现代信号处理教程 - 胡广书(清华)

现代信号处理教程 - 胡广书(清华)
现代信号处理教程 - 胡广书(清华)

第5章信号的抽取与插值

5.1前言

至今,我们讨论的信号处理的各种理论、算法及实现这些算法的系统都是把抽样频率f视为恒定值,即在一个数字系统中只有一个抽样率。但是,在实际工作中,我们经常会s

遇到抽样率转换的问题。一方面,要求一个数字系统能工作在“多抽样率(multirate)”状态,以适应不同抽样信号的需要;另一方面,对一个数字信号,要视对其处理的需要及其自身的特征,能在一个系统中以不同的抽样频率出现。例如:

1. 一个数字传输系统,即可传输一般的语音信号,也可传输播视频信号,这些信号的频率成份相差甚远,因此,相应的抽样频率也相差甚远。因此,该系统应具有传输多种抽样率信号的能力,并自动地完成抽样率的转换;

2. 如在音频世界,就存在着多种抽样频率。得到立体声声音信号(Studio work)所用的抽样频率是48kHz,CD产品用的抽样率是44.1kHz,而数字音频广播用的是32kHz[15]。

3. 当需要将数字信号在两个具有独立时钟的数字系统之间传递时,则要求该数字信号的抽样率要能根据时钟的不同而转换;

4.对信号(如语音,图象)作谱分析或编码时,可用具有不同频带的低通、带通及高通滤波器对该信号作“子带”分解,对分解后的信号再作抽样率转换及特征提取,以实现最大限度减少数据量,也即数据压缩的目的;

5. 对一个信号抽样时,若抽样率过高,必然会造成数据的冗余,这时,希望能在该数字信号的基础上将抽样率减下来。

以上几个方面都是希望能对抽样率进行转换,或要求数字系统能工作在多抽样率状态。近20年来,建立在抽样率转换理论及其系统实现基础上的“多抽样率数字信号处理”已成为现代信号处理的重要内容。“多抽样率数字信号处理”的核心内容是信号抽样率的转换及滤波器组。

减少抽样率以去掉过多数据的过程称为信号的“抽取(decimatim)”,增加抽样率以增加数据的过程称为信号的“插值(interpolation)。抽取、插值及其二者相结合的使用便可实现信号抽样率的转换。

滤波器组,因名思义,它是一组滤波器,它用以实现对信号频率分量的分解,然后根

124

125

据需要对其各个“子带”信号进行多种多样的处理(如编码)或传输,在另一端再用一组滤波器将处理后的“子带”信号相综合。前者称为分析滤波器组,后者称为综合滤波器组。

我们将在本章详细讨论抽样率转换的方法,在第6、第7及第8三章讨论滤波器组问题。

5.2信号的抽取

设nTs t t x n x ==|)()(,欲使s f 减少M 倍,最简单的方法是将)(n x 中每M 个点中抽取一个,依次组成一个新的序列)(n y ,即

)()(Mn x n y =

n =-∞~+∞ (5.2.1)

现在我们证明,)(n y 和)(n x 的DTFT 有如下关系:

∑-=-=

10

/)2()(1

)(M k M

k j j e

X M

e Y πωω

(5.2.2)

证明: 由(5.2.1)式,)(n y 的z 变换为

∑∑∞

-∞

=∞

-∞

=--=

=

n n n

n

z

Mn x z

n y z Y )()()( (5.2.3)

为了导出)(z Y 和)(z X 之间的关系,我们定义一个中间序列)(1n x :

??

?=0

)()(1n x n x 其它,,2,,0 M M n ±±= (5.2.4) 注意,)(1n x 的抽样率仍示s f ,而)(n y 的抽样率是M f s /。)(n x 、)(1n x 及)(n y 如

图5.2.1(a ),(b )和(c )所示,抽取的框图如图(d )所示。图中符号

M 倍抽取。

由该图,显然 )()()(1Mn x Mn x n y ==,这样,有

∑∑∞

-∞

=∞

-∞

=--=

=

n n M

n n

z

n x z

Mn x z Y /1

1

)()()( 即 )()(/11M

z

x z Y =

(5.2.5)

现在的任务是要找到)(1z x 和)(z x 之间的关系。

令∑∞

-∞

=-=

i Mi n n p )()(δ为一脉冲序列,它在M 的整数倍处的值为1,其余皆为零,

其抽样频率也为s f 。由1.8节的Possion 和公式及DFS 的理论,)(n p 又可表示为:

∑-=-=

10

1

)(M k kn M

W

M

n p , M

j M e

W /2π-= (5.2.6)

126

因为)()()(1n p n x n x =,所以:

∑∑∞

-∞

=∞

-∞

=--==

n n n k M

n

zW

n x M

z

n p n x z X ))((1)()()(1

即:

∑-==

10

1)(1

)(M k k M

zW

X M

z X

(5.2.7)

将该式代入(5.2.5)式,有

∑-==

10

1)(1

)(M k k M

W z

X M

z Y

(5.2.8)

令ω

j e

z =代入此式,即得(5.2.2)式,证毕。

(5.2.8)式又常写成如下形式

∑-==

10

)(1

)(M k k M

M

zW

X M

z Y

(5.2.9)

图5.2.1信号抽取示意图,M =3, 横坐标为抽样点数

()a 原信号()x n ,1()()b x n ,()c 抽取后的信号()y n ,(d )抽取的框图

127

(5.2.2)式的含意是,将信号)(n x 作M 倍的抽取后,所得信号)(n y 的频谱等于原信号)(n x 的频谱先作M 倍的扩展,再在ω轴上作

k M

π

2(1,,2,1-=M k )的移位后再迭加。如图5.2.2的(a ),(b ),(c ),(d )及(e )所示。

图5.2.2 信号抽取后频谱的变化, 图中3M =

由抽样定理,在由)(t x 抽样变成)(n x 时,若保证c s f f 2≥,那么抽样的结果不会发生频谱的混迭。对)(n x 作M 倍抽取得到)(n y ,若保证由)(n y 重建出)(t x ,那么,)(ωj e Y 的一个周期(,M M ππ-)也应等于)(t x 的频谱)(Ωj X 。这就要求抽样频率s f 必须满足c s Mf f 2≥。图5.2.2正是这种情况。图中()j X e ω

的频谱限制在3ππ- 内,而又正好作M =3的抽取,因此)(ω

j e

Y 中没有发生频谱的混迭,如图(e )所示。

但是,如果c s Mf f 2≥的条件不能得到满足,那么)(ω

j e

Y 中将发生混迭,因此也就无

128

法重建出)(t x 。如图5.2.3(a )所示,()j X e ω的频谱在2ωπ≥的范围内仍有值,因此,即使作M =2倍的抽取,也必然发生混迭,如图(b )所示。

由于M 是可变的,所以很难要求在不同的M 下都能保证c s Mf f 2≥。为此,防止抽取后在)(ωj e Y 中出现混迭的方法是在对)(n x 抽取前先作低通滤波,压缩其频带,如图(c )所示。

令)(n h 为一理想低通滤波器,即

???=0

1)(ω

j e H

其它M π

ω2||≤ (5.2.10)

