠A ,∴21A ∠>∠>∠.故选D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键. 2.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x 的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x ,∴7-3<x <7+3,即4<x <10,四个选项中,A 中,4<6<10,符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.D解析:D【分析】根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解.【详解】解:∵AD 是∠CAE 的平分线,60=︒∠DAC ,∴∠DAC =∠DAE =60°,又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°,∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°.故选:D .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.4.D解析:D【分析】先根据三角形的三边之间的关系求解1<x <7,从而可得答案.【详解】解:长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,+,∴-<x<4343∴<x<7,1x的值不可能是8.5.故选:.D【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键.5.B解析:B【分析】逐一探究在三角形,四边形,五边形一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,得到分割成的三角形的数量,再总结规律,运用规律列方程即可得到答案.【详解】解:如图,探究规律:在三角形的一边上任取一点(不是顶点),将这个点与三角形的各顶点连接起来,可以将三角形分割成2个三角形,在四边形的一边上任取一点(不是顶点),将这个点与四边形的各顶点连接起来,可以将四边形分割成3个三角形,在五边形的一边上任取一点(不是顶点),将这个点与五边形的各顶点连接起来,可以将五边形分割成4个三角形,总结规律:在n边形的一边上任取一点(不是顶点),将这个点与n边形的各顶点连接起来,可以将n边形分割成()1n-个三角形,应用规律:n-=由题意得:18,n∴=9.故选:.B【点睛】本题考查的是规律探究及规律运用,探究“在n边形的一边上任取一点(不是顶点),将这个点与n边形的各顶点连接起来,把n边形分割成的三角形的数量”是解题的关键.6.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x m ,则5-2<x <5+2即3<x <7,∴当x=5时,能与2m 、5m 长的两根木棒钉成一个三角形,故选:C .【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.7.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.8.A解析:A【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A 、3+3>4,能构成三角形,故此选项正确;B 、4+2<7,不能构成三角形,故此选项错误;C 、3+4<8,不能构成三角形,故此选项错误;D 、2+3=5,不能构成三角形,故此选项错误.故选:A .【点睛】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.B解析:B【分析】根据角的度数之比,求得最大角的度数,根据最大角的性质判断即可.【详解】∵三个内角的度数之比为11:13:24,∴最大角的度数为°24180111324⨯++=90°, ∴三角形是直角三角形,故选B.【点睛】 本题考查了三角形按角的分类,根据度数之比求得最大角的度数是解题的关键. 10.A解析:A【分析】设这个多边形的边数为n ,根据内角和公式以及多边形的外角和为360°即可列出关于n 的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n ,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.11.C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.12.A解析:A【分析】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以9米即可.【详解】解:∵小明每次都是沿直线前进9米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×9=72(m).故选:A.【点睛】本题考查了正多边形的边数的求法,多边形的外角和为360°;根据题意判断出小明走过的图形是正多边形是解题的关键.二、填空题13.102°【分析】首先根据∠DFC=3∠B=117°可以算出∠B=39°然后设∠C=∠D =x°根据外角与内角的关系可得39+x +x =117再解方程即可得到x =39再根据三角形内角和定理求出∠BED 的度解析:102°【分析】首先根据∠DFC =3∠B =117°,可以算出∠B =39°,然后设∠C =∠D =x°,根据外角与内角的关系可得39+x +x =117,再解方程即可得到x =39,再根据三角形内角和定理求出∠BED 的度数.【详解】解:∵∠DFC =3∠B =117°,∴∠B =39°,设∠C =∠D =x°,39+x +x =117,解得:x =39,∴∠D =39°,∴∠BED =180°−39°−39°=102°.故答案为:102°.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.14.【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.15.