大学物理电磁学总结 精华

合集下载

大学物理电磁学公式总结汇总

大学物理电磁学公式总结汇总

大学物理电磁学公式总结汇总普通物理学教程大学物理电磁学公式总结,下面给大家整理了关于大学物理电磁学公式总结,方便大家学习大学物理电磁学公式总结1定律和定理1. 矢量叠加原理:任意一矢量可看成其独立的分量的和。

即:=∑ (把式中换成、、、、、就分别成了位置、速度、加速度、力、电场强度和磁感应强度的叠加原理)。

2. 牛顿定律:=m (或= );牛顿第三定律:′= ;万有引力定律:3. 动量定理:→动量守恒:条件4. 角动量定理:→角动量守恒:条件5. 动能原理:(比较势能定义式:)6. 功能原理:A外+A非保内=ΔE→机械能守恒:ΔE=0条件A 外+A非保内=07. 理想气体状态方程:或P=nkT(n=N/V,k=R/N0)8. 能量均分原理:在平衡态下,物质分子的每个自由度都具有相同的平均动能,其大小都为kT/2。

克劳修斯表述:不可能把热量从低温物体传到高温物体而不产生其它影响。

开尔文表述:不可能从单一热源吸取热量,使之完全变为有用的功而不产生其它影响。

实质:在孤立系统内部发生的过程,总是由热力学概率小的宏观状态向热力学概率大的状态进行。

亦即在孤立系统内部所发生的过程总是沿着无序性增大的方向进行。

9. 热力学第一定律:ΔE=Q+A10.热力学第二定律:孤立系统:ΔS0(熵增加原理)11. 库仑定律:(k=1/4πε0)12. 高斯定理:(静电场是有源场)→无穷大平板:E=σ/2ε013. 环路定理:(静电场无旋,因此是保守场)θ2Ir P o Rθ1I14. 毕奥—沙伐尔定律:直长载流导线:无限长载流导线:载流圆圈:,圆弧:电磁学1. 定义:= /q0 单位:N/C =V/mB=Fmax/qv;方向,小磁针指向(S→N);单位:特斯拉(T)=104高斯(G)① 和:=q( + × )洛仑兹公式②电势:电势差:电动势:( )③电通量:磁通量:磁通链:ΦB=NφB单位:韦伯(Wb)Θ ⊕-q +qS④电偶极矩:=q 磁矩:=I =IS⑤电容:C=q/U 单位:法拉(F)乘自感:L=Ψ/I 单位:亨利(H)乘互感:M=Ψ21/I1=Ψ12/I2 单位:亨利(H)⑥电流:I = ; 乘位移电流:ID =ε0 单位:安培(A)⑦乘能流密度:2. 实验定律① 库仑定律:②毕奥—沙伐尔定律:③安培定律:d =I ×④电磁感应定律:ε感= –动生电动势:感生电动势:( i为感生电场)乘⑤欧姆定律:U=IR( =ρ )其中ρ为电导率3. 乘定理(麦克斯韦方程组)电场的高斯定理:( 静是有源场)( 感是无源场)磁场的高斯定理:( 稳是无源场)( 感是无源场)电场的环路定理:(静电场无旋)(感生电场有旋;变化的磁场产生感生电场)安培环路定理:(稳恒磁场有旋)(变化的电场产生感生磁场)4. 常用公式①无限长载流导线:螺线管:B=nμ0I② 带电粒子在匀强磁场中:半径周期磁矩在匀强磁场中:受力F=0;受力矩③电容器储能:Wc= CU2 乘电场能量密度:ωe= ε0E2 电磁场能量密度:ω= ε0E2+ B2乘电感储能:WL= LI2 乘磁场能量密度:ωB= B2 电磁场能流密度:S=ωV④ 乘电磁波:C= =3.0×108m/s 在介质中V=C/n,频率f=ν=波动学大学物理电磁学公式总结2概念(2113定义和相关公式)1. 位置矢量:,其5261在直角坐标系中:; 角位置:4102θ16532. 速度:平均速度:速率:( )角速度:角速度与速度的关系:V=rω3. 加速度:或平均加速度:角加速度:在自然坐标系中其中(=rβ),(=r2 ω)4. 力:=m (或= ) 力矩:(大小:M=rFcosθ方向:右手螺旋法则)5. 动量:,角动量:(大小:L=rmvcosθ方向:右手螺旋法则)6. 冲量:(= Δt);功:(气体对外做功:A=∫PdV)mg(重力) → mgh-kx(弹性力) → kx2/2F= (万有引力) → =Ep(静电力) →7. 动能:mV2/28. 势能:A保= –ΔEp不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下:机械能:E=EK+EP9. 热量:其中:摩尔热容量C与过程有关,等容热容量Cv 与等压热容量Cp之间的关系为:Cp= Cv+R10. 压强:11. 分子平均平动能:;理想气体内能:12. 麦克斯韦速率分布函数:(意义:在V附近单位速度间隔内的分子数所占比率)13. 平均速率:方均根速率:;最可几速率:14. 熵:S=KlnΩ(Ω为热力学几率,即:一种宏观态包含的微观态数)15. 电场强度:= /q0 (对点电荷:)16. 电势:(对点电荷);电势能:Wa=qUa(A= –ΔW)17. 电容:C=Q/U ;电容器储能:W=CU2/2;电场能量密度ωe=ε0E2/218. 磁感应强度:大小,B=Fmax/qv(T);方向,小磁针指向(S→N)。

