高中数学模块复习课2利用空间向量解决空间问题课件北师大选修2_1

合集下载

高中数学选修2-1课件:3.2 第3课时 空间向量与空间角

高中数学选修2-1课件:3.2 第3课时 空间向量与空间角

反思与感悟
解析答案
跟踪训练2 如图,正方形AMDE的边长为2,B,C分别为AM,MD的中
点,在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分
别交于点G,H. (1)求证:AB∥FG;
证明 在正方形AMDE中,因为B是AM的中点,
所以AB∥DE.
又因为AB⊄平面PDE,DE⊂平面PDE,
-1),C→E=(1,t-2,0),
根据数量积的定义及已知得:1+0×(t-2)+0= 2× 1+t-22·cos 60°,
所以t=1,所以点E的位置是AB的中点.
解析答案
题型二 直线与平面所成角的向量求法 例2 已知正三棱柱ABCA1B1C1的底面边长为a ,侧棱长为 2a ,M为 A1B1的中点,求BC1与平面AMC1所成角的正弦值.
D.90°
解析 ∵cos〈m,n〉= 12= 22,
∴二面角的大小为45°或135°.
解析答案
12345
3.在正三棱柱ABC—A1B1C1中,若AB= 2BB1,则AB1与C1B所成角的大 小为( )
A.60°
B.90°
C.105°
D.75°
解析答案
12345
4.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值为( )
232Fra bibliotekA. 3
B. 3
C.3
6 D. 3
解析答案
12345
5.在长方体ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,则异面直 9
线A1B与B1C所成角的余弦值为_2_5__. 解析 如图,建立空间直角坐标系. 由已知得A1(4,0,0),B(4,4,3),B1(4,4,0),C(0,4,3). ∴A→1B=(0,4,3),B→1C=(-4,0,3), ∴cos〈A—1→B,B—1→C〉=295.

【测控设计】2015-2016学年高二数学北师大版选修2-1课件:2.3.3 空间向量运算的坐标表示

【测控设计】2015-2016学年高二数学北师大版选修2-1课件:2.3.3 空间向量运算的坐标表示
1 2
D.-6
8
【做一做 2-3】已知向量 a=(1,λ,2),b=(2, -1,2),且 a, b 夹角的余弦值为 , 9 则 λ 等于 . 解析 :cos<a,b>= 答案 :-2 或
2 55 ������ · ������ | ������ |· |������|
=
1×2+������· (-1 ) +2×2 5+������ · 9
2
= ,解得 λ=-2 或 λ= .
9 55
8
2
-6-
3.3 空间向量运算的 坐标表示 1 2
M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODAOHANG HISHISHULI
HONGNANJUJIAO
D典例透析 S随堂演练
IANLITOUXI
UITANGYANLIAN
1 .空间向量的坐标运算 剖析 :空间向量的坐标运算和平面向量的坐标运算类似,两个向量的加、 减、数乘运算就是向量的横坐标、纵坐标、竖坐标分别进行加、减、数乘 运算 ;空间两个向量的数量积等于它们对应坐标的乘积之和.
2 2 2 2 2 ������2 1 +������ 1 +������1 · ������2 +������ 2 +������2
(3)a⊥b⇔x1x2+y1y2+z1z2=0.
-4-
3.3 空间向量运算的 坐标表示
M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODAOHANG HISHISHULI
-3-
3.3 空间向量运算的 坐标表示
M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODAOHANG HISHISHULI

2-5-1~2夹角的计算课件(北师大版选修2-1)

2-5-1~2夹角的计算课件(北师大版选修2-1)