如图(d )所示,令滤波后的输出为)(n υ,则

∑∞

-∞

=-=

k k n x k h n )()()(υ

令对)(n υ抽取后的序列为)(n y ,则

∑∞

-∞

=-=

=k k Mn x k h Mn n y )()()()(υ

∑∞

-∞

=-=

k k Mn h k x )()( (5.2.11)

由前面的推导不难得出:

∑-==

10

1

1

)()(1

)(M k k M M

k M

M

W z

H W z

X M

z Y

(5.2.12a)

∑-=--=

10

)

2()

2()()(1

)(M k M

k j M

k j j e

H e

X M

e Y πωπωω

(5.2.12b)

)(n υ的频谱()j V e ω如图(e )所示,)(ωj e Y 如图(f )所示。由该图可以看出,加上频带为(M M ππ,-)的低通滤波器后,可以避免抽取后频谱的混迭。因此,在对信号

抽取时,抽取前的低通滤波一般是不可缺少的。

在图5.2.3(f )中使用了变量“y ω”,现对此稍作解释。

在一个多抽样率系统中,不同位置处的信号往往工作在不同的抽样频率下,因此,标注该信号频率的变量“ω” 也就具有不同的含义。例如,在图5.2.1(d )中,若令相对)

j e Y 的圆周频率为y ω,相对对()j X e ω

的圆周频率为x ω,则y ω和x ω有如下关系:

129

22()2y y s s x f f f f M Mf f M ωπππω==== (5.2.13)

若要求y ωπ≤,则必须有x M ωπ≤,这正是(5.2.10)式对()j H e ω频带所提要求的原因。同时使用y ω和x ω两个变量固然能指出抽取前后信号频率的内涵,但使用起来非常不方便。故在本书中,除非特别说明,在抽取前后及下一节要讨论的插值前后,信号的圆周频率统一用ω表示之。只要搞清了抽取和插值前后的频率关系,一般是不会混淆的。

图5.2.3先滤波再抽取后的频谱的变化,图中M =2

(a )()j X e ω

,(b )没滤波就抽取得到的()j Y e ω

,(c ) 信号抽取框图,(d ))(ω

j e

H ,

(e ))(ω

j e

V ,

(d )滤波后再抽取得到的)(ω

j e Y

5.3信号的插值

如果希望将)(n x 的抽样频率s f 增加L 倍,即变成s Lf ,那么,最简单的方法是将)

(n x

130

每两个点之间补L -1个零。设补零后的信号为)(n υ,则

??

?=0

)

()(L n x n υ

其它

,2,,0L L n ±±=

(5.3.1)

如图5.3.1(a )和(b )所示。

图5.3.1信号的插值

(a )原信号)(n x ,(b )插入1-L 个零后的)(n υ,3=L 。

现在来分析)(n x 、)(n υ各自DTFT 之间的关系。由于

∑∑∞

-∞=∞

-∞

=--=

=

n n n

j n

j e

L n x e

n e V j ωωυω

)()()(

∑∞

-∞

=-=

k kL

j e

k x ω)(

)()(L j j e X e V ωω=

(5.3.2) 同理

)()(L z X z V =

(5.3.3)

式中,)(ω

j e V 和)(ωj e X 都是周期的,)(ωj e X 的周期是π2,但)(L j e X ω的周期是L π2。

这样,)(ω

j e V 的周期也是L π2。

(5.3.2)式的含意是:在ππ~-的范围内,)(ω

j e X 的带宽被压缩了L 倍,因此,)(ω

j e

V 在ππ~-内包含了L 个)(ωj e X 的压缩样本,

如图5.3.2所示。

131

图5.3.2 插值后对频域的影响,2=L (a )插值前的频谱,(b )插值后的频谱

由该图可以看出,插值以后,在原来的一个周期(ππ~-)内,)(ωj e V 出现了L 个周期,多余的L -1个周期称为)(ω

j e

X 的映像,我们应当设法去除这些映像。

实际上,图5.3.1用塞进零的方法实现插值是毫无意义的,因为补零不可能增加信息。自然,我们需要用)(n x 中的点对这些为零的点作出插值。实现插值的方法是用)(n υ和一低通滤波器作卷积。为此,令

???=0

)(c

e H j ω

其它

L πω≤||

(5.3.4)

式中c 为常数,是一定标因子。令)(n υ通过)(n h 后的输出为)(n y ,如图5.3.3所示。

图5.3.3插值后的滤波

这样,滤波器的作用即是去除了)(ω

j e V 中多余的映像,另一方面,也实现了对)(n υ中零

值点的插值。

因为

)()()(ωωωj j j e cX e H e Y ==

||L ωπ≤

及 ?-

=

π

π

ωωπ

d e Y y j )(21)0(

132

所以 ?-

=

L L

jL d e X c

y π

π

ωωπ

)(2)0( ?-=

π

ωωπ)0()(2x L

c

d e X L c

j 这样,若取L c =,则可保证)0()0(x y =。

现在,我们来分析一下图5.3.3中的时域关系。由(5.3.1)式,有

∑-==k

k n h k n h n n y )()()(*)()(υυ

∑-=k

k n h L k x )()(

即 ∑∞

-∞

=-=k kL n h k x n y )()()(

(5.3.5)

5.4抽取与插值相结合的抽样率转换

对给定的信号)(n x ,若希望将抽样率转变为M L /倍,可以按以上两节讨论的方法,先将)(n x 作M 倍的抽取,再作L 倍的插值来实现,或是先作L 倍的插值,再作M 倍的抽取。一般来说,抽取使)(n x 的数据点减少,会产生信息的丢失,因此,合理的方法是先对信号作插值,然后再抽取,如图5.4.1(a )所示。

图中插值和抽取工作在级联状态。图(a )中滤波器)(1n h ,)(2n h 所处理的信号的抽样率都是s Lf ,因此可以将它们合起来变成一个滤波器,如图5.4.1(b )所示。

???=0

)(L

e H j ω

其它

)

,min(||0ππωM

L ≤≤

(5.4.1)

则该滤波器既去除了插值后的映像又防止了抽取后的混迭。

现在分析一下图5.4.1(b )中各部分信号的关系。由上两节的讨论可知,有

??

?=0

)

()(L n x n υ

其它

L L n 2,,0±±= (5.4.2)

)()(Mn u n y =

+∞-∞=~n

(5.4.3) 因为 )(*)()(n h n n u υ=∑∞-∞

=-=

k k k n h )()(υ

(5.4.4)

133

图5.4.1插值合抽取的级联实现

(a )使用两个低通滤波器,(b )使用一个低通滤波器

所以

∑∞

-∞

=-=

k L k

x k n h n u )()()(∑∞

-∞

=-=

k k x Lk n h )()(

(5.4.5)

∑∞

-∞

=-=

k Lk Mn h k x n y )()()(

(5.4.6)

对比(5.2.11)及(5.3.5)式,可以看出(5.4.6)式中的)(n y 正是单独抽取和单独插值时时域关系的结合。

因为)(n h 是因果的滤波器,所以0≥-Lk Mn ,即n L

M

k ≤,这是(5.4.6)式中k 的取值制约关系。记

m L Mn k -??

????= (5.4.7)

式中??p 表示求小于或等于p 的最大整数,这样,(5.4.5)式可写成

∑∞

-∞

=+??????--??????=

n mL L L Mn Mn h m L Mn x n y )()()( (5.4.8)

由于

134

Mn L L Mn Mn =??