大学物理电磁学知识点

大学物理电磁学知识点

大学物理电磁学知识点电磁学是大学物理中的重要组成部分,它研究电荷、电场、磁场以及它们之间的相互作用。

下面我们来详细了解一下电磁学中的一些关键知识点。

一、库仑定律库仑定律是描述真空中两个静止点电荷之间相互作用力的定律。

其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$F$是库仑力,$k$是库仑常量,约为$90×10^9 N·m^2/C^2$,$q_1$和$q_2$分别是两个点电荷的电荷量,$r$是它们之间的距离。

库仑定律表明,两个点电荷之间的库仑力与它们电荷量的乘积成正比,与它们之间距离的平方成反比。

库仑力的方向沿着两个点电荷的连线,同种电荷相互排斥,异种电荷相互吸引。

二、电场电场是电荷周围存在的一种特殊物质,它对处于其中的电荷有力的作用。

电场强度是描述电场强弱和方向的物理量,定义为单位正电荷在电场中所受到的力,用$E$表示,其表达式为:$E =\frac{F}{q}$。

电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。

电场线是用来形象地描述电场分布的曲线。

电场线的疏密表示电场强度的大小,电场线的切线方向表示电场强度的方向。

正电荷的电场线从正电荷出发,终止于无穷远或负电荷;负电荷的电场线从无穷远或正电荷出发,终止于负电荷。

三、电势与电势能电势是描述电场能的性质的物理量,定义为把单位正电荷从电场中的某点移到参考点(通常取无穷远处或大地)时电场力所做的功。

电势是标量,用$V$表示。

电势能是电荷在电场中所具有的势能,等于电荷的电荷量与所在点的电势的乘积,用$E_p$表示,即$E_p = qV$。

四、高斯定理高斯定理是描述电场中电场强度的通量与电荷量之间关系的定理。

通过任意闭合曲面的电通量等于该闭合曲面所包围的电荷量的代数和除以$\varepsilon_0$,其中$\varepsilon_0$是真空介电常数。

高斯定理在求解具有对称性的电场分布问题时非常有用。

大学物理电磁学部分总结

大学物理电磁学部分总结

大学物理电磁学部分总结本文介绍了电磁学中静电场部分的基本性质和规律。

静电场是物质的一种存在形态,具有能量、动量、质量等属性。

电场的基本物理量是场强和电势,它们之间有密切的关系。

静电场的基本性质可以通过高斯定理和环路定理来反映。

在应用方面,可以通过计算电场强度和电通量来解决问题,同时也可以使用电势的计算方法。

此外,本文还介绍了导体和电介质在静电场中的特性,如导体的静电平衡状态和条件。

1.磁场基础知识a) 利用安培环路定理计算具有高度对称性的磁感应强度分布。

详见课堂例题。

b) 计算磁通量的三种情况:(1)在均匀磁场中,S与磁感应强度方向垂直;(2)在均匀磁场中,S法线方向与磁感应强度方向成θ角;(3)利用高斯定理求某些磁通量。

