原位生长硅纳米线的制备及其性能评价研究

合集下载

硅纳米线研究进展概述

硅纳米线研究进展概述

影 响, 硅纳米线的拉曼峰值相对单 晶硅有红移 , 同时呈 现 出明显
的不对称 。R n pn n og— i Wag等 比较 了不 同直径硅 纳米 线的 g 拉曼特征后发现随着硅纳米线直径 的减 小 , 拉曼 峰移 向低频带 ,
并且发生 了低频 不对称 宽化 。激光 辐射发 热 、 压应 力 和声子 限 制效应都能 使拉 曼峰频 移。M. . o s nioi J K nt t v a n c等 研究 了硅 纳米线 的量子限 制效应 与非谐 性之 间的关 系 , 现用激 光加 热 发 硅纳米线阵列 的部分 区域 , 会导致 一阶拉曼峰发 生位移 和加宽 ,
第4 0卷第 8期
21 0 2年 4月
广



Vo . 140 No. 8 Ap l 2 2 i r . 01
Gu n z o h mia n u t a g h u C e c lI d sr y
硅 纳 米 线研 究 进 展概 述 术
郑红梅 顾 家祯 袁志 山 , ,
1 4
广



21 0 2年 4月
中含有该金属元素 , 导致 纳米 线不 纯。
除 了受 硅 纳 米 线 结 构 的影 响 , 纳 米 线 的 电学 特 性 也 取 决 硅
2 拉 曼 特 征
受 到脆 弱 的结 构 形 态 、 子 限 制 效 应 、 面 氧 化 层 和 加 热 的 声 表
于其化学成分 。裴立宅等 发现对硅纳米线进行掺杂或减小硅 纳米线的直径可提 高载流 子浓度 及迁移 率 、 场发射 和 电子输 运
性能 。Pn i 等” i X e 引发 现掺杂 物在径 向分布不 均匀 , 取决 于 g 这 纳米线直径。C n aeK.C a adc hn等 对 刚制备 出的纳 米线进 行 锂化。锂化前 , 新的纳米线 的电阻 为 2 i, 5k) 电阻率 为 0 0 ・ . 2n c 锂化之后电阻为 8M t电阻率为 3n ・ m, m, f, c 电子输送特 性发 生巨大变化。z Y Z ag等 研究发现 了硅纳米线 掺杂 状态 .一 hn 和表面悬挂键 之间一 种新 的物理耦 合关 系 , 而 打开新 的机 遇 从 来发展纳米 自旋电子学 。

化学气相沉积法制备SiC纳米线的研究进展

化学气相沉积法制备SiC纳米线的研究进展

化学气相沉积法制备SiC纳米线的研究进展摘要:SiC纳米线具有优良的物理、化学、电学和光学等性能在光电器件、光催化降解、能量存储和结构陶瓷等方面得到广泛应用。

其制备方法多种多样其中化学气相沉积法(CVD)制备SiC纳米线因具有工艺简单、组成可控和重复性好等优点而备受关注。

近年来在化学气相沉积法制备SiC纳米线以及调控其显微结构方面取得了较多成果。

采用Si粉、石墨粉和树脂粉等低成本原料以及流化床等先进设备,通过化学气相沉积法制备出线状、链珠状、竹节状、螺旋状以及核壳结构等不同尺度、形貌各异的SiC纳米线并且有的SiC纳米线具有优良的发光性能、场发射性能和吸波性能等,为制备新型结构和形貌的SiC纳米线及开发新功能性的SiC纳米器件提供了重要参考。

目前,未添加催化剂时利用气相沉积法制备的SiC纳米线虽然纯度较高但存在产物形貌、尺度和结晶方向等可控性差;制备温度较高和产率相对较低的问题。

而添加催化剂、熔盐以及氧化物辅助可明显降低SiC纳米线的制备温度提高反应速率以及产率但易在SiC 纳米线中引入杂质。

将来应在提高SiC纳米线的纯度、去除杂质方面开展深入研究;还应注重低成本、规模化制备SiC纳米线的研究采用相应措施调控SiC纳米线的显微结构以拓宽SiC纳米线的应用领域。