?

???- m o d L 我们可最后得到)(n y 和)(n x 之间关系的表达式:

)()()(L m Mn mL h m L Mn x n y +-??

?

?

?

?=

∑∞

-∞

= (5.4.9)

式中L

Mn

表示Mn 对模L 求余。

现在我们通过一个实例来分析一下上述抽样率转换的过程。令3=L ,2=M ,)(n x 和)(n h 都是一个四点的序列,如图5.4.2所示。

图5.4.2 抽样率转换过程

实现图5.4.1(b )的L M 倍抽样率转换,一个办法是从)(n x 依次求出)(n υ,)(n u 及

)(n y 。如要求出)(n u ,按(5.4.4)式,有

)0()0()0(h x u =

)3()0()0()1()3()0()2(0)1(0)0()1()3()

2()0()2()0()1(0)0(0)2()

1()0()1()0()0(0)1(h x h x h x h h h x u h x h x h h u h x h x h u +=+?+?+==+?+?==+?=

显然,式中包含很多乘以零的运算,这实际上是不需要的。若按(5.4.5)式,则

)

(n x n

)

(n h -n

)

(n v n

135

)1()1()4()3()0()0()1()3()

2()0()2()1()0()1()0()0()0(h x u h x h x u h x u h x u h x u =+====

从而避免了乘以零的不必要的计算。但是,把)0(u ,)1(u ,)2(u ,)3(u ……都求出来也是没有必要的,因为我们对)(n u 要作2=M 倍的抽取,这样,)1(u ,)3(u ……等要被舍弃,因此,没有必要计算。改由(5.4.9)式,即一步由)(n x 得到)(n y ,有

)23()32()(3∑∞

-∞

=+-??????=

m n m h m n x n y 0=n 时, ∑∞

-∞===-=

m u h x m h m x y )0()0()0()3()()0(

1=n 时, ∑∞

-∞

=+-??????=

m m h m x y )23()32()1(3 ∑∞

-∞

===+-=

m u h x m h m x )2()2()0()23()(

2=n 时 ∑∞

-∞=+-??

?

???=

m m h m x y )43()34()2(3

∑∞

-∞

===+-=

m u h x m h m x )

4()1()1()13()1(

这样,按(5.4.9)式计算时既避免了与插值后为零的点相乘的多余运算,又避免了被舍弃点的多余计算。可见,在多抽样率转换中,不同计算方法的选取会需要不同的计算量。解决这一问题的有效方法是采用信号的“多相(polyphase )结构”。(5.4.9)式即是多相结构的一种表示形式,更多的内容我们将在下一节讨论。

最后,我们给出)(n x 和)(n y 的频域关系。由上两节的讨论,有

)()(L j j e x e V ωω=

)()()()()(ωωωωωj L j j j j e H e X e H e V e U ==

?

??=0)(ωj e LX

其它

)

,min(||L M π

πω≤ (5.4.10)

136

∑-=-=

10

)2()(1

)(M k M

k j j e

U M

e Y πωω

??

???=∑-=-0

)(10

)2(M k k L j e

X M L π

πω 其它

),min(||L M π

πω≤

(5.4.11)

在实际工作中,无论抽取还是插值,所用的滤波器一般都选取截止性能好而且是线性

相位的FIR 滤波器。

文献[50]给出了信号抽取与插值的概论性的论述。

5.5信号的多相表示

信号的多相表示在多抽样率信号处理中有着重要的作用。使用多相表示可在抽样率转换的过程中去掉许多不必要的计算,因而大大提高运算的速度。

给定序列)(n h ,令∞=~0n ,假定4=M ,有

∑∞

=-=0

)()(n n z n h z H ++++=---121288440z h z h z h h

+++++++++++++++------------15151111773314141010662

21313995511z h z h z h z h z h z h z h z

h z h z h z h z h

[]

++++=---1212884400z h z h z h h z

[]

[][]

+++++++++++++++------------12

15811473

3

1214810462

2

1213894511z h z h z h h

z z h z h z h h z

z h z h z h h z 即 ∑∑-=∞

=--+=1

00

)()(M l n Mn

l z

l Mn h z z H (5.5.1)记 ∑∞

=-+=

0)()(n n

l z

l Mn h z E (5.5.2)则 ∑-=-=

1

)()(M l M l l

z E z

z H

(5.5.3)

若再记 )()(l Mn h n e l += (5.5.4)

137

为)(n h 的多相分量,则

∑∞

=-=0

)()(n n l l z n e z E (5.5.5)

上面的求和是从∞~0,这是考虑)(n h 是因果序列。对任一序列)(n x ,上面各式的求和均可扩展至+∞∞-~。

上面的多相表示对FIR 和IIR 系统均适用。例如,若

3214321)(---+++=z z z z H ,取2=M ,

令 1031)(-+=z z E ,1142)(-+=z z E 则 )()()(21120z E z z E z H -+= 再例如,令

1

11)(--=

z z H α,由关系:12

111--+-=-z z z

有 2212

21

11111)(-----+-=

-=z z z z z H αααα 令 2

2011

)(--=

z z E α,1

211)(--=

z

z E αα

则 )()()(21120z E z z E z H -+=

(5.5.1)~(5.5.5)式称为类型-I 多相表示。如果我们用l M --1代替类型I 中的l ,

则有 ∑-=---=

1

)

1()()(M l M l l M z R z

z H

(5.5.6) 式中 ∑∞

=-----+==0

1)1()()(n n

l M l z

l M Mn h z E z R

(5.5.7)

这两个表达式称为类型-II 多相表示。

若用l -代替(5.5.1)~(5.5.5)中的l ,则有

∑∞

=--=0

)()(n n l z l Mn h z Q

(5.5.8) ∑-==1

)()(M l M l l z Q z z H

(5.5.9)

这两个表达式称为类型-III 多相表示。显然,)()(1

z E z z Q l M l --=。

138

)(z E 、)(z R 和)(z Q 是信号重新组合的三种不同形式,在本书中,最常用的是)

(z E 和)(z R 。现在,我们来观察它们对原序列重新组合的不同方式。令

)()()(l Mn h n h E l +=,)1()()(l M Mn h n h R l --+=,)()()(l Mn h n h Q l -=

{} ,,,,)(12840)(0h h h h n h E =,{} ,,,,)(151173)(0h h h h n h R =,{} ,,,,)(12840)

(0h h h h n h Q =,

{} ,,,,)(13951)(1h h h h n h E =,{} ,,,,)(141062)(1h h h h n h R =,{} ,,,,)(151173)(1h h h h n h Q =,

{} ,,,,)(141062)(2h h h h n h E =,{} ,,,,)(13951)(2h h h h n h R =,{} ,,,,)(141062)

(2h h h h n h Q =,

{} ,,,,)(151173)(3h h h h n h E =,{} ,,,,)(12840)(2h h h h n h R =,{} ,,,,)(13951)

(2h h h h n h Q =,

请读者自己寻找出各多相分量之间的关系。

5.6几个重要的恒等关系

由上述几节的抽样率转换关系,我们可得到在多抽样率系统中几个重要的恒等关系: 1.

图中“?”表示等效。该图说明,两个信号分别定标以后再相加后的抽取等于它们各自抽取后再定标和相加。

2.