2.磁场对电荷和电流的作用a) 带电粒子在均匀磁场中的运动有三种情况:(1) v//B;(2) v⊥B;(3) v与B间夹角为θ。

在中学基础上会简单求解即可。

b) 霍尔效应:掌握___电势差的表达式、会判断载流子类型、___电势差的大小,正负。

c) 磁场对电流的作用:会由安培定律计算安培力;会由公式计算载流线圈的磁矩和磁力矩。

简单求解磁力的功。

3.磁介质与静电场相同,掌握无限大、均匀的、各向同性的磁介质的情况:介质的磁导率μ,B=μH,磁介质中的安培环路定理。

能够根据图示分清磁介质的种类,从铁磁质的磁滞回线判断剩磁、矫顽力、硬磁材料、矩磁材料和软磁材料。

4.电磁感应和电磁场部分掌握电磁感应基本定律:法拉第电磁感应定律,楞次定律——判断感应电流(电动势)方向。

掌握动生电动势和感生电动势的产生机理(非静电力或非静电场)、定义及求解。

对于任何感应电动势,都要求会用法拉第电磁感应定律计算。

对于动生电动势:要求会计算均匀磁场中平动和转动导体、非均匀磁场中平动的直导线中的动生电动势。

5.电磁场理论区分传导电流和位移电流。

位移电流与传导电流是完全不同的概念,仅在产生磁场方面二者等价。

传导电流是自由电荷的宏观定向运动,只存在于导体中,有电荷流动,通过导体会产生焦耳热。

大学物理电磁学复习总结-f1磁学总结

大学物理电磁学复习总结-f1磁学总结
非稳恒

L
L
H dl I I c d
(全电流定律)
4、铁磁质的特性: r;磁化饱和;剩磁;磁滞;居里点
5、磁滞回线:
BS
0
BS ——饱和磁感应强度 Br ——剩余磁感应强度 Hc——矫顽力
磁滞损耗∝回线包围的面积
6、铁磁质的分类: 类别 软磁材料 特点 Hc小,回线“瘦”; 易磁化;“铁损”小 用途 铁芯
D d S
0 i
L S
q
S
D H d l ( J ) d S c L S t

E H
S
d D Id dt D t
(2 ) B

L
全电流总连续。 Id 与Ic的区别: 5、 长直平行电流间单位长度上的相互作用力:
dF 0 I1I2 dl 2d
同向相吸反向相斥
电流分布 直 电 流 圆 电 流 一段导线 无限长 导线所在直线上 轴线上 圆心处
磁场分布 I 0 B (cos cos 1 2) 4 a
成左螺关系。
Ei
M
B t
②沿半径方向: =0 4、互感与自感: (1)互感:M
21 12
i1 i2
21
di1 dt

12
di2 dt
(2)自感:L i
L L di dt
(3)自感、互感关系: L1 L2 L 1 L 2 (无漏磁) M M= 0 (全漏磁) I I 顺接 I 反接 。 。 。。 5、线圈串联的顺接与反接: 1 2 3 4 L L 2 M (顺接) 1 2 L= L L 2 M (反接) 1 2 6、磁能:
θ
mv R qB