本文综述了目前国内外采用化学气相沉积制备SiC纳米线的方法分析总结了无催化剂、催化剂、熔盐以及氧化物辅助等各种制备方法的优缺点并对未来的研究进行展望,期望为SiC纳米线的低成本、规模化制备和应用提供理论依据。

引言:SiC纳米线因具有小尺寸效应、量子尺寸效应、表面效应和宏观量子隧道效应等而表现出独特的电、磁、光、热等物理和化学性质。

同时SiC纳米线还具有优异的力学性能、抗腐蚀性、耐热性以及耐高温氧化性等,使其在复合材料和陶瓷材料的强化增韧中起重要作用调以及吸收性能好,可有效改善材料的场发射性能、催化性能、电化学性能及微波吸收性能等l1。

多功能性的SiC纳米线成为极具广泛应用潜力的理想新型材料。

cvd纳米硅的生长形态

cvd纳米硅的生长形态

cvd纳米硅的生长形态CVD纳米硅的生长形态一、引言CVD(化学气相沉积)是一种常用的纳米材料制备方法,它通过在高温下使气相中的化学物质发生反应,从而在底物表面沉积出所需的纳米材料。

纳米硅是一种具有广泛应用前景的纳米材料,其生长形态对其性能和应用有着重要影响。

本文将重点探讨CVD纳米硅的生长形态及其影响因素。

二、CVD纳米硅的生长形态CVD纳米硅的生长形态受多种因素的影响,包括底物表面形貌、反应气体浓度、反应温度、反应时间等。

根据实验观察和理论分析,CVD纳米硅的生长形态主要表现为纳米线、纳米颗粒和纳米薄膜三种形式。

1. 纳米线在CVD过程中,当反应气体中的硅源物质在底物表面发生化学反应时,纳米线是最常见的生长形态之一。

纳米线的直径通常在几十纳米到几百纳米之间,长度可达数微米。

纳米线的形成与底物表面的晶格匹配、反应气体的浓度和反应温度等因素密切相关。

研究发现,较高的反应温度和适宜的硅源浓度可以促进纳米线的生长,而较低的反应温度和过高的硅源浓度则会导致纳米线的聚集和堆积。

2. 纳米颗粒除了纳米线,CVD纳米硅的另一种常见生长形态是纳米颗粒。

纳米颗粒具有球形或近似球形的形状,直径通常在几十纳米到几百纳米之间。

纳米颗粒的生长形态主要受到反应气体浓度、反应温度和反应时间等因素的影响。

实验研究表明,较高的反应温度和适宜的硅源浓度可以促进纳米颗粒的生长,而较低的反应温度和过高的硅源浓度则会导致纳米颗粒的聚集和堆积。

3. 纳米薄膜在特定条件下,CVD反应还可以使纳米硅以薄膜的形式生长在底物表面。

纳米薄膜的厚度通常在几纳米到几十纳米之间,具有较大的比表面积。

纳米薄膜的生长形态主要受到反应气体浓度、反应温度、反应时间和底物表面形貌等因素的影响。

实验研究发现,较高的反应温度和适宜的硅源浓度可以促进纳米薄膜的生长,而较低的反应温度和过高的硅源浓度则会导致纳米薄膜的聚集和堆积。

三、影响CVD纳米硅生长形态的因素1. 底物表面形貌底物表面形貌对纳米硅的生长形态有着重要影响。

硅纳米线的现代制备方法

硅纳米线的现代制备方法

硅纳米线的现代制备方法作者:王策来源:《硅谷》2014年第15期摘要硅纳米线是一种新型的一维纳米材料,其独特的物理特性,使其在光电器件,纳米器件以及微电子电路上有很好的应用。

简要概括了目前大规模制备硅纳米线的主流技术:激光烧蚀法、化学气相沉积法、热蒸发法以及金属辅助化学腐蚀法。

关键词硅纳米线;制备;生长机理中图分类号:TB383 文献标识码:A 文章编号:1671-7597(2014)15-0110-02硅基半导体材料是目前整个半导体器件和集成电路的基础,随着集成电路的高密度化,体硅逐渐难以满足微电子制造技术的发展需求。

硅纳米线作为一维硅纳米材料,在具有半导体性质的同时,由于其直径与其德布罗意波长相当,还具有不同于体硅材料的量子限制效应[1]、库仑阻塞效应以及光致发光等物理特性。