即信号延迟M 个样本后作M 倍抽取和先抽取再延迟一个样本是等效的。

)(1n x ?

1x 2x )

(n y

1

α)(n x )

n

)

(n y (x ?

139

证明:设 )()('M n x n x -=,则)()('z X z z X M =

而 ∑-==

10

1

)('1

)(M k k M M

W z

X M

z Y

所以

∑-==

10

)1

1

)()(1

)(M k k M M

M

k M

M

W z

X W z

M

z Y

)(1

1

10

M

k M

M k z

W

X z M

∑-==

令 )()('Mn x n y =,则 )1(')(-=n y n y ,)(')(z zY z Y =

又 )(1

)('1

10

k M M

M k W z

X M z Y ∑-==

所以 )(1

)(1

10

k M M

M k W z

zX M

z Y ∑-==

即二者是等效的。 3.

即在M 倍抽取器的前后,滤波器的z 的幂相差M 倍。 证明:设)(M z H 的输出为)('n y ,则

)()()('M

z H z X z Y =,)('1

)(1

10

k M M

M k W z

Y M

z Y ∑-==

所以

??

???

?=

∑-=M k M M

k M M

M k W z

H W z

X M

z Y )()(1

)(1

1

10

∑-==

10

1

)()(1

M k k

M M

z H W z

X M

这即是右图所对应的关系,故二者等效。

4.

1

α)(1n y )

(2n y )

(2n y )(1n y ?

140

5..

6.

请读者自行证明恒等关系4、5和6。这六个关系,又称为“Noble Identities ”[15]。为保证这六个关系成立,)(z H 和)(z G 都应是z (或1

-z )的有理多项式,而且z 的幂均应是整数。

5.7抽取和插值的滤波器实现

5.7.1抽取的滤波器实现[12,15]

对图5.7.1(a )的抽取,按照顺序,首先要做的是对)(n x 作滤波,即)(n x 和)(n h 的卷积,然后对卷积后的结果)(n υ作抽取,如图5.7.1(b )所示。但这种实现方式是费时的,这是因为求出的)(n υ中只有)0(υ,)(M υ,)2(M υ,……,等是需要的,而其余的点在抽取后都被舍弃了,即做了大量不必要的运算。

合理的方法应按图5.7.1(c )来进行,这时,卷积在低抽样率进行,即

∑-=-=1

)()()(N k k Mn x k h n y

式中假定)(n h 为N 点FIR 滤波器。

现在分析一下在图5.7.1(c )中)(n x 被分组的情况;假定3=M ,输入到:

0h 的是:0x ,3x ,6x ,9x ,……,

1h 的是:1x ,4x ,7x ,10x ,……, 2h 的是:2x ,5x ,8x ,11x ,……,

3h 的是:3x ,6x ,9x ,12x ,……, 4h 的是:4x ,7x ,10x ,13x ,……,

(x )

(n y

)

(n y )

(n x ?

)

n

?

141

图5.7.1抽取的滤波器实现

(a )一般框图,(b )先卷积后抽取,(c )先抽取后卷积

假定9=N ,分析上面结果后可以看出,与子序列)(Mn x 相卷积的滤波器系数是0h ,3h 和6h ,

和)1(+Mn x 相卷积的系数是1h ,4h ,7h ,与)2(+Mn x 相卷积的系数是2h ,5h ,8h 。这样,我们可将FIR 的系数分M N 成组, 如图5.7.2所示。

图5.7.2 将滤波器系数分组来实现信号的抽取

上面的分析及图5.7.2提示我们可以用多相结构来实现信号的抽取,即假定3=M 则

)

(n y )

(n x )

n

142

)()()()(32231130z E z z E z z E z H --++=

而 ∑-=-+=1

)()(M N n n

i z

i Mn h z E

对本例:

2

81522271411261300)()()(------++=++=++=z h z h h z E z h z h h z E z h z h h z E 所以,图5.7.2可变成如图5.7.3所示的多相形式。读者不难发现,在本图中使用了恒等关系3。

图5.7.3 抽取的多相结构实现

5.7.2 插值的滤波器实现

若直接按顺序实现图5.7.4(a )中的插值,由于)(n υ中每两点增加了1-L 个零,这些零和)(n h 做乘法是毫无意义的,因此,我们不应把卷积放在高抽样率(s Lf )端进行,而应想办法将其移到低抽样率端来实现。由多相表示的第二种形式,即(假定3=M )

∑-=---=

1

)

1()()(M l M l l M z R z

z H

)()()(32311302---++=z R z R z z R z

式中 ∑-=---+=

1

)1()(M N n n

l z

l M Mn h z R

)

(n x )

(n y

143

图5.7.4(a )的多相直接实现如图5.7.4(b )所示。这种卷积仍处在高抽样率端,利用恒等关系6,可得图(c ),这时卷积在低抽样率端进行,从而避免了乘以零的无意义运算。

图5.7.4 插值得多相实现

(a )一般框图,(b )直接多相实现,(c )高效多相实现

5.7.3 抽取和插值相结合得滤波器实现

我们在前两节分别讨论了抽取和插值得多相实现,对图 5.7.5(a )的抽取和插值相结合的抽样率转换,若用多相形式直接实现,则如图(b )所示,利用恒等关系1和3,则可得到图(c ),显然,图(c )比图(b )的效率高。图中假定3=M ,2=L 。

(x )

n )

n )

n (x )

n

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

数字信号处理教案

数字信号处理教案 余月华

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

数字信号处理教案

数字信号处理教案

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

现代信号处理方法1-3

1.3 时频分布及其性质 1.3.1 单分量信号与多分量信号 从物理学的角度看,信号可以分为单分量信号和多分量信号两类,而时-频分布的一个主要优点就是能够确定一个信号是单分量的还是多分量的。所谓单分量信号就是在任一时间只有一个频率或一个频率窄带的信号。一般地,单分量信号看上去只有一个山峰(如图 1.2.2),图中所示的是信号)()()(t j e t A t s ?=的时-频表示,在每一个时间,山峰的峰值有明显的不同。如果它是充分局部化的,那么峰值就是瞬时频率;山峰的宽度就是瞬时带宽。一般地,如果)(t z 是信号)(cos )()(t t a t s φ=的解析信号,)(f Z 是)(t z 对应的频谱, 图1.2.2 单分量信号时-频表示及其特征 则其瞬时频率定义如下: )]([arg 21)(t z dt d t f i π= (1.2.1) 与瞬时频率对偶的物理量叫做群延迟,定义如下: )]([arg 21)(f Z dt d f g πτ= (1.2.2) 而多分量信号是由两个(或多个)山峰构成, 每一个山峰都有它自己不同的瞬时 频率和瞬时带宽。(如图1.2.3所示)。 图1.2.3 多分量信号时-频表示及特征