按照二面角的平面角的定义和空间任意两个向量都是共面向量 的知识,我们只要是在二面角的两个半平面内分别作和二面角 的棱垂直的向量,并且两个向量的方向均指向棱或者都从棱指 向外,那么这两个向量所成的角的大小就是二面角的大小.如 图所示.
题型一 利用空间向量求异面直线所成的角 【例 1】 在正方体 ABCD-A1B1C1D1 中,E1,F1 分别在 A1B1, 1 1 C1D1 上,且 E1B1=4A1B1,D1F1=4D1C1,求 BE1 与 DF1 所成的 夹角的余弦值. [思路探索] 几何法,平移直线构造在同一个三角形中,通过解 三角形求解;向量法,可以用基底,也可以建立坐标系,利用 方向向量的夹角求解.
→ |n· | 1 BM ∵cos θ =|cos φ |= = , → 2 |n||BM| π 解得 θ= , 3 π ∴二面角 B1­A1C­C1 的大小为 3 .
题型三 综合问题 【例 3】 (12 分)如下图,在长方体 ABCD-A1B1C1D1 中,已知 AB=4,AD=3,AA1=2.E、F 分别是线段 AB、BC 上的点,且 EB=FB=1.
题型二
利用空间向量求二面角
【例 2】已知正方体 ABCD-A1B1C1D1 中平面 AB1D1 与平面 A1BD 所成的夹角为 θ,求 cos θ 的值.
求点坐标及相 [思路探索] 建立坐标系 → → 关向量的坐标 A1BD 及平面 AB1D1 的法向量 n1, 2→ n
求平面
求|cos 1, 2〉 cos θ 〈n n |→
→ ∵向量AA1=(0,0,2)与平面 CDE 垂直, 设二面角 CDEC1 的平面角大小为 θ. 由图知所求二面角为锐二面角,(6 分) → n· 1 AA → ∴cos θ =cos〈n,AA1〉= → |n|· 1| |AA -1×0-1×0+2×2 6 = =3, 1+1+4× 0+0+4 2 ∴tan θ = .(8 分) 2

2020北师大版高中数学选修2-1 教师课件:第二章 空间向量运算的坐标表示

2020北师大版高中数学选修2-1 教师课件:第二章  空间向量运算的坐标表示

[解析] 由已知可得:A→B=(4,5,-1)-(2,-1,2)=(2,6,-3),A→C=(-2,2,3) -(2,-1,2)=(-4,3,1). (1)O→P=12(A→B-A→C)=12[(2,6,-3)-(-4,3,1)]=(3,32,-2),所以 P 点的坐标 为(3,32,-2).
(2)设 P(x,y,z),则A→P=(x-2,y+1,z-2). 因为12(A→B-A→C)=(3,32,-2), 所以A→P=(x-2,y+1,z-2)=(3,32,-2), 解得:x=5,y=12,z=0,则 P 点的坐标为(5,12,0).
[解析] (1)∵c∥B→C, ∴c=mB→C=m(-2,-1,2)=(-2m,-m,2m)(m∈R), ∴|c|= -2m2+-m2+2m2=3|m|=3, ∴m=±1, ∴c=(-2,-1,2)或 c=(2,1,-2). (2)∵a=(1,1,0),b=(-1,0,2), ∴a·b=(1,1,0)·(-1,0,2)=-1. 又|a|= 12+12+0= 2,|b|= -12+0+22= 5, ∴(ka+b)·(ka-2b)=k2a2-ka·b-2b2=2k2+k-10=0,得 k=2 或 k=-52.
3+y-2z=0
z=1
∴向量 a=(-1,1,2),b=(1,-1,-2),c=(3,1,1). (2)∵a+c=(2,2,3),b+c=(4,0,-1), ∴(a+c)·(b+c)=2×4+2×0+3×(-1)=5, |a+c|= 22+22+32= 17,|b+c|= 42+02+-12= 17, ∴a+c 与 b+c 所成角的余弦值为a|a++cc|·|bb++cc|=157.
解析:(1)以 C 为坐标原点,建立如图所示的空间直角坐标系. 由已知,得 C(0,0,0),A(1,0,0),B(0,1,0),C1(0,0,2),P12,12,2, Q(1,0,1),B1(0,1,2),A1(1,0,2). ∴B→Q=(1,-1,1),C→B1=(0,1,2),B→A1=(1,-1,2),A→B1=(- 1,1,2),C→1P=12,12,0, ∴|B→Q|= 12+-12+12= 3.

2.1《从平面向量到空间向量》课件(北师大版选修2-1)