更重要的是硅纳米线和目前的硅基材料有极好的兼容性,因而在未来的纳米半导体材料以及纳米电子器件中具有良好的应用前景[2]。

对于硅纳米线制备方法的研究发展迅速,最初1998年利用照相平板蚀刻技术及扫描隧道显微方法[3~5]得到硅纳米线产量较小,不能满足实际研究需求,同年即采用激光烧蚀法[6~9]制备出大量硅纳米线。

目前已有多种方法可制备出大量硅纳米线,目前的主流方法有激光烧蚀法,化学气相沉积法,热气相沉积法以及近年来的金属辅助化学腐蚀法等。

而生长机理则包括气-液-固(VLS)生长机理,氧化物辅助生长机理及超临界溶液-液-固合成等多种机理。

1 激光烧蚀法激光烧蚀法是一种将固体靶材放入真空或填充某种特定气体的腔体内,靶材在激光烧蚀下快速蒸发及超高速冷却、凝聚,从而形成纳米材料的技术。

在以VLS为原理的制备中,金属纳米的颗粒大小决定了纳米线的直径,并通过不断吸附反应物使之在催化剂-纳米线界面上过饱和溢出,使得纳米线不断生长。

采用含少量Fe,Au,Ni的硅粉作为靶材,放入填充Ar气的石英管中,在一定温度下激光烧蚀可获得硅纳米线。

含有Fe的硅粉在激光烧蚀作用下生成Fe和Si的高温浓缩蒸汽,Fe和Si碰撞形成纳米团簇,并在Ar气作用下冷却为液态。

硅纳米线 离子束蚀刻

硅纳米线 离子束蚀刻

硅纳米线离子束蚀刻硅纳米线是一种具有很高应用价值的纳米材料,它具有很好的电学、光学和力学性能,因此在微电子学、光电子学、生物医学等领域有着广泛的应用。

而离子束蚀刻技术则是一种高精度、高效率的微纳加工技术,可以用于制备各种微纳结构。

本文将介绍硅纳米线离子束蚀刻技术的原理、方法和应用。

一、硅纳米线的制备方法硅纳米线的制备方法有很多种,如化学气相沉积法、热蒸发法、溶胶-凝胶法、电化学法等。

其中,化学气相沉积法是最常用的方法之一,它可以在高温下通过化学反应在硅衬底上生长出硅纳米线。

这种方法具有制备简单、成本低、生长速度快等优点,但是硅纳米线的直径和长度难以控制,且生长过程中会产生大量的有害气体。

二、离子束蚀刻技术的原理离子束蚀刻技术是一种利用离子束轰击材料表面,使其发生化学反应或物理变化,从而实现微纳加工的技术。

离子束蚀刻技术的原理是利用高能离子束轰击硅衬底表面,使其发生化学反应或物理变化,从而形成硅纳米线。

离子束蚀刻技术具有高精度、高效率、无污染等优点,可以制备出直径和长度均匀的硅纳米线。

三、硅纳米线离子束蚀刻技术的方法硅纳米线离子束蚀刻技术的方法主要包括以下几个步骤:1. 制备硅衬底:选择高纯度的硅衬底,并进行表面处理,使其表面光滑、无杂质。

2. 离子束蚀刻:将硅衬底放入离子束蚀刻设备中,利用高能离子束轰击硅衬底表面,使其发生化学反应或物理变化,从而形成硅纳米线。

3. 后处理:将制备好的硅纳米线进行后处理,如清洗、干燥、热处理等,以提高其性能和稳定性。

四、硅纳米线离子束蚀刻技术的应用硅纳米线离子束蚀刻技术在微电子学、光电子学、生物医学等领域有着广泛的应用。

其中,微电子学领域是硅纳米线离子束蚀刻技术的主要应用领域之一。

硅纳米线可以用于制备场效应晶体管、太阳能电池、传感器等微电子器件。

离子束蚀刻技术可以制备出直径和长度均匀的硅纳米线,从而提高微电子器件的性能和稳定性。

硅纳米线还可以用于光电子学领域。

硅纳米线具有很好的光学性能,可以用于制备光电器件,如光电探测器、光电调制器等。

一种硅纳米线及其制备方法[发明专利]