大学物理电磁学总结

大学物理电磁学总结

γ』叶
r

-;
pdV γ
J. 4万ιo y 2r
r.. = I
4、 5、
σ'dS
,
-
J 4πEO' 4
,
C. .
i01 J制定程(后面介绍 〉 通过电势解得(后面介绍)
一问
4 、 通过磁边 E解 fJ
(后面介绍〉
-=.
C = I
r
λ dl
,
-
山 4πE or4
e
几种常见的带电体的电场强度公式 1 、点电耐
几种苟且的磁感应强度公式
-
E=
l
4JZ"c o r ~
-7 ev
,
q -
1 、 无 限长且极流导线外
囚电流囚心 址 B~
B
μ。 I
_ J.lol
-一
un
z 、均匀 带电圆环轴线上点 :
71 qx 寸
2R
2 (x 2 + R 2 )习 2
l
M41rε。 ( R 2
+ X 2 )酬

3、
囚电流轴线上 .
4万 ε。 厅川 ,
1
q
, " .'
均匀带电球体的电势
4m;Of
V(巾一7
8;rcoR -
(3 二τ)(r < R)
R"
2
V(r) = . q
件 nιU -
(r> R)
均匀带电球面的电势
1 q V(r)=.. 4 11'"6'0 R
:(r <R)
←一
= -gradV
电介质

大学物理电磁学部分总结

大学物理电磁学部分总结

电磁学部分总结 静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。

静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动,电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。

电场强度 电势2、反映静电场基本性质的两条定理是高斯定理和环路定理要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。

重点是高斯定理的理解和应用。

3、应用(1)、电场强度的计算a)、由点电荷场强公式及场强叠加原理 计算场强q FE =⎰∞⋅==aa a rd E q W U 0∑⎰⎰=⋅=ΦiSe qS d E 01ε ⎰=⋅0r d E L 02041r rq E πε=i iE E ∑=一、离散分布的点电荷系的场强二、连续分布带电体的场强其中,重点掌握电荷呈线分布的带电体问题b)、由静电场中的高斯 定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。

还有可能结合电势的计算一起进行。

c)、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。

(2)、电通量的计算a)、均匀电场中S 与电场强度方向垂直b)、均匀电场,S 法线方向与电场强度方向成θ角c)、由高斯定理求某些电通量2041i ii i i i r r q E E πε∑=∑=⎰⎰π==0204d r rq E d E εUgradU E -∇=-=)(k zU j y U i x U ∂∂+∂∂+∂∂-=(3)、电势的计算a)、场强积分法(定义法)——根据已知的场强分布,按定义计算b)、电势叠加法——已知电荷分布,由点电荷电势公式,利用电势叠加原理计算第二部分:静电场中的导体和电介质 一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。