2.1《从平面向量到空间向量》课件(北师大版选修2-1)
一、选择题(每题5分,共15分)
1.在空间向量中,下列说法正确的是(
)
(A)如果两个向量的长度相等,那么这两个向量相等 (B)如果两个向量平行,那么这两个向量的方向相同 (C)如果两个向量平行并且它们的模相等,那么这两个向量相 等 (D)同向且等长的有向线段表示同一向量
3.(5分)在平行六面体ABCD—A′B′C′D′中,与向量BA相等 的向量是_______;与BC′平行的向量是_______. 【解析】CD是与BA长度相等,方向相同的向量,AD′是与 BC′方向相同的向量
答案:CD
AD′(答案不唯一)
4.(15分)已知:如图所示的多面体是由底面为ABCD的长方体
被截面AEFG所截而得的,其中AD=1,BE=3,CD内,所以CD⊥AI,在等腰三角形EAD中,I是ED的中点,所
以AI⊥ED,所以AI⊥平面CDE.因此AI是平面ECD的法向量.
2.(5分)记“一个平面和它的一个法向量”为一个“垂直 对”,那么,在正方体中,由正方体的四个顶点围成的面,由
两个顶点对应的向量(AB与BA只记一次)中,共可以组成“垂
1.(5分)如图,四棱锥E—ABCD中,EA⊥平面ABCD,四边形
ABCD为正方形,且EA=AD,F、G、H、I分别是所在边上的中点, 则过点A作平面CDE的一个法向量是( )
【解析】选A.因为EA⊥平面ABCD,所以EA⊥CD,又四边形 ABCD为正方形,所以AD⊥CD,所以CD⊥平面EAD,又AI在平面
两条不共线的向量都垂直的向量.
【解析】
7.在空间四边形ABCD中,已知BC=AC,AD=BD,作BE⊥CD,E为
垂足,作AH⊥BE于H,求证:AH是平面BCD的一个法向量.
【证明】取AB中点F,连接CF、DF、AE, ∵AC=BC,∴CF⊥AB. 又∵AD=BD,∴DF⊥AB,∴AB⊥平面CDF. 又CD在平面CDF内,∴CD⊥AB.又CD⊥BE, ∴CD⊥平面ABE, ∴CD⊥AH.又AH⊥BE,∴AH⊥平面BCD.故 AH是平面BCD的一个法向量.