一种硅纳米线及其制备方法[发明专利]

[19]中华人民共和国国家知识产权局[12]发明专利申请公开说明书[11]公开号CN 1590599A [43]公开日2005年3月9日[21]申请号03155931.X [22]申请日2003.08.27[21]申请号03155931.X[71]申请人北京大学地址100871北京市海淀区颐和园路5号北京大学[72]发明人许向东 王银川 刘忠范 [74]专利代理机构北京纪凯知识产权代理有限公司代理人关畅[51]Int.CI 7C30B 29/06C30B 29/62C01B 33/021权利要求书 1 页 说明书 3 页 附图 6 页[54]发明名称一种硅纳米线及其制备方法[57]摘要本发明公开了一种硅纳米线及其制备方法。

本发明的硅纳米线由单晶态硅核以及包裹在外面的非晶氧化物壳层所组成。

其制备方法是(1)用高纯度硅粉和二氧化硅粉,按重量比例为1∶1进行配置搅匀,压成片状,放在超高真空电子束系统的源坩埚中抽真空备用;(2)选用SiO 2/Si作为硅纳米线的生长衬底,并用丙酮和甲醇溶液分别超声清洗5分钟,再用高纯氮气吹干后,放入电子束系统的预真空室中,抽真空;(3)然后把衬底传到本底压强为2×10-10mbar的电子束系统主真空室中,加热到650~750℃,温度稳定后,再用电子束蒸发源坩埚中的Si+SiO 2源,使硅以0.02nm/s的速率蒸发出来,并在SiO2/Si(111)或SiO 2衬底上沉积生长;(4)主真空室冷却至室温,取出衬底,其表面蓝灰色或黄色薄膜,即为一维硅纳米线。

03155931.X权 利 要 求 书第1/1页 1、一种硅纳米线,由直径为9~13nm的单晶态硅核以及包裹在外面的厚度为5~9nm的非晶氧化物壳层组成。

2、根据权利要求1所述的硅纳米线,其特征是:所述单晶态硅核由面间距分别为0.19nm和0.31nm的(110)和(111)晶面组成。

3、根据权利要求1所述的硅纳米线,其特征是:所述单晶硅核的生长取向主要为[221]。

原位生长法制备的氮化硼-纳米二氧化硅

原位生长法制备的氮化硼-纳米二氧化硅

原位生长法制备的氮化硼-纳米二氧化硅下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!原位生长法制备的氮化硼纳米二氧化硅1. 引言在纳米材料领域,氮化硼和二氧化硅因其独特的物理和化学性质而备受关注。

纳米硅颗粒负极材料制备及性能分析

纳米硅颗粒负极材料制备及性能分析

纳米硅颗粒负极材料制备及性能分析纳米硅颗粒负极材料是一种新型的锂离子电池负极材料,具有高比容量、高能量密度、长循环寿命等特点,因此被广泛应用于电动汽车、智能手机等领域。

本文将介绍纳米硅颗粒负极材料的制备方法以及其性能分析。

一、纳米硅颗粒负极材料的制备方法1、溶胶凝胶法此法通常利用硅、硅烷(SiH4)或硅乙烷(SiH6)等为原料,将其溶于合适的溶剂(如乙醇、水等)中形成溶液,加入适量的催化剂(如HCl、NH3等),形成溶胶悬浮液。