大学物理电磁学心得体会

大学物理电磁学心得体会在大学学习物理电磁学的过程中,我通过理论学习、实验探究以及数值模拟等方式,深入了解了电磁学的基本原理和应用。

在这个过程中,我收获颇丰,不仅增加了对物理学的兴趣,也体会到了学习物理学的乐趣和挑战。

以下是我对大学物理电磁学的一些心得体会。

一、电磁学的基本原理电磁学作为一门学科,涉及了电场、磁场以及它们之间的相互作用。

通过学习电磁学,我领悟到了一些基本概念的重要性,比如电荷、电场强度、电势、磁感应强度、磁场力等。

这些概念的理解对于后续学习电磁学的内容至关重要,只有对这些基本概念有深入的认识,才能够更好地理解电磁学的各个方面。

二、电磁学理论的应用在学习电磁学的过程中,我不仅了解了电磁学的基本原理,还学习了一些电磁学的应用。

比如,电磁感应现象和法拉第电磁感应定律的应用,使我更加深入地理解了电磁学与电磁感应之间的关系。

此外,电磁波的传播原理和特性也是电磁学中重要的内容,通过学习电磁波,我对无线通信、雷达、电视等技术有了更加深入的了解。

三、实验与数值模拟的重要性在电磁学的学习过程中,实验与数值模拟是不可或缺的环节。

通过实验,我能够亲身体验到电磁学理论的应用,并通过实验结果验证所学的理论。

实验让我对电磁学的知识有了更加直观和深入的理解。

此外,数值模拟也在电磁学学习中发挥了重要作用。

数值模拟可以模拟复杂的电磁现象,帮助我更好地理解电磁学的各个概念和原理。

四、团队合作与交流学习物理学,特别是电磁学,需要进行大量的实验和讨论。

在这个过程中,我逐渐认识到团队合作与交流的重要性。

与同学们一起进行实验探究,共同解决问题,相互交流经验和心得,不仅加深了对物理学知识的理解,还提高了团队合作的能力和交流能力。

五、自主学习与批判思维学习物理学需要具备自主学习的能力和批判思维。

在学习电磁学的过程中,我不仅仅是被动地接受知识,更是通过自主学习和思考来加深对电磁学的理解。

通过批判思维,我能够更好地分析和评估所学的理论和模型的适用性,并形成自己的见解。

大学物理电磁学心得体会

大学物理电磁学心得体会电磁学是大学物理中的一门重要课程,通过学习电场和磁场的相关理论以及它们之间的相互作用,我对电磁学有了更深入的了解。

在学习过程中,我总结了一些心得体会,希望能够对学习电磁学的同学们有所帮助。

第一,理论与实践相结合。

学习电磁学最重要的一点是理论与实践相结合,理论只是为了更好地指导实践。

在学习电磁学的过程中,不能仅仅将重心放在理论推导上,更需要通过实验去验证理论的正确性。

通过实验,我们可以更直观地认识到电场和磁场的特性,加深对其基本原理的理解。

因此,在学习电磁学的过程中,我们应该注重实验操作的训练,积极参与实验课程,亲身体验电磁现象,加深对电磁学知识的理解。

第二,逻辑清晰,问题迎刃而解。

电磁学是一门较为抽象的学科,需要我们掌握一定的数学基础,并且在解题过程中能够运用逻辑思维。

在学习电磁学时,我发现将问题进行逻辑梳理后,会事半功倍。

当遇到一个电磁学问题时,首先应该明确所给条件和要求,然后分析问题的本质,找到问题的关键点和规律。

在解题过程中,要注重逻辑推理,提高自己的思维严谨性,尽可能减少漏洞和错误。

只有掌握了逻辑推理的方法,才能在解决电磁学问题的过程中游刃有余。

第三,培养物理直觉,建立丰富的物理图像。

在学习电磁学过程中,我们要培养自己的物理直觉,形成一种基于物理直觉的思考方式。

通过大量的练习和实践,我们可以建立起丰富的物理图像,将抽象的数学公式转化为直观的图像,从而更好地理解电磁学的概念和原理。

比如,在学习电场时,我们可以通过绘制电场线的方式来形象地表示电场的分布情况;在学习磁场时,可以通过绘制磁感线的方式来理解磁场的特性。

通过建立物理图像,我们可以更好地认识到电磁学的具体应用和现实意义。

第四,注重解题方法和技巧的掌握。

在学习电磁学的过程中,我发现熟练掌握解题方法和技巧对于解决问题非常重要。

通过总结归纳,我发现在解决电磁学问题时,可以采用以下几个常用的解题方法和技巧:首先,要善于运用高斯定律和安培环路定理,这是解决电场和磁场问题的基本工具;其次,要善于运用叠加原理和对称性原理,通过简化复杂问题,降低求解难度;另外,要善于利用数学工具,如矢量分析和微积分等,来加快解题速度和提高解题质量。

【精品】大学物理电磁学部分总结

【精品】大学物理电磁学部分总结一、电磁学及其应用电磁学是研究电场、磁场、电动势与磁动势及其作用之门门学科:它在物理学上,研究电场、磁场、电动势及磁动势的形成、传播、作用机理;在材料学上,研究材料对电场和磁场的反应和作用;在工程学上,研究电场和磁场的合理利用以及它们自身的特性及其应用。

有研究显示,电磁学对人类生活和工作的影响巨大,它提供了许多用于获得信息、控制运动和传输电能的重要原理和方法。

例如,电磁学的开发应用给电信、电子学和计算机领域做出了巨大的贡献,无射线电流可以轻松完成国内外大量的电子、电信设备的远程监控、远程控制和数据传输的任务,使得人类的文明水平进步得更《快捷》。