数学精致讲义选修2-1北师大版第二章空间向量与立体几何§33.1~3.2含答案

数学精致讲义选修2-1北师大版第二章空间向量与立体几何§33.1~3.2含答案

§3 向量的坐标表示和空间向量基本定理(一) 3.1 空间向量的标准正交分解与坐标表示3.2 空间向量基本定理学习目标 1.了解空间向量基本定理.2.了解基底、标准正交基的概念.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.知识点一 空间向量的坐标表示 空间向量的正交分解及其坐标表示知识点二 空间向量基本定理思考 平面向量基本定理的内容是什么?答案 如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中,不共线的e 1,e 2叫作表示这一平面内所有向量的一组基底.梳理 (1)空间向量基本定理(2)基底条件:三个向量a ,b ,c 不共面. 结论:{a ,b ,c }叫作空间的一个基底.基向量:基底中的向量a ,b ,c 都叫作基向量.1.空间的任何一个向量都可用三个给定向量表示.(×)2.若{a ,b ,c }为空间的一个基底,则a ,b ,c 全不是零向量.(√)3.如果向量a ,b 与任何向量都不能构成空间的一个基底,则一定有a 与b 共线.(√) 4.任何三个不共线的向量都可构成空间的一个基底.(×)类型一 基底的判断例1 下列能使向量MA →,MB →,MC →成为空间的一个基底的关系式是( ) A.OM →=13OA →+13OB →+13OC →B.MA →=MB →+MC →C.OM →=OA →+OB →+OC →D.MA →=2MB →-MC(2)设x =a +b ,y =b +c ,z =c +a ,且{a ,b ,c }是空间的一个基底,给出下列向量:①{a ,b ,x };②{b ,c ,z };③{x ,y ,a +b +c }.其中可以作为空间的基底的有( ) A .1个B .2个C .3个D .0个 考点 空间向量基底的概念 题点 空间向量基底的判断 答案 (1)C (2)B解析 (1)对于选项A ,由OM →=xOA →+yOB →+zOC →(x +y +z =1)⇔M ,A ,B ,C 四点共面知,MA →,MB →,MC →共面;对于选项B ,D ,可知MA →,MB →,MC →共面,故选C. (2)②③均可以作为空间的基底,故选B. 反思与感悟 基底判断的基本思路及方法(1)基本思路:判断三个空间向量是否共面,若共面,则不能构成基底;若不共面,则能构成基底.(2)方法:①如果向量中存在零向量,则不能作为基底;如果存在一个向量可以用另外的向量线性表示,则不能构成基底.②假设a =λb +μc ,运用空间向量基本定理,建立λ,μ的方程组,若有解,则共面,不能作为基底;若无解,则不共面,能作为基底.跟踪训练1 (1)已知a ,b ,c 是不共面的三个非零向量,则可以与向量p =a +b ,q =a -b 构成基底的向量是( ) A .2a B .2b C .2a +3b D .2a +5c答案 D(2)以下四个命题中正确的是( ) A .基底{a ,b ,c }中可以有零向量B .空间任何三个不共面的向量都可构成空间向量的一个基底C .△ABC 为直角三角形的充要条件是AB →·AC →=0 D .空间向量的基底只能有一组 考点 空间向量基底的概念 题点 空间向量基底的概念 答案 B解析 使用排除法.因为零向量与任意两个非零向量都共面,故A 不正确;△ABC 为直角三角形并不一定是AB →·AC →=0,可能是BC →·BA →=0,也可能是CA →·CB →=0,故C 不正确;空间基底可以有无数多组,故D 不正确.类型二 空间向量基本定理的应用例2 如图所示,空间四边形OABC 中,G ,H 分别是△ABC ,△OBC 的重心,设OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点.试用向量a ,b ,c 表示向量OG →和GH →.考点 空间向量基底的概念 题点 空间向量基本定理 解 因为OG →=OA →+AG →, 而AG →=23AD →,AD →=OD →-OA →,又D 为BC 的中点,所以OD →=12(OB →+OC →),所以OG →=OA →+23AD →=OA →+23(OD →-OA →)=OA →+23×12(OB →+OC →)-23OA →=13(OA →+OB →+OC →)=13(a +b +c ). 又因为GH →=OH →-OG →, OH →=23OD →=23×12(OB →+OC →)=13(b +c ), 所以GH →=13(b +c )-13(a +b +c )=-13a .所以OG →=13(a +b +c ),GH →=-13a .反思与感悟 用基底表示向量时,若基底确定,要充分利用向量加法、减法的三角形法则和平行四边形法则,以及向量数乘的运算律;若没给定基底,首先选择基底,选择时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角是否已知或易求. 跟踪训练2 在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B —→,EF →;(2)若D 1F —→=x a +y b +z c ,求实数x ,y ,z 的值. 考点 空间向量基底的概念 题点 空间向量基本定理解 (1)如图,连接AC ,EF ,D 1F ,BD 1,D 1B —→=D 1D —→+DB →=-AA 1—→+AB →-AD →=a -b -c , EF →=EA →+AF →=12D 1A —→+12AC →=-12(AA 1—→+AD →)+12(AB →+AD →)=12(a -c ).(2)D 1F —→=12(D 1D —→+D 1B —→)=12(-AA 1—→+D 1B —→) =12(-c +a -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.类型三 空间向量的坐标表示例3 (1)设{e 1,e 2,e 3}是空间的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________________. 考点 空间向量的正交分解 题点 向量的坐标答案 (4,-8,3),(-2,-3,7)解析 由于{e 1,e 2,e 3}是空间的一个单位正交基底,所以a =(4,-8,3),b =(-2,-3,7). (2)已知a =(3,4,5),e 1=(2,-1,1),e 2=(1,1,-1),e 3=(0,3,3),求a 沿e 1,e 2,e 3的正交分解.考点 空间向量的正交分解 题点 向量的坐标解 因为a =(3,4,5),e 1=(2,-1,1), e 2=(1,1,-1),e 3=(0,3,3), 设a =αe 1+βe 2+λe 3,即(3,4,5)=(2α+β,-α+β+3λ,α-β+3λ),所以⎩⎪⎨⎪⎧2α+β=3,-α+β+3λ=4,α-β+3λ=5,解得⎩⎪⎨⎪⎧α=76,β=23,λ=32,所以a 沿e 1,e 2,e 3的正交分解为a =76e 1+23e 2+32e 3.