【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C ∴∠C=6解析:30︒【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C ,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.16.【分析】根据求出根据多边形内角和公式求出五边形的内角和即可得到答案【详解】∵∴∵五边形内角和=∴==故答案为:【点睛】此题考查两直线平行同旁内角互补多边形内角和公式熟记多边形内角和计算公式是解题的关键 解析:360︒【分析】根据//AE BC 求出180A B ∠+∠=︒,根据多边形内角和公式求出五边形ABCDE 的内角和,即可得到答案.【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360︒.【点睛】此题考查两直线平行同旁内角互补,多边形内角和公式,熟记多边形内角和计算公式是解题的关键.17.【分析】根据求出mn 的长根据三角形三边关系求出k 的取值范围再根据k 为最长边进一步即可确定k 的取值【详解】解:由题意得n-9=0m-5=0解得m=5n=9∵mnk 为三角形的三边长∴∵k 为三角形的最长边解析:914k ≤<【分析】根据2|9|(5)0n m -+-=求出m 、n 的长,根据三角形三边关系求出k 的取值范围,再根据k 为最长边进一步即可确定k 的取值.【详解】解:由题意得n-9=0,m-5=0,解得 m=5,n=9,∵m ,n ,k ,为三角形的三边长,∴414k ≤<,∵k 为三角形的最长边,∴914k ≤<.故答案为:914k ≤<【点睛】本题考查了绝对值、偶次方的非负性,三角形的三边关系,根据题意求出m 、n 的长是解题关键,确定k 的取值范围时要注意k 为最长边这一条件.18.72020【分析】连接AB1BC1CA1根据等底等高的三角形面积相等可得=7S △ABC 由此即可解题【详解】连接AB1BC1CA1根据等底等高的三角形面积相等△A1BC △A1B1C △AB1C △AB1C解析:72020【分析】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,可得111A B C S △=7S △ABC ,由此即可解题.【详解】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等, 所以,111A B C S △=7S △ABC ,同理222A B C S △=7111A B C S △=72S △ABC ,依此类推,△A 2020B 2020C 2020的面积为=72020S △ABC ,∵△ABC 的面积为1,∴202020202020A S B C ∆=72020.故答案为:72020.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.19.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°. 故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键. 20.【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB 的度数再根据三角形的内角和定理即可求出∠BOC 的度数【详解】解:∵OBOC 分别是∠ABC 和∠ACB 的角平分线∴∠OBC+∠O解析:110︒.【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB 的度数,再根据三角形的内角和定理即可求出∠BOC 的度数.【详解】解:∵OB 、OC 分别是∠ABC 和∠ACB 的角平分线,∴∠OBC+∠OCB=111()222ABC ACB ABC ACB ∠+∠=∠+∠ ∵∠A=40°, ∴∠OBC+∠OCB=1(18040)2︒︒- =70°, ∴∠BOC=180°-(∠OBC+∠OCB )=180°-70°故答案是110.【点睛】本题主要利用角平分线的定义和三角形内角和定理求解,熟记概念和定理是解题的关键.三、解答题21.28°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠BAD 的度数,在△ABD 中,利用三角形外角性质可求出∠PDE 的度数,再在△PDE 中利用三角形内角和定理可求出∠P 的度数.【详解】解:在ABC 中,80ACB ∠=︒,24B ∠=︒,18076BAC ACB B ∴∠=︒-∠-∠=︒. AD 平分BAC ∠,1382BAD BAC ∴∠=∠=︒. PDE ∠是ABD △的外角,243862PDE B BAD ∴∠=∠+∠=︒+︒=︒,PE BC ⊥于E ,90PED ∴∠=︒,906228P ∴∠=︒-︒=︒.【点睛】本题考查了三角形内角和定理、角平分线的定义以及对顶角,利用三角形内角和定理及角平分线的定义,求出∠ADC 的度数是解题的关键.22.a+c-b【分析】根据三角形的三边关系得出a+b >c ,a+c >b ,再去绝对值符号,合并同类项即可.【详解】解:∵a 、b 、c 为三角形三边的长,∴a+b >c ,a+c >b ,∴原式=(a b)c b (c a)c (a b)+-+-+--+=a+b-c-b+c+a+c-a-b=a+c-b【点睛】本题考查的是三角形的三边关系以及整式的加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.23.80ACB ∠=︒根据平行线的性质以及三角形内角和定理即可得到结论.【详解】解:由已知,265∠=︒,315∠=︒,85DBC ∠=︒∵//BD AE∴1265∠=∠=︒∴41856520DBC ∠=∠-∠=︒-︒=︒在ABC 中18018065152080ACB ABC BAC ∠=︒-∠-∠=︒-︒-︒-︒=︒【点睛】本题考查的是方向角的概念,平行线的性质以及三角形内角和定理,熟练掌握三角形的内角和是解答此题的关键.24.(1)10︒;(2)1122βα- 【分析】(1)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案;(2)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案.