此外,电子探测、电磁遥感、电磁断层成像及其它用电磁APP于诊断、治疗服务深受人们青睐,极大拓宽了电医学领域的应用范围,为止去贴旷日持久病、遗传病和精神分装病等疾病做出了很大贡献,对于促进人们健康发挥了重要作用。

二、电磁定律电磁学的基础是电磁场牵涉到的电磁定律,电磁学的发展就是建立及应用这些定律的过程。

1、定义电流《电磁学》的第一个定律是定义电流——电流由分布在载体中的电荷发生。

因此,电流可以看作是移动电荷的流动。

2、定义磁感应《电磁学》的第二个定律是定义磁感应——当电流发生变化时,它会产生磁感应。

即在一点处,磁感应是各种特性的函数,其中包括向量旋度,微分曲率,曲率的偏度等。

它的结果可以用磁场的方法来换算得出。

《电磁学》的第三个定律是定义电动势——电动势是由一个点到另一个点的电场的差值。

此外,电动势可表示为电场的瞬时变化,也可以由电场各种特性做出推断。

4、定义磁动势三、电磁场定义及性质电磁场可以定义为比特拉斯尼埃变量,由电场、磁场和电磁能量流组成。

空间内任何一点都有一个电磁场,这个电磁场会影响任何物质和能量的运动。

它具有电势、磁势和动量,施加在物体上释放出电动势或磁动势,因此对物体有力和功能都会产生影响。

除了以上性质之外,电磁场还具有强大的能量存储能力,它们不仅能够激发电磁波,而且能够将我们辛苦的获得的能量保存起来,使得电磁场成为一个重要的能源来源,广大应用中。

大一物理电磁学知识点总结

大一物理电磁学知识点总结电磁学是物理学中非常重要的一个分支,它研究电荷与电荷之间以及电荷与磁场之间的相互作用。

对于大一学生来说,学习电磁学是物理学习的重要组成部分。

下面我将对大一物理电磁学的知识点进行总结。

1. 静电学静电学研究的是静止的电荷之间的相互作用。

在静电学中,有几个重要的概念需要掌握。

首先是电荷,电荷的大小用库仑(C)为单位表示。

当两个相同电荷之间存在斥力,而两个不同电荷之间存在引力。

其次是库仑定律,库仑定律给出了两个电荷之间的相互作用力的大小与它们之间的距离的平方成反比。

最后是电场,电场是由电荷所产生的一种物理量,电场的强度可以用电场力除以电荷的大小来表示。

2. 电场电场是一个重要的物理概念,在电磁学中应用广泛。

电场可以用来描述在某一点受力的电荷所受到的力的大小和方向。

电场的强度可以用电场线来表示,电场线的密度表示电场的强弱,而电场线的方向表示电场力的方向。

电场力的计算可以通过库仑定律和电场的定义公式来进行。

电场还有一个重要的性质是电场是保守场,即沿闭合回路的环路积分为零。

3. 电势电势是另一个与电场紧密相关的物理概念。

电势可以理解为单位正电荷在电场中所具有的势能。

电势的计算可以通过电势差和电场强度的乘积来进行。

电势差可以通过静电场的定义公式来计算。

在静电场中,电势差沿着闭合回路的环路积分始终为零。

电势的单位是伏特(V)。

4. 磁场磁场是由电流所产生的一种物理现象。

电流是电荷的移动,带有电荷的物体电流称为直流,没有电荷的物体电流称为交流。

磁场的强度可以通过比奥萨伐定律进行计算。

比奥萨伐定律给出了电流元所产生的磁场的大小和方向。

磁场的单位是特斯拉(T)。

磁场力是由电荷在磁场中所受到的力。

洛伦兹力是由带电粒子在磁场中所受到的力。

5. 电磁感应电磁感应是电磁学中的一个重要概念。

电磁感应是指通过磁场的变化而产生电流。

法拉第定律描述了电磁感应的原理。

根据法拉第定律,当磁场的磁通量发生变化时,会在导体中产生感应电动势,进而产生电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档