反思与感悟 用坐标表示空间向量的步骤跟踪训练3 (1)在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC 的中点,MN →在基底{a ,b ,c }下的坐标为________.考点 空间向量的正交分解 题点 向量的坐标 答案 ⎝⎛⎭⎫-23,12,12 解析 ∵OM =2MA ,点M 在OA 上, ∴OM =23OA ,∴MN →=MO →+ON →=-OM →+12(OB →+OC →)=-23a +12b +12c .∴MN →在基底{a ,b ,c }下的坐标为⎝⎛⎭⎫-23,12,12. (2)已知P A 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且P A =AD =1.在如图所示的空间直角坐标系中,求向量MN →的坐标.考点 空间向量的正交分解 题点 向量的坐标解 因为P A =AD =AB =1, 所以可设AB →=e 1,AD →=e 2,AP →=e 3. 因为MN →=MA →+AP →+PN → =MA →+AP →+12PC →=MA →+AP →+12(P A →+AD →+DC →)=-12AB →+AP →+12(-AP →+AD →+AB →)=12AP →+12AD →=12e 3+12e 2, 所以MN →=⎝⎛⎭⎫0,12,12.1.已知i ,j ,k 分别是空间直角坐标系Oxyz 中x 轴,y 轴,z 轴的正方向上的单位向量,且AB →=-i +j -k ,则点B 的坐标是( ) A .(-1,1,-1) B .(-i ,j ,-k ) C .(1,-1,-1) D .不确定考点 空间向量的正交分解 题点 向量的坐标 答案 D解析 由AB →=-i +j -k 只能确定向量AB →=(-1,1,-1),而向量AB →的起点A 的坐标未知,故终点B 的坐标不确定.2.在下列两个命题中,真命题是( )①若三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;②若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底.A .仅①B .仅②C .①②D .都不是 考点 空间向量基底的概念 题点 空间向量基底的概念 答案 A解析 ①为真命题;②中,由题意得a ,b ,c 共面,故②为假命题,故选A.3.已知点A 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则点A 在基底{i ,j ,k }下的坐标是( ) A .(12,14,10) B .(10,12,14) C .(14,12,10)D .(4,3,2)考点 空间向量的正交分解 题点 向量的坐标 答案 A解析 设点A 在基底{a ,b ,c }下对应的向量为p ,则p =8a +6b +4c =8i +8j +6j +6k +4k +4i =12i +14j +10k ,故点A 在基底{i ,j ,k }下的坐标为(12,14,10).4.若a =e 1+e 2+e 3,b =e 1+e 2-e 3,c =e 1-e 2+e 3,d =e 1+2e 2+3e 3,d =αa +βb +λc ,则α,β,λ的值分别为________. 考点 空间向量的正交分解题点 空间向量在单位正交基底下的坐标答案 52,-1,-12解析 ∵d =α(e 1+e 2+e 3)+β(e 1+e 2-e 3)+λ(e 1-e 2+e 3) =(α+β+λ)e 1+(α+β-λ)e 2+(α-β+λ)e 3 =e 1+2e 2+3e 3, ∴⎩⎪⎨⎪⎧α+β+λ=1,α+β-λ=2,α-β+λ=3,∴⎩⎪⎨⎪⎧α=52,β=-1,λ=-12.5.如图,已知P A ⊥平面ABCD ,四边形ABCD 为正方形,G 为△PDC 的重心,AB →=i ,AD →=j ,AP →=k ,试用基底{i ,j ,k }表示向量PG →,BG →.考点 空间向量的正交分解 题点 向量在单位正交基底下的坐标解 延长PG 交CD 于点N ,则N 为CD 的中点,PG →=23PN →=23⎣⎡⎦⎤12(PC →+PD →) =13(P A →+AB →+AD →+AD →-AP →) =13AB →+23AD →-23AP →=13i +23j -23k . BG →=BC →+CN →+NG →=BC →+CN →+13NP →=AD →-12DC →-13PN →=AD →-12AB →-⎝⎛⎭⎫16AB →+13AD →-13AP → =23AD →-23AB →+13AP → =-23i +23j +13k .1.基底中不能有零向量.因零向量与任意一个非零向量都为共线向量,与任意两个非零向量都共面,所以三个向量为基底隐含着三个向量一定为非零向量.2.空间几何体中,要得到有关点的坐标时,先建立适当的坐标系,一般选择两两垂直的三条线段所在直线为坐标轴,然后选择基向量,根据已知条件和图形关系将所求向量用基向量表示,即得所求向量的坐标.3.用基底表示空间向量,一般要用向量的加法、减法、数乘的运算法则,及加法的平行四边形法则,加法、减法的三角形法则.逐步向基向量过渡,直到全部用基向量表示.一、选择题1.下列说法中不正确的是( )A .只要空间的三个向量的模为1,那么它们就能构成空间的一个单位正交基底B .竖坐标为0的向量平行于x 轴与y 轴所确定的平面C .纵坐标为0的向量都共面D .横坐标为0的向量都与x 轴上的基向量垂直 考点 空间向量基底的概念 题点 空间向量基底的概念 答案 A解析 单位正交基底除要求模为1外,还要求三个向量两两垂直. 2.在空间直角坐标系Oxyz 中,下列说法中正确的是( ) A .向量AB →的坐标与点B 的坐标相同 B .向量AB →的坐标与点A 的坐标相同 C .向量AB →的坐标与向量OB →的坐标相同 D .向量AB →的坐标与OB →-OA →的坐标相同 考点 空间向量的正交分解 题点 向量的坐标 答案 D3.已知点O ,A ,B ,C 为空间不共面的四点,且向量a =OA →+OB →+OC →,向量b =OA →+OB →-OC →,则与a ,b 不能构成空间基底的向量是( ) A.OA →B.OB →C.OC →D.OA →或OB →考点 空间向量基底的概念 题点 空间向量基底的概念 答案 C解析 ∵OC →=12a -12b 且a ,b 不共线,∴a ,b ,OC →共面,∴OC →与a ,b 不能构成一组空间基底.4.已知A (3,4,5),B (0,2,1),O (0,0,0),若OC →=25AB →,则C 的坐标是( )A.⎝⎛⎭⎫-65,-45,-85 B.⎝⎛⎭⎫65,-45,-85 C.⎝⎛⎭⎫-65,-45,85 D.⎝⎛⎭⎫65,45,85考点 空间向量的正交分解 题点 向量的坐标 答案 A解析 设点C 坐标为(x ,y ,z ),则OC →=(x ,y ,z ). 又AB →=(-3,-2,-4),OC →=25AB →,∴x =-65,y =-45,z =-85.5.{a ,b ,c }为空间的一个基底,且存在实数x ,y ,z 使得x a +y b +z c =0,则x ,y ,z 的值分别为( ) A .0,0,1 B .0,0,0 C .1,0,1D .0,1,0 考点 空间向量基底的概念 题点 空间向量基底的概念 答案 B解析 若x ,y ,z 中存在一个不为0的数,不妨设x ≠0,则a =-y x b -zx c ,∴a ,b ,c 共面.