1.3.2 时-频分布定义 Fourier 变换的另一种形式 ?∞ ∞ --=dt e t s f S ft j π2)()( ?∞ ∞ -=df e f S t s tf j π2)()( Cohen 指出,尽管信号)(t z 的时-频分布有许多形式,但不同的时-频分布只是体现 在积分变换核的函数形式上,而对于时-频分布各种性质的要求则反映在对核函数的约束条件上,因此它可以用一个统一形式来表示,通常把它叫做Cohen 类时-频分布,连续时间信号)(t z ()(t z 为连续时间信号)(t s 的解析信号)的Cohen 类时-频分布定义为 ττφτττπdudvd e v u z u z f t P vu f vt j ) (2*),()2 1()21(),(-+-∞ ∞ -∞ ∞ -∞ ∞ --+=?? ? (1.3.1) 式中),(v τφ称为核函数。原则上,核函数可以是时间和频率两者的函数,但常用的核函数与时间和频率无关,只是时延τ和频偏v 的函数,即核函数具有时、频移不变性。这个定义提供了全面理解任何一种时-频分析方法的通用工具,而且能够在信号分析中将信号的一种时-频表示及其性质同另一种时-频表示及其性质联系在一起。进一步可将(1.3.1)简记为 ττφττπdvd e v v A f t P f vt j z )(2),(),(),(+-∞ ∞ -∞ ∞ -? ? = (1.3.2) 式中),(v A z τ是双线性变换(双时间信号))2 ()2(),(*τ τ τ-+ =t z t z t k z 关于时间t 作 Fourier 反变换得到的一种二维时-频分布函数,称为模糊函数,即 dt e t z t z v A tv j z πτ ττ2*)2 ()2(),(-+=?∞ ∞- (1.3.3) 因为Cohen 类时-频分布是以核函数加权的模糊函数的二维Fourier 变换,所以Cohen 类 时-频分布又称为广义双线性时-频分布。 两个连续信号)(t x ,)(t y 的互时-频分布定义为: ???∞ ∞-∞ ∞--+-∞ ∞ --+= ττφτττπdudvd e v u y u x f t P vu f vt j xy ) (2*),()2 1()21(),( ? ? ∞ ∞-∞ ∞ -+-=dv d e v v A f tv j xy ττφττπ)(2),(),( (1.3.4) 式中 du e u y u x v A vu j xy πτ ττ2*)2 ()2(),(?∞ ∞--+= (1.3.5) 是)(t x 和)(t y 的互模函数。

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 (10级) 编号:40023600 英文名称:Digital Signal Processing 适用专业:通信工程;电子信息工程 责任教学单位:电子工程系通信工程教研室 总学时:56 学分:3.5 考核形式:考试 课程类别:专业基础课 修读方式:必修 教学目的:数字信号处理是通信工程、电子信息工程专业的一门专业基础课,通过本课程的学习使学生建立数字信号处理的基本概念、掌握数字信号处理的基本理论、基本分析方法和数字滤波器的基本设计方法,具有初步的算法分析和运用MATLAB编程的能力,了解数字信号处理的新方法和新技术。为学习后续专业课程和从事数字信号处理方面的研究工作打下基础。 主要教学内容及要求: 1.绪论 了解数字信号处理的特点,应用领域,发展概况和发展局势。 2.时域离散信号和时域离散系统 了解连续信号、时域离散信号和数字信号的定义和相互关系;掌握序列的表示、典型序列、序列的基本运算;掌握时域离散系统及其性质,掌握时域离散系统的时域分析,掌握采样定理、连续信号与离散信号的频谱关系。 3.时域离散信号和系统的频域分析 掌握序列的傅里叶变换(FT)及其性质;掌握序列的Z变换(ZT) 、Z变换的主要性质;掌握离散系统的频域分析;了解梳状滤波器,最小相位系统。 4.离散傅里叶变换(DFT) 掌握离散傅里叶变换(DFT)的定义,掌握DFT、ZT、FT、DFS之间的关系;掌握DFT的性质;掌握频域采样;掌握DFT的应用、用DFT计算线性卷积、用DFT分析信号频谱。 5.快速傅里叶变换(FFT) 熟悉DFT的计算问题及改进途经;掌握DIT-FFT算法及其编程思想;掌握IDFT的高效算法。 6.数字滤波网络 了解滤波器结构的基本概念与分类;掌握IIR-DF网络结构(直接型,级联型,并联型);掌握FIR-DF网络结构(直接型,线性相位型,级联型,频率采样型,快速卷积型)。 7.无限冲激响应(IIR)数字滤波器设计 熟悉滤波的概念、滤波器的分类及模拟和数字滤波器的技术指标;熟悉模拟滤波器的设计;掌握用冲激响应不变法设计IIR数字滤波器;掌握用双线性变换法设计IIR数字滤波器。 8.有限冲激响应(FIR)数字滤波器设计 熟悉线性相位FIR数字滤波器的特点;掌握FIR数字滤波器的窗函数设计法;掌握FIR数字滤波器的频率抽样设计法;了解FIR数字滤波器的切比雪夫最佳一致逼近设计法。 本课程与其他课程的联系与分工:先修课程:信号与系统,复变函数与积分变换,数字电路;后续课程有:DSP原理及应用,语音信号处理,数字图像处理等。

什么是数字信号处理

什么是数字信号处理?有哪些应用? 利用数字计算机或专用数字硬件、对数字信号所进行的一切变换或按预定规则所进行的一切加工处理运算。 例如:滤波、检测、参数提取、频谱分析等。 对于DSP:狭义理解可为Digital Signal Processor 数字信号处理器。广义理解可为Digital Signal Processing 译为数字信号处理技术。在此我们讨论的DSP的概念是指广义的理解。 数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 信号处理的实质是对信号进行变换。 信号处理的目的是获取信号中包含的有用信息,并用更直观的方式进行表达。 DSP的应用几乎遍及电子学每一个领域。 ▲通用数字信号处理器:自适应滤波,卷积,相关,数字滤波,FFT, 希尔伯特变换,波形生成,窗函数等等。 ▲语音信号处理:语音增强、识别、合成、编码、信箱等,文字/语音转换 ▲图形/图像处理:三维动画,图象鉴别/增强/压缩/传输,机器人视觉等等图 ▲特殊应用数字信号处理:振动和噪声分析与处理,声纳和雷达信号处理, 通信信号处理, 地震信号分析与处理,汽车安全及全球定位,生物医学工程等等。 在医疗、军事、汽车等行业,以及通信市场、消费类电子产品等中具有广阔的市场前景。 数字信号处理系统的基本组成:前置预滤波器(PrF)、a/d变换器(ADC)、数字信号处理器(DSP)、d/a变换器(DAC)、模拟滤波器(PoF) 数字信号处理特点: 1.大量的实时计算(FIR IIR FFT), 2.数据具有高度重复(乘积和操作在滤波、卷积和FFT中等常见) 数字信号处理技术的意义、内容 数字信号处理技术是指数字信号处理理论的应用实现技术,它以数字信号处理理论、硬件技术、软件技术为基础和组成,研究数字信号处理算法及其实现方法。 意义: 在21世纪,数字信号处理是影响科学和工程最强大的技术之一 它是科研人员和工程师必须掌握的一门技巧 DSP芯片及其特点 ▲采用哈佛结构体系:独立的程序和数据总线,一个机器周期可同时进行程序读出和数据存取。对应的:冯·诺依曼结构。 ▲采用流水线技术: ▲硬件乘法器:具有硬件连线的高速“与或”运算器 ▲多处理单元:DSP内部包含多个处理单元。 ▲特殊的DSP指令:指令具有多功能,一条指令完成多个动作;如:倒位序指令等 ▲丰富的外设▲功耗低:一般DSP芯片功耗为0.5~4W。采用低功耗技术的DSP芯片只有0.1W/3.3V、1.6V (电池供电) DSP芯片的类别和使用选择 ▲按特性分:以工作时钟和指令类型为指标分类▲按用途分:通用型、专用型DSP芯片 ▲按数据格式分:定点、浮点各厂家还根据DSP芯片的CPU结构和性能将产品分成若干系列。 TI公司的TMS320系列DSP芯片是目前最有影响、最为成功的数字信号处理器,其产品销量一直处于领先地位,公认为世界DSP霸主。 ?目前市场上的DSP芯片有: ?美国德州仪器公司(TI):TMS320CX系列占有90%