将溶胶悬浮液放入恒温干燥箱中干燥,形成硅凝胶。

随后,将硅凝胶与适量的碳源(如蔗糖、麦芽糖等)一起放入炉中,在惰性气体(N2或Ar)下热解得到硅碳复合材料。

最后,将硅碳复合材料进行球磨处理,得到具有纳米级粒径的纳米硅颗粒。

2、高温焙烧法此法将硅粉末或硅源与适量的碳源混合均匀,然后在高温下热解制备纳米硅颗粒。

焙烧温度一般在1000℃左右,焙烧过程中碳源会发生氧化反应,生成CO和CO2,从而使硅粉末与碳源之间的反应进行下去。

最终得到纳米硅颗粒。

3、机械球磨法此法将硅粉末与碳源混合后放入球磨机中,进行机械球磨、振荡处理,反应生成纳米硅颗粒。

在球磨过程中,硅和碳源颗粒之间发生反应,形成硅碳化物,然后再通过球磨机的振荡作用,使硅碳化物颗粒分解成纳米硅颗粒。

二、纳米硅颗粒负极材料的性能分析1、高比容量纳米硅颗粒负极材料具有高比容量的特点,主要是由于纳米硅颗粒具有较大的比表面积。

在锂离子电池充放电过程中,锂离子可以在纳米硅颗粒表面和内部进行嵌入和脱嵌反应,从而实现高比容量。

2、高能量密度纳米硅颗粒负极材料可以实现高能量密度的储存,主要是由于利用纳米硅颗粒的高比容量和高放电电位进行锂离子的储存。

锂离子在纳米硅颗粒表面和内部进行嵌入和脱嵌反应,从而释放出较高的电压和电流,实现高能量密度的储存。

3、长循环寿命纳米硅颗粒负极材料具有较长的循环寿命,主要是由于其较高的充放电比容量和体积稳定性。

纳米硅颗粒可以在锂离子电池的充放电循环中保持稳定的体积和形态,从而不影响锂离子的传输和反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原位生长硅纳米线的制备及其性能评价研究
随着纳米技术的发展和应用,硅纳米线作为一种重要的纳米材料在生物医学、光电子学、传感器等领域得到了广泛的研究和应用。

原位生长硅纳米线是指通过在硅衬底上进行热氧化处理,在一定条件下形成硅纳米线。

本文将介绍硅纳米线的制备以及性能评价的相关研究。

一、制备原位生长硅纳米线的方法
原位生长硅纳米线的制备方法有很多,其中比较常用的是热氧化法和蒸发法。

1、热氧化法
这种方法是在硅衬底上进行高温制备。

首先,在硅衬底上沉积一层金属催化剂(如金、钯、镍等)。

然后,在氧化氮气的混合气氛下对硅衬底进行高温处理。

在催化剂的作用下,硅表面被氧化,形成了一层二氧化硅的表面层。

在一定条件下,热氧化反应会发生扩散,形成硅纳米线。

2、蒸发法
这种方法是将硅片放置在真空腔内,在一定温度下进行蒸发生长,生成硅纳米线。

和热氧化法不同的是,这种方法不需要金属催化剂,在高温下硅片表面会自然地扩散形成硅纳米线。

二、原位生长硅纳米线的性能评价
硅纳米线作为一种新型的纳米材料,具有很多优异的性质。

下面将介绍硅纳米线的主要性能评价。

1、光电性能
硅纳米线具有优异的光电性能,可以作为传感器、太阳能电池等电子器件的基
础材料。

研究发现,硅纳米线的光电转换效率比传统硅材料更高,这是由于硅纳米线的结构特殊,具有更大的表面积和光吸收能力。

2、力学性能
硅纳米线的弯曲强度和硅单晶相当,但其断裂强度却相对较小,其中原因是硅
纳米线的较小直径、大比表面积和形成的多晶结构导致空洞和缺陷数量增多,这对其力学性能产生了很大的影响。

3、化学性能
硅纳米线具有较好的化学稳定性,这是由于其表面具有一层致密的SiO2薄膜。

同时,硅纳米线也具有一定的生物相容性,可以用于生物医学领域的研究。

三、硅纳米线的应用前景
硅纳米线在未来的应用前景非常广阔。

其具有优异的电子、光电、力学和化学
性能,在新型的纳米材料、能源材料、生物医学材料等领域都具有广泛的应用前景。

其中,硅纳米线在传感器领域应用最为广泛,可以用于气体、压力、温度、湿度等传感器的制备。

此外,硅纳米线还可以作为太阳能电池的基础材料,提高太阳能转换效率。

四、结论
通过本文的介绍,我们可以看出,硅纳米线的制备和性能评价研究已经取得了
很大的进展。

硅纳米线作为一种新型的纳米材料,在多个领域具有广泛的应用前景。

未来,还有很多问题需要进一步解决,如硅纳米线的制备工艺、结构优化等。

我们相信,在不断的探索和研究中,硅纳米线的应用前景会变得更加广阔。

相关文档
最新文档