这与{a ,b ,c }是基底矛盾,故x =y =z =0.6.设a ,b ,c 是三个不共面向量,现从①a -b ,②a +b -c 中选出一个使其与a ,b 构成空间的一个基底,则可以选择的是( ) A .仅① B .仅② C .①②D .不确定 考点 空间向量基底的概念题点 空间向量基底的概念 答案 B解析 对于①∵a -b 与a ,b 共面, ∴a -b 与a ,b 不能构成空间的一个基底.对于②∵a +b -c 与a ,b 不共面,∴a +b -c 与a ,b 构成空间的一个基底.7.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( ) A.⎝⎛⎭⎫14,14,14 B.⎝⎛⎭⎫34,34,34 C.⎝⎛⎭⎫13,13,13D.⎝⎛⎭⎫23,23,23考点 空间向量的正交分解 题点 向量的坐标 答案 A解析 如图所示,连接AG 1交BC 于点E ,则点E 为BC 的中点,AE →=12(AB →+AC →)=12(OB →-2OA →+OC →), AG 1—→=23AE →=13(OB →-2OA →+OC →), ∵OG →=3GG 1—→=3(OG 1—→-OG →), ∴OG →=34OG 1—→=34(OA →+AG 1—→)=34⎝⎛⎭⎫OA →+13OB →-23OA →+13OC → =14OA →+14OB →+14OC →,故选A.二、填空题8.如图所示,在长方体ABCD -A 1B 1C 1D 1中建立空间直角坐标系.已知AB =AD =2,BB 1=1,则AD 1→的坐标为________,AC 1→的坐标为________.考点 空间向量的正交分解 题点 向量的坐标 答案 (0,2,1) (2,2,1)解析 根据已建立的空间直角坐标系,知A (0,0,0),C 1(2,2,1),D 1(0,2,1),则AD 1—→的坐标为(0,2,1),AC 1→的坐标为(2,2,1).9.在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示) 考点 空间向量基底的概念 题点 空间向量基本定理 答案 12a +14b +14c解析 OE →=OA →+12AD →=OA →+12×12(AB →+AC →)=OA →+14(OB →-OA →+OC →-OA →)=12OA →+14OB →+14OC →=12a +14b +14c . 10.若四边形ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则顶点D 的坐标为____________. 考点 空间向量的正交分解 题点 向量的坐标 答案 (5,13,-3)解析 由四边形ABCD 是平行四边形知AD →=BC →,设D (x ,y ,z ),则AD →=(x -4,y -1,z -3),BC →=(1,12,-6), 所以⎩⎪⎨⎪⎧x -4=1,y -1=12,z -3=-6,解得⎩⎪⎨⎪⎧x =5,y =13,z =-3,即点D 坐标为(5,13,-3). 三、解答题11.如图所示,在正方体OABC -O ′A ′B ′C ′中,OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →. 考点 空间向量基底的概念 题点 空间向量基本定理 解 (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→ =OC →+OO ′→-OA →=b +c -a . (2)GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→)=12(OO ′-OC )=12(c -b ). 12.已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E ,F 分别为BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出DB 1→,DE →,DF →的坐标.考点 空间向量的正交分解 题点 空间向量的坐标解 设x ,y ,z 轴的单位向量分别为e 1,e 2,e 3, 其方向与各轴的正方向相同,则DB 1→=DA →+AB →+BB 1→=2e 1+2e 2+2e 3,∴DB 1→=(2,2,2).∵DE →=DA →+AB →+BE →=2e 1+2e 2+e 3, ∴DE →=(2,2,1).∵DF →=e 2,∴DF →=(0,1,0).13.在平行六面体ABCD -A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1. (1)证明:A ,E ,C 1,F 四点共面;(2)若EF →=xAB →+yAD →+zAA 1→,求x +y +z 的值. 考点 空间向量基底的概念 题点 空间向量的基本定理 (1)证明 因为AC 1→=AB →+AD →+AA 1→=AB →+AD →+13AA 1→+23AA 1→=⎝⎛⎭⎫AB →+13AA 1→+⎝⎛⎭⎫AD →+23AA 1→=(AB →+BE →)+(AD →+DF →)=AE →+AF →, 所以A ,E ,C 1,F 四点共面.(2)解 因为EF →=AF →-AE →=AD →+DF →-(AB →+BE →) =AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,所以x =-1,y =1,z =13,所以x +y +z =13.四、探究与拓展14.已知在四面体ABCD 中,AB →=a -2c ,CD →=5a +6b -8c ,AC ,BD 的中点分别为E ,F ,则EF →=________.考点 空间向量基底的概念 题点 空间向量基本定理 答案 3a +3b -5c解析 如图所示,取BC 的中点G ,连接EG ,FG ,则EF →=GF →-GE →=12CD →-12BA →=12CD →+12AB →=12(5a +6b -8c )+12(a -2c )=3a +3b -5c . 15.在棱长为1的正方体ABCD -A ′B ′C ′D ′中,E ,F ,G 分别为棱DD ′,D ′C ′,BC 的中点,以{AB →,AD →,AA ′→}为基底,求下列向量的坐标.(1)AE →,AG →,AF →; (2)EF →,EG →,DG →.考点 空间向量的正交分解 题点 空间向量的坐标解 (1)AE →=AD →+DE →=AD →+12DD ′→=AD →+12AA ′→=⎝⎛⎭⎫0,1,12,AG →=AB →+BG →=AB →+12AD →=⎝⎛⎭⎫1,12,0,AF →=AA ′→+A ′D ′→+D ′F →=AA ′→+AD →+12AB →=⎝⎛⎭⎫12,1,1. (2)EF →=AF →-AE →=⎝⎛⎭⎫AA ′→+AD →+12AB →-⎝⎛⎭⎫AD →+12AA ′→=12AA ′→+12AB →=⎝⎛⎭⎫12,0,12, EG →=AG →-AE →=⎝⎛⎭⎫AB →+12AD →-⎝⎛⎭⎫AD →+12AA ′→ =AB →-12AD →-12AA ′→=⎝⎛⎭⎫1,-12,-12, DG →=AG →-AD →=AB →+12AD →-AD →=AB →-12AD →=⎝⎛⎭⎫1,-12,0.。