【详解】(1)∵∠B =40°,∠C =60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC , ∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-, 故答案为:1122βα-. 【点睛】此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键. 25.(1)a >b >c ;(2)见解析【分析】(1)a 、b 、c 两两作差可得出a 、b 、c 之间的大小关系;(2)对于任意一个三角形的三边a ,b ,c ,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0∴a >b >c ;(2)由(1)a >b >c 可得,a +b >c∵a -b = m 2+n 2-m 2=n 2<mn∴a -b <c∴以a 、b 、c 为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在. 26.(1)10°;(2)12DAE,证明见解析. 【分析】(1)根据三角形的内角和等于180︒列式求出BAC ∠,再根据角平分线的定义求出BAE ∠,根据直角三角形两锐角互余求出BAD ∠,然后根据DAE BAD BAE ∠=∠-∠代入数据计算即可得解;(2)根据三角形的内角和等于180︒列式表示出BAC ∠,再根据角平分线的定义求出BAE ∠,根据直角三角形两锐角互余求出BAD ∠,然后根据DAE BAD BAE ∠=∠-∠整理即可得解.【详解】解:(1)40B ∠=︒,60C ∠=°,180180406080BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒,AE ∵是角平分线, 11804022BAE BAC ,AD 是高,90904050BADB , 504010DAE BAD BAE ; (2)1()2.B α∠=,()C βαβ∠=<,180()BAC ,AE ∵是角平分线, 1190()22BAE BAC ,AD 是高,9090BADB , 1190[90()]()22DAE BAD BAE .【点睛】本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余的性质,熟练掌握定理与概念并准确识图理清图中各角度之间的关系是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外国语学校西区2018-2019学年八年级(上)月考数学试卷 A卷 一、选择题(每小题3分,共30分) 1.如图,阴影部分是一个长方形,它的面积是( )
A.3cm2 B.4cm2 C.5cm2 D.6cm2 2.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是( ) A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形 3.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是( ) A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3 C.a2=c2﹣b2 D.a:b:c=3:4:6 4.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到斜边AB的距离是( ) A. B. C.9 D.6 5.下列说法错误的有( ) ①无限小数是无理数; ②无理数都是带根号的数; ③只有正数才有平方根; ④3的平方根是; ⑤﹣2是(﹣2)2的平方根. A.1个 B.2个 C.3个 D.4个 6.下列各组数中互为相反数的是( ) A.﹣2 与 B.﹣2 与
C.﹣2 与﹣ D.2与|﹣2| 7.估计+1的值是( ) A.在2和3之间 B.在3和4之间 C.在4和5之间 D.在5和6之间 8.下列各组二次根式中,同类二次根式的是( ) A. B. C. D.
9.比较2,,的大小,正确的是( ) A. B. C. D. 10.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是( ) A.8米 B.10米 C.12米 D.14米 二、填空题(每小题4分,共16分) 11.2﹣的绝对值是 ;的算术平方根是 12.等腰三角形的腰长为10,底边长为12,则这个等腰三角形的面积为 . 13.六个数:0.123,,3.1416,﹣2π,(﹣1.5)3,0.1020020002(相邻两个2之间0的个数逐次加1),若其中无理数的个数为x,整数的个数为y,非负数的个数为z,则x+y+z= 三、解答题(共54分) 15.计算: (1)﹣3×+﹣(π+1)0×()﹣1
(2)()×(﹣2)2﹣+ (3)(3x﹣1)2=(﹣5)2 (4)(x+3)3=4 16.计算: (1)已知x﹣2的平方根是±4,2x﹣y+12的立方根是4,求(x﹣y)x+y的值; (2)在Rt△ABC中,∠C=90°,若c=10cm,a:b=3:4,求△ABC的周长; (3)已知a=,b=,试求a2+b2、a2+3ab+b2的值. 17.如图,圆柱形玻璃容器,高8cm,底面周长为30cm,在外侧下底的点S处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口外侧的点F处有食物,求蚂蚁要吃到食物所走的最短路线长度. (画出侧面展开图并计算) 18.如图,已知长方形ABCD中,AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求EF的长.
19.已知,点P是正方形ABCD内的一点,连接PA、PB、PC (1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1) ①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域的面积; ②若PA=2,PB=4,∠APB=135°,求PC的长; (2)如图2,在(1)的条件下,若PA2+PC2=2PB2,请说明点P必在对角线AC上.
