电子测量课程设计概论

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一摘要 (2)

二原理简介 (3)

2.1ADC0809 (3)

2.2转换原理 (3)

2.3电压频率转换法 (6)

三8OC51单片机引脚 (8)

3.1ADC0809引脚功能 (9)

3.2转换图表 (10)

3.3 ADC0809内部结构 (11)

3.4 DC0809与80C51的接口 (12)

3.5 ADC0809应用说明 (14)

3.6 ADC0809编程方法 (14)

四软件设计 (14)

五路仿真原理图 (19)

六器件清单 (21)

七参考文献 (21)

一摘要

基于51单片机的数字电压表设计表简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。数字电压表自从一九五二年问世以来,随着电子技术的飞跃发展,特别是目前,作为测量仪表、模拟指示仪表的数字化以及自动测量的系统,而得到了很大的发展。数字电压表是从电位差计的自动化这种想法研制出来的,因此即便是最初的数字电压表,其精度也要比模拟式仪表高,而其成本比电位差计也高。以后,DVM的发展就着眼在高精度和低成本两个方面。单片机可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。本电路主要采用AT89S51芯片和ADC0809芯片来完成一个简易的数字电压表,能够对输入的0~5 V的模拟直流电压进行测量,并通过一个4位一体的7段LED数码管进行显示。该电压表的测量电路主要由三个模块组成:A/D转换模块、数据处理模块及显示控制模块。A/D 转换主要由芯片ADC0809来完成,它负责把采集到的模拟量转换为相应的数字量再传送到数据处理模块。数据处理则由芯片AT89S51来完成,其负责把ADC0809传送来的数字量经一定的数据处理,产生相应的显示码送到显示模块进行显示;另外它还控制着ADC0809芯片的工作。关键词:单片机数字电压表 AT89S51 A/D转换 ADC0809

二原理简介

2.1ADC0809

1.ADC0809转换芯片,LCD1602液晶显示,测量范围0-5V,精度误差0.01V

2数字电压表的方案有很多种,有的采用ADC0809,或者ADC0808等,他们都是8温AD,并口传输数据,具有速率高的优点。但是硬件复杂,与单片机电路繁琐,焊接起来比较麻烦。所以本设计采用ADC0832,同样8位AD,特点是串口传输数据,硬件接口简单,且精度误差一致,速率也比较快,对于要求不高的系统非常适合。

3显示电路,网上采用LED显示居多,本设计采用LCD1602液晶显示,具有硬件搭设简单,显示美观等优点

4本设计方便移植,只需将LCD1602三个控制端口,ADC0832 四个控制端口修改即可。注意LCD1602数据传输接口是单片机的P0口,如下图,需要接上拉电阻

2.2转换原理

模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。但在A/D转换前,输入到A/D转换器的输入信号必须经

各种传感器把各种物理量转换成电压信号。A/D转换器的工作原理

主要介绍以下三种方法:

(1). 逐次逼近法

逐次逼近式A/D是比较常见的一种A/D转换电路,转换的时间为微秒级。

图1.1逐次逼近法原理

逐次逼近法转换过程是:初始化时将逐次逼近寄存器各位清零;转换开始时,先将逐次逼近寄存器最高位置1,送入D/A转换器,经D/A转换后生成的模拟量送入比较器,称为Vo,与送入比较器的待转换的模拟量Vi进行比较,若Vo<Vi,该位1被保留,否则被清除。然后再置逐次逼近寄存器次高位为1,将寄存器中新的数字量送D/A转换器,输出的Vo再与Vi比较,若Vo <Vi,该位1被保留,否则被清除。

(2)双积分法

采用双积分法的A/D转换器由电子开关、积分器、比较器和控制逻辑等部件组成。如图1.2所示。基本原理是将输入电压变换成与其平均值成正比的时间间隔,再把此时间间隔转换成数字量,属于间接转换。

双积分法

图1.2双积分式A/D转换的原理框

双积分法A/D转换的过程是:先将开关接通待转换的模拟量Vi,Vi采样输入到积分器,积分器从零开始进行固定时间T的正向积分,时间T到后,开关再接通与Vi极性相反的基准电压VREF,将VREF输入到积分器,进行反向积分,直到输出为0V时停止积分。Vi越大,积分器输出电压越大,反向积分时间也

越长。计数器在反向积分时间内所计的数值,就是输入模拟电压Vi所对应的数字量,实现了A/D转换。

2.3电压频率转换法

采用电压频率转换法的A/D转换器,由计数器、控制门及一个具有恒定的时钟门控制信号组成,如图1.3所示:

图1.3电压频率转换法原理

电压频率转换法的工作过程是:当模拟电压V/I加到V/F的输入端,便产生频率F与Vi成正比的脉冲,在一定的时间内对该脉冲信号计数,时间到,统计到计数器的计数值正比于输入电压Vi,从而完成A/D转换。

(1)ADC性能参数

目前的实时信号处理机要求ADC尽量靠近视频、中频甚至射频,以获取尽可能多的目标信息。因而,ADC的性能好坏直接影响整个系统指标的高低和性能好坏,从而使得ADC的性能测试变得十分重要,表征ADC性能的参数,由于尚无统一的标准,各主要器件生产厂家在其产品参数特性表中给出的也不完全一致。一般来说,可以分为静态特性和动态特性参数。

(2)ADC静态特性

ADC的静态特性是指其与时间特性无关的特性,主要包括以下几类:1) 分辨率ADC的分辨率定位为二进制末位变化1所需的最小输入电压与参考电压的比值,即ADC能够分辨的最小的模拟量的变化。2) 量化误差量化电平定义为满量

程电压(或满度信号值)UFSR与2的N次幂的比值,其中N位被数字化的数字信号的二进制位数。量化电平一般用Q表示。3) 全输入范围和动态范围全输入范围是指允许输入模拟信号的最大值与最小值之差;动态范围是指全输入范围与ADC最小可分辨的量值之比。4) 偏置误差和增益误差ADC的偏置误差定义为使最低位被置成“1”状态时ADC的输入电压与理论上使最低位被置成“1”状态时的输入电压之差。当偏置误差高速为零之后,输出为全1时对应的实际输入电压与理想输入电压之差。

(3)ADC动态特性

高速ADC的动态特性是指输入为交变简谐信号时的性能技术指标,它是与ADC的操作速度有关的特性。其主要技术指标如下:

1) 转换时间、采集时间

转换时间是指从信号开始转换到可获得完整的信号输出所用的时间,它是高速ADC的一项重要指标。

采集时间是指采样保持电路在采样模式下能够保证其在随之到来的保持模式输出在采样保持转换时,相对该时刻存在的输入电平之间的误差将会限制在一定的误差范围内所需的时间。

2) 频率响应

它是冲击响应的傅立叶变换,其最佳表达方式是幅频与相频曲线,从系统辨识的角度看这是在频域对ADC动态线性特性的非参数模型描述。

3) 动态积分非线性误差和动态微分非线性误差

动态积分非线性误差(INL)定义为在动态情况下(一般输入信号为正弦信号),ADC实际转换特性曲线之间的最大偏差。每个数码的偏差都是由那个数码的中心值来度量的。

相关文档
最新文档