空间向量及其加减数乘运算(北师大版选修2-1)

北师大版高中数学选修2-1第 二章空间向量与立体几何
平面向量的加法、减法与数乘运算
b
向量加法的三角形法则
b
向量加法的平行四边形法则
a
a
a b
ka
(k>0)
a
向量减法的三角形法则
向量的数乘
ka
(k<0)
推广:
(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;
A1 A2 A2 A3 A3 A4 An1 An A1 An
1 (2) AG ( AB AC) 2
D
(1)原式=AB BM MG AG
(2)原式
1 =AB BM MG ( AB AC ) 2 1 =BM MG ( AB AC ) 2 =BM MG MB MG
G
B M C
练习2
A
在立方体AC1中,点E是面AC’ 的中心,求下 列各式中的x,y. D (1) AC ' x ( AB BC CC ' ) E
F3 F1 F3=15N
例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。
(1) AB1 A1 D1 C1C x AC
( 2) 2 AD1 BD1 x AC1 (3) AC AB1 AD1 x AC1
A A1
D1 B1
C1
D
C
B
例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。
空间向量
具有大小和方向的量
加法:三角形法则或 平行四边形法则 减法:三角形法则
数乘:ka,k为正数,负数,零 加法交换律 a b b a 成立吗? 加法结合律 数乘分配律 k (a b) k a k b +

数学:2.2空间向量及其运算(一) 教案 (北师大选修2--1)