B卷 一、填空(每题4分,共20分)B卷(满分20分) 20.一个正数m的平方根是2a+5和a﹣2,则m= .
21.若a,b为实数,且b=,则a+b= . 22.若实数x,y,z满足条件(x+y+z+9),则xyz的值= . 23.已知a、b为有理数,m、n分别表示5﹣的整数部分和小数部分,且am+bn=9,则a+b= .
24.如图,在△ABC中,AB=AC=1,BC边上有2013个不同的点P1,P2,…P2013,记mi=APi2+BPi
•PiC(i=1,2,…,2013),则m1+m2+…+m
2013= .
二、解答题(共30分) 25.已知△ABC中,AB=AC.
(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE; (2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=6,CD=8,求BD的长 26.阅读下面问题:==﹣1,=
=﹣,==﹣2… 试求: (1)根据你发现的规律,请计算(+++…
++)×(1+)的值; (2)求+++…+的值; (3)如果有理数a,b满足ab﹣2=+,试求:+++…
+. 27.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题: (1)如图①,若点P在线段AB上,且AC=1+,PA=,则: ①线段PB= ,PC= ; ②猜想:PA2,PB2,PQ2三者之间的数量关系为 ; (2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程; (3)若动点P满足=,求的值.(提示:请利用备用图进行探求) 参考答案与试题解析 A卷
一.选择题(共10小题) 1.如图,阴影部分是一个长方形,它的面积是( )
A.3cm2 B.4cm2 C.5cm2 D.6cm2 【分析】由勾股定理求出直角三角形的斜边长,再由长方形的面积公式即可得出结果. 【解答】解:由勾股定理得:=5(cm), ∴阴影部分的面积=5×1=5(cm2); 故选:C. 2.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是( ) A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形 【分析】对等式进行整理,再判断其形状. 【解答】解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形, 故选:C. 3.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是( ) A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3 C.a2=c2﹣b2 D.a:b:c=3:4:6 【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可. 【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形; B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;
C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;
D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.
故选:D. 4.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到斜边AB的距离是( ) A. B. C.9 D.6 【分析】设点C到斜边AB的距离是h,根据勾股定理求出AB的长,再根据三角形的面积公式即可得出结论. 【解答】解:设点C到斜边AB的距离是h, ∵在Rt△ABC中,∠C=90°,AC=9,BC=12, ∴AB==15,
∴h==. 故选:A. 5.下列说法错误的有( ) ①无限小数是无理数; ②无理数都是带根号的数; ③只有正数才有平方根; ④3的平方根是; ⑤﹣2是(﹣2)2的平方根. A.1个 B.2个 C.3个 D.4个 【分析】根据无理数是无限不循环小数,可得无理数,可判断①②;根据平方根,可判断③④⑤. 【解答】解:①无限循环小数是有理数,故①错误; ②无限不循环小数是无理数,故②错误; ③0的平方根是0,故③错误; ④3的平方根是±,故④错误; ⑤±,故⑤正确, 故选:D. 6.下列各组数中互为相反数的是( ) A.﹣2 与 B.﹣2 与
C.﹣2 与﹣ D.2与|﹣2| 【分析】根据相反数的意义求解即可. 【解答】解:A、只有符号不同的数互为相反数,故A符合题意; B、都是﹣2,故B不符合题意;
C、互为倒数,故C不符合题意;
D、都是2,故D不符合题意;
故选:A. 7.估计+1的值是( ) A.在2和3之间 B.在3和4之间 C.在4和5之间 D.在5和6之间 【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围. 【解答】解:∵32=9,42=16, ∴, ∴+1在4到5之间. 故选:C. 8.下列各组二次根式中,同类二次根式的是( ) A. B. C. D. 【分析】将选项中的二次根式化为最简,然后根据同类二次根式的被开方数相同即可得出答案. 【解答】解:A、与3的被开方数不同,不是同类二次根式,故本选项错误; B、3与的被开方数不同,不是同类二次根式,故本选项错误;
C、=,=,被开方数相同,是同类二次根式,故本选项正确;
D、=2,=,被开方数不同,不是同类二次根式,故本选项错误;
故选:C. 9.比较2,,的大小,正确的是( )
A. B. C. D. 【分析】首先把各数同时立方,然后比较被开方数的大小,即可解决问题. 【解答】解:∵23=8,()3=5≈11.2,()3=7 ∴<2<.