数字信号处理GUI

西安工业大学北方信息工程学院毕业设计(论文)开题报告 题目:数字信号处理实验教学平台设计 系别光电信息系 专业光电信息工程 班级 B100106 姓名彭牡丹 学号 B10010638 导师稀华 2013年11月20日

1 毕业设计(论文)综述 1.1 题目背景和意义 自 20 世纪 60 年代以来,随着计算机和信息学科的飞速发展,数字信号处理技术应运而生并迅速发展,目前已经形成为一门独立且成熟重要的新兴学科。如今已广泛地应用于通信、语音、图像、遥感、雷达、航空航天、自动控制和生物医学[1]等多个领域。特别在教学方面,此课程已普遍成为大学本科电子通信专业必修的主干课和重要的专业基础课,已成为信息化建设不可缺少的环节。 “数字信号处理”课程主要包括离散时间信号及系统、离散傅立叶变换DFT、快速傅立叶变换FFT、数字滤波器设计及实现和数字信号系统的应用等内容,如何帮助学生理解与掌握课程中的基本概念、分析方法以及综合应用能力,是教学所要解决的关键问题,但是该课程理论性强,公式繁琐,需要实验辅助学生理解。因此研究数字信号处理虚拟实验技术能够有效地弥补数字信号处理理论教学的不足,所以本课题需要借助一些软件平台来完成数字信号处理课程中重要的实验内容的仿真分析。 1.2 国内外相关研究状况 对于教学平台设计,现在教学方面有很多研究方法,不同的的科研目标用的是不同的软件平台,国内外也提出了多种研究方法。 例如,在做交互式教学实验平台设计时,周强、张兰、张春明[2]等人运用的是Tornado 软件。此设计以 Tornado 专业课程为例,提出教学网络化的预期目标,结合课程内容的实践性特点,依据分层教学的指导理念,以先进的网站开发技术(Dreamweaver、B/S、ASP 等)为支撑手段,对面向 Tornado 的交互式教学实验平台进行设计与实现。通过小范围测试,基本实现了教师发布教学信息、上机实验、问题互助解答、学生在线自测、师生交互平台等教学功能,并在此基础上凸显出对学生进行分级以提供个性化教学的特色。在研究网络的教学实验平台设计,赵迎新、徐平平、夏桂斌[3]等人用的是无线传感器网络的研究方法。此设计研究并开发了一种应用MSP430微控制器芯片和CC2420无线收发模块架构的无线传感器网络的教学实验平台,设计并实现了系统的总体架构、硬件电路、软件接口与数据汇聚模式,根据实践教学要求,设计了基于该平台系统的基本实验要求与操作步骤,给出了对不同层次实践教学的目标要求,最后给出教学实践效果的评价。还有谢延红[4]提出的开放式 Linux 实验教学平台设计与实现。此研究针对 Linux 实验教学中存在的实验环境不够灵活、实验学习时间受限和无法实时沟通的问题,此研究提出了“个网络平台,条技术路线,

数字信号处理课程设计任务书doc

齐鲁工业大学 课程设计任务书 学院电子信息与控制工程学院专业通信工程 姓名班级学号 题目树形结构滤波器组设计 主要内容、基本要求、主要参考资料等: 主要内容: 滤波器组在语音、图像的子带编码和压缩中都有着广泛的应用,非均匀滤波器组还构成了Mallat多分辨分析的算法基础,在小波变换中占有重要的地位。本设计主要内容是研究树形滤波器组的原理,并设计一个树形滤波器组,实现语音信号的分解与重构。基本要求: (1)滤波器组的基本原理;(2)树形结构滤波器组的原理及设计方法;(3)设计一个8通道的树形结构滤波器组:均匀滤波器组和非均匀滤波器组;给出设计思路及结果;(4)用设计的滤波器组对某信号进行多通道分解,验证滤波器组的性能,对结果进行分析;(5)提交课程设计报告。 主要参考资料: 1. 胡广书. 现代信号处理教程,数字信号处理. 清华大学出版社. 2005.06 2. 高西全. 数字信号处理. 西安电子科技大学出版社. 2009.01 3. matlab信号处理相关书籍,多采样率信号处理的书籍、资料。 4. 相关网络资源 完成期限:自 2013 年 6 月 18 日至 2013 年 7 月 5 日

指导教师:张凯丽教研室主任: 齐鲁工业大学 课程设计任务书 学院电子信息与控制工程学院专业通信工程 姓名班级学号 题目平行结构滤波器组设计 主要内容、基本要求、主要参考资料等: 主要内容: 滤波器组在语音、图像的子带编码和压缩中都有着广泛的应用,非均匀滤波器组还构成了Mallat多分辨分析的算法基础,在小波变换中占有重要的地位。本设计主要内容是研究平行滤波器组的原理,并设计一个平行滤波器组。 基本要求: (1)滤波器组的基本原理;(2)平行结构滤波器组的原理及设计方法;(3)设计一个8通道的平行结构滤波器组:均匀滤波器组和非均匀滤波器组;给出设计思路及结果;(4)用设计的滤波器组对某信号进行多通道分解,验证滤波器组的性能,对结果进行分析;(5)提交课程设计报告。 主要参考资料: 1. 胡广书. 现代信号处理教程,数字信号处理. 清华大学出版社. 2005.06 2. 高西全. 数字信号处理. 西安电子科技大学出版社. 2009.01 3. matlab信号处理相关书籍,多采样率信号处理的书籍、资料。 4. 相关网络资源

数字信号处理(胡广书例题作业程序)

1、 %---filter求卷积,B(Z)/A(Z)=H(Z),已知B(Z)和A(Z),求y(n)=x(n)*h(n)----- clear; x=ones(100); t=1:100; b=[.001836,.007344,.011016,.007374,.001836]; a=[1,-3.0544,3.8291,-2.2925,.55075]; % y=filter(b,a,x); % 求所给系统的输出,本例实际上是求所给系统的阶跃响应; plot(t,x,'r.',t,y,'k-');grid on; ylabel('x(n) and y(n)') xlabel('n') 1、 %---filter求卷积,B(Z)/A(Z)=H(Z),已知B(Z)和A(Z),求y(n)=x(n)*h(n)----- clear; x=ones(100); t=1:100; b=[.001836,.007344,.011016,.007374,.001836]; a=[1,-3.0544,3.8291,-2.2925,.55075]; % y=filter(b,a,x); % 求所给系统的输出,本例实际上是求所给系统的阶跃响应; plot(t,x,'r.',t,y,'k-');grid on; ylabel('x(n) and y(n)') xlabel('n') 第一章产生信号,求卷积和自相关函数 1、 %信号产生 n=0:100; %工频 f0=50;A=220;fs=400; x1=A*sin(2*pi*f0*n/fs); subplot(321);plot(n,x1);xlabel('n');ylabel('x1(n)') ;grid on; %率减正弦 f0=2;A=2;alf=0.5;fs=16; x2=A*exp(-alf*n/fs).*sin(2*pi*f0*n/fs); subplot(323);plot(n,x2);xlabel('n');ylabel('x2(n)') ;grid on; %谐波信号