2.2空间向量及其运算(一)教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢?[生]向量加法和数乘向量满足以下运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)数乘分配律:λ(a+b)=λa+λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.[师]空间向量的加法、减法、数乘向量各是怎样定义的呢?[生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: AB OA OB +==a +b , OA OB AB -=(指向被减向量), =OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c );(课件验证)⑶数乘分配律:λ(a + b ) =λa +λb .[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-Λ因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:011433221=+++++-A A A A A A A A A A n n n Λ.⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB +;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++说明:平行四边形ABCD平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD—A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.巩固练习课本P92练习Ⅳ.教学反思平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法.Ⅴ.课后作业⒈课本P106 1、2、⒉预习课本P92~P96,预习提纲:⑴怎样的向量叫做共线向量?⑵两个向量共线的充要条件是什么?⑶空间中点在直线上的充要条件是什么?⑷什么叫做空间直线的向量参数表示式?⑸怎样的向量叫做共面向量?⑹向量p与不共线向量a、b共面的充要条件是什么?⑺空间一点P在平面MAB内的充要条件是什么?教学后记:。

用向量讨论垂直平行(北师大版选修2-1)


A1
B1
Y
则A1 D // 平面CB1D1.同理右证:A1B // 平面CB1D1.
平面A1 BD // 平面CB1 D1.
例2Байду номын сангаас在正方形ABCD - A B1C1 D1中, 1
Z
D
求证 : 平面A BD // 平面CB1 D1 1
A
D 1
C
B
C1
评注: 1B 由于三种平行关系可以相互转化, 所以本题可用逻辑推理来证明。 X 用向量法将逻辑论证转化为问题的算法化, 在应用向量法时需要合理建立空间直角坐标系, 方能减少运算量。本题选用了坐标法。
用向量讨论垂直与平行
宜川中学高二数学备课组
白瑞龙
一、自主学习反馈
一、学案评价
1、优秀个人:郭玥 冯乐 张娇 刘江 李静 牛小勇 呼延江北 邬楠 2、优秀小组:1组 3组 5组 7组 10组 3、有待提高同学:高斌 王辉 字迹不工整,书写不够 规范
二、问题反馈 1、公式不熟悉,尤其是平面向量的坐标表示遗忘 严重; 2、计算出错较多,运算能力有待提高。
l
a

u
l a // u a u
u

v

u v uv 0
例2.在正方形ABCD - A B1C1 D1中, 1 求证 : 平面A BD // 平面CB1 D1 1
三边所在的直线为x, y, z轴建立空间 A 直角坐标系.设正方体的棱长为1,
1
Y
A
(二)用向量处理垂直问题 例3 :
在正方体ABCD A ' B ' C ' D '中. E,F分别是CC ', BD的中点. 求证:A ' F 平面BDE.

高中数学选修2-1课件

02 圆锥曲线的性质
圆锥曲线具有对称性、离心率、准线等性质,这 些性质在解题过程中具有重要的作用。
03 圆锥曲线与方程的关系
圆锥曲线的形状和大小可以通过其方程来描述, 方程的系数和常数项决定了曲线的形状和性质。
椭圆
椭圆的定义
椭圆是由两个焦点和其上任意一 点所确定的平面曲线。
椭圆的性质
椭圆具有对称性、长轴和短轴、 离心率等性质,这些性质在解题
抛物线
01
02
03
抛物线的定义
抛物线是平面与一个定点 和一条定直线所确定的平 面曲线。
抛物线的性质
抛物线具有对称性、顶点 、准线等性质,这些性质 在解题过程中具有重要的 作用。
抛物线的方程
抛物线的方程有多种形式 ,其中标准方程为 $y = ax^2$ 或 $x = ay^2$, 其中 $a$ 是抛物线的开口 大小。
运动的合成与分解
运动的合成与分解是物理学中的重 要概念,通过向量的线性运算和数 量积,可以解决与运动合成与分解 相关的问题。
向量在解决实际问题中的应用
航空航天工程
向量在航空航天工程中有 着广泛的应用,如飞行器 的姿态控制、导航等。
交通运输工程
在交通运输工程中,向量 可以用来解决车辆的导航 、交通流量的分析等问题 。
机械工程
在机械工程中,向量可以 用来解决机构的动力学分 析、机器人的控制等问题 。
05
总结与复习
本章小结
知识点回顾
总结本章节所学的知识点,包括椭圆、双曲线的定义、 性质和几何意义,以及数形结合的思想方法。
重点难点解析
对本章的重点和难点进行详细解析,帮助学生更好地理 解和掌握相关内容。
复习题
01
向量的数量积与向量的向量积
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档