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 课程编号: 11322617,11222617,11522617 课程名称:数字信号处理 英文名称:Digital Signal Processing 课程类型: 专业核心课程 总学时:56 讲课学时:48 实验学时:8 学分:3 适用对象: 通信工程专业、电子信息科学与技术专业 先修课程:信号与系统、Matlab语言及应用、复变函数与积分变换 执笔人:王树华审定人:孙长勇 一、课程性质、目的和任务 《数字信号处理》是通信工程、电子信息科学与技术专业以及电子信息工程专业的必修课之一,它是在学生学完了信号与系统的课程后,进一步学习其它专业选修课的专业平台课程。本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础。 二、课程教学和教改基本要求 数字信号处理是用数字或符号的序列来表示信号,通过数字计算机去处理这些序列,提取其中的有用信息。例如,对信号的滤波,增强信号的有用分量,削弱无用分量;或是估计信号的某些特征参数等。总之,凡是用数字方式对信号进行滤波、变换、增强、压缩、估计和识别等都是数字信号处理的研究对象。 本课程介绍了数字信号处理的基本概念、基本分析方法和处理技术。主要讨论离散时间信号和系统的基础理论、离散傅立叶变换DFT理论及其快速算法FFT、IIR和FIR数字滤波器的设计以及有限字长效应。通过本课程的学习使学生掌握利用DFT理论进行信号谱分析,以及数字滤波器的设计原理和实现方法,为学生进一步学习有关信息、通信等方面的课程打下良好的理论基础。 本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础,应当达到以下目标: 1、使学生建立数字信号处理系统的基本概念,了解数字信号处理的基本手段以及数字信号处理所能够解决的问题。 2、掌握数字信号处理的基本原理,基本概念,具有初步的算法分析和运用MATLAB编程的能力。 3、掌握数字信号处理的基本分析方法和研究方法,使学生在科学实验能力、计算能力和抽象思维能力得到严格训练,培养学生独立分析问题与解决问题的能力,提高科学素质,为后续课程及从事信息处理等方面有关的研究工作打下基础。 4、本课程的基本要求是使学生能利用抽样定理,傅立叶变换原理进行频谱分析和设计简单的数字滤波器。 三、课程各章重点与难点、教学要求与教学内容

现代数字信号处理

现代数字信号处理Advanced Digital Signal Processing 东南大学信息科学与工程学院 杨绿溪

教科书、参考书 ?杨绿溪, 现代数字信号处理, 科学出版社, 2008年12月。?胡广书,数字信号处理----理论、算法与实现,清华大学出版社,1997(或2003)年。 ?皇甫堪等,现代数字信号处理,电子工业出版社,2004年6月。 ?丁玉美等,数字信号处理-----时域离散随机信号处理,西安电子科技大学出版社,2002年12月。 ?金连文,韦岗,现代数字信号处理简明教程,清华大学出版社,2004年1月。 ?何子述等,现代数字信号处理及其应用,清华大学出版社,2009年5月。 ?S.Haykin, Adaptive Filter Theory, Prentice Hall, 2001.

课程基本内容 1.离散时间信号处理基础(本科内容复习) 2.离散随机信号分析基础 –离散时间随机信号基本概念? –基本的正交变换(与信号正交展开、去相关) –基本的参数估计方法 3.线性预测和格型滤波器(语音编码应用)? 4.随机信号的线性建模? 5.功率谱估计(与频率估计、子空间分析)? 6.最优线性滤波: 维纳滤波与卡尔曼滤波? 7.自适应滤波器(线性系统的学习)?

可能选讲或简介的内容 8.多速率数字信号处理和滤波器组 9. 神经智能信息处理;压缩感知等 10. 盲信号处理 11.空时、阵列与MIMO信号处理 12.信号的时频分析

第一章离散时间信号处理基础??本科课程内容复习?? ?数字信号与数字信号处理(DSP)概述 ?滤波器--简单的数字信号处理系统 ?信号的变换-z变换、DTFT、DFT和FFT ?特殊的序列(和对应的滤波器) –全通序列、最小相位序列、线性相位、半正定序列

现代信号处理论文(1)

AR 模型的功率谱估计BURG 算法的分析与仿真 钱平 (信号与信息处理 S101904010) 一.引言 现代谱估计法主要以随机过程的参数模型为基础,也可以称其为参数模型方法或简称模型方法。现代谱估计技术的研究和应用主要起始于20世纪60年代,在分辨率的可靠性和滤波性能方面有较大进步。目前,现代谱估计研究侧重于一维谱分析,其他如多维谱估计、多通道谱估计、高阶谱估计等的研究正在兴起,特别是双谱和三谱估计的研究受到重视,人们希望这些新方法能在提取信息、估计相位和描述非线性等方面获得更多的应用。 现代谱估计从方法上大致可分为参数模型谱估计和非参数模型谱估计两种。基于参数建摸的功率谱估计是现代功率谱估计的重要内容,其目的就是为了改善功率谱估计的频率分辨率,它主要包括AR 模型、MA 模型、ARMA 模型,其中基于AR 模型的功率谱估计是现代功率谱估计中最常用的一种方法,这是因为AR 模型参数的精确估计可以通过解一组线性方程求得,而对于MA 和ARMA 模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。在利用AR 模型进行功率谱估计时,必须计算出AR 模型的参数和激励白噪声序列的方差。这些参数的提取算法主要包括自相关法、Burg 算法、协方差法、 改进的协方差法,以及最大似然估计法。本章主要针对采用AR 模型的两种方法:Levinson-Durbin 递推算法、Burg 递推算法。 实际中,数字信号的功率谱只能用所得的有限次记录的有限长数据来予以估计,这就产生了功率谱估计这一研究领域。功率谱的估计大致可分为经典功率谱估计和现代功率谱估计,针对经典谱估计的分辨率低和方差性能不好等问题提出了现代谱估计,AR 模型谱估计就是现代谱估计常用的方法之一。 信号的频谱分析是研究信号特性的重要手段之一,通常是求其功率谱来进行频谱分析。功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。然而,实际应用中的平稳随机信号通常是有限长的,只能根据有限长信号估计原信号的真实功率谱,这就是功率谱估计。 二.AR 模型的构建 假定u(n)、x(n)都是实平稳的随机信号,u(n)为白噪声,方差为 ,现在,我们希望建立AR 模型 的参数和x(n)的自相关函数的关系,也即AR 模型的正则方程(normal equation)。 由 )}()]()({[)}()({)(1 n x m n u k m n x E m n x n x E m p k k x a r ++-+-=+=∑= )()()(1 m k m m r r a r xu x p k k x +--=∑= (1) 由于u(n)是方差为 的白噪声,有 ?? ?=≠=-0 00)}()({2 m m m n x n u E σ (2) 由Z 变换的定义, ,当 时,有h(0)=1。综合(1)及(2)两式, ???????=-≥--=∑∑==0)(1)()(1 2 1 m k m k m m p k x k p k x k x r a r a r σ (3) 在上面的推导中,应用了自相关函数的偶对称性。上式可写成矩阵式:

数字信号处理

Matlab上机实验 报告 ; 学院:理学院 专业:10 电信 姓名:贺茂海 学号:2010142110 完成日期:2012.10.20

matlab上机实验 实验内容:1)阅读例子程序,观察输出波形,理解每条语句的含义。 (2)已知有限长序列x(n)=[7,6,5,4,3,2],求DFT和IDFT,要求:画出序列傅立叶变换对应的幅度谱和相位谱;画出原信号与傅立叶逆变换IDFT[X(k)]的图形进行比较。 (3)已知周期序列的主值x(n)=[7,6,5,4,3,2],求x(n)周期重复次数为3次时的DFS和IDFS。要求:画出原信号序列的主值和周期序列的图形;画出离散傅立叶变换对应的幅度谱和相位谱。 (4)求x(n)=[7,6,5,4,3,2], 0=

数字信号处理(理论算法与实现)_胡广书(第三版)_随书光盘——使用说明

数字信号处理_胡广书(第三版)_随书光盘 关于光盘的使用说明 数字信号处理_胡广书(第三版)_随书光盘.rar 本光盘共包含六个子目录,其中三个是DSP_FORTRAN, DSP_C和DSP_MATLAB,另外三个是有关习题所需要的数据或文献。DSP_FORTRAN和DSP_C各含有约40个信号处理的子程序,概括了书中所涉及到的绝大部分算法。程序分别由FORTRAN语言和C语言编写(MA模型、ARMA模型及最小方差谱估计三个算法只给出了用C语言编写的程序, 没有给出相应的FORTRAN子程序),并在PC机上调试通过。编译环境是FORTRAN77 V5. 10和TURBO C2. 0。DSP_MATLAB含有近120多个用MA TLAB编写的信号处理程序,它们是本书各个章节的大部分例题,使用的是MA TLAB6.1。 FORTRAN子程序名称的长度全都是6位,扩展名为.for,C语言子程序的名称全部是7位,由相应的FORTRAN子程序在其名称前加字母m而形成,并将扩展名改为.c。为了方便读者的使用,光盘中还给出了调用FORTRAN子程序的简单主程序。读者只需将此主程序和主程序指定的子程序作编译、连接和运行,即可得出相应的结果。FORTRAN主程序的名称为7位或8位,它是在原FORTRAN子程序前加字母h所构成的,扩展名仍是.for。h后面的一个数(如果有的话)表示该程序是相应子程序的第几个主程序。例如,子程序desiir.for是用来设计IIR滤波器的FORTRAN子程序,对应的C程序是mdesiir.c,调用desiir.for 的第一个主程序是h1desiir.for(设计低通IIR DF),依此类推。 用MATLAB编写的程序的名称由“exa”开头,接下来是所在的章、节及例题的序号,如exa010101,指的是第1章第1节(即1.1节)的第1个例题,即例1.1.1。如果该程序是为了说明某一个m文件的应用,则在上述名称的后面跟一个下划线,再在后面加上所说明的MATLAB文件的名称,如exa011001_rand,即是例1.10.1,该例用来说明rand.m文件的应用。应该说明的是,这些MATLAB程序不是像所附的FORTRAN和C程序那样作为一个个子程序应用,而是用来说明书上的例题及各个m文件的应用。 用FORTRAN和C语言编写的每一个子程序的功能及调用时各个参数的含义已在程序的开头作了较为详细的说明,此处不再赘述。所附程序中,绝大多数都是作者和其研究生编写的,也有少量是参考国外已公开发表的杂志和教科书,如经典的FFT和REMEZ算法等。 下面给出的是用FORTRAN语言和C语言编写的程序的名称、功能以及有关问题的说

现代信号处理考试题

一、 基本概念填空 1、 统计检测理论是利用 信号 与 噪声 的统计特性等信息来建立最佳判决的数学理论。 2、 主要解决在受噪声干扰的观测中信号有无的判决问题 3、 信号估计主要解决的是在受噪声干扰的观测中,信号参量 和 波形 的确定问题。 4、 在二元假设检验中,如果发送端发送为H 1,而检测为H 0,则成为 漏警 ,发送端发送H 0,而检测为H 1,则称为 虚警 。 5、 若滤波器的冲激响应时无限长,称为 IIR 滤波器,反之,称为 FIR 滤波器 6、 若滤波器的输出到达 最大信噪比 成为 匹配 滤波器;若使输出滤波器的 均方估计误差 为最小,称为 维纳 滤波器。 7、 在参量估计中,所包含的转换空间有 参量空间 和 观测空间 8、 在小波分析中,小波函数应满足 ∫φφ(tt )ddtt =0+∞?∞ 和 ∫|φφ(tt )|ddtt =1+∞ ?∞ 两个数学条件。 9、 在小波的基本概念中,主要存在 F (w )=∫ff (tt )ee ?ii ii ii ddtt +∞?∞和f(t)=12ππ∫FF (ww )ee ii ii ii ddww +∞?∞ 两个基本方程。(这个不确定答案,个人感觉是) 10、 在谱估计中,有 经典谱估计 和 现代谱估计 组成了完整的谱估计。 11、 如果系统为一个稳定系统,则在Z 变换中,零极点的分布

应在单位圆内,如果系统为因果系统,在拉普拉斯变换中, 零极点的分布应在左边平面。 二、问题 1、在信号检测中,在什么条件下,使用贝叶斯准则,什么条 件下使用极大极小准则?什么条件下使用Neyman-Pearson准 则? 答:先验概率和代价函数均已知的情况下,使用贝叶斯准则,先验概率未知,但可选代价函数时,使用极大极小准则,先验 概率和代价函数均未知的情况下,使用Neyman-Pearson准则。 2、在参量估计中,无偏估计和渐进无偏估计的定义是什么? 答:无偏估计:若估计量的均值等于被估计量的均值(随机变 量),即E?θθ??=EE(θθ)或等于被估计量的真值(非随机参 量)E?θθ??=θθ,则称θθ?为θ的无偏估计。 渐进无偏估计:若lim NN→∞EE?θθ??=EE(θ ),称θθ?为θ的渐进无偏估计。 3、卡尔曼滤波器的主要特征是什么? 答:随机过程的状态空间模型,用矩阵表示,可同时估计多参 量,根据观测数据,提出递推算法,便于实时处理。 4、在现代信号处理中,对信号的处理通常是给出一个算法, 对一个算法性能的评价,应从那些方面进行评价。 答:算法的复杂度,算法的稳定性和现有算法的比较,算法的 运算速度、可靠性、算法的收敛速度。

数字信号处理

数字信号处理实验报告(1) 班级:通信09-1 姓名:陈阳 学号:3号

实验7 z 变换及其应用 一.实验目的 (1) 加深对离散系统变换域分析——z 变换的理解。 (2) 掌握进行z 变换和z 反变换的基本方法,了解部分分式法在z 反变换中的应用。 (3) 掌握使用MATLAB 语言进行z 变换和z 反变换的常用子函数。 二.实验内容 (4)用部分分式法求解下列系统函数的z 反变换,写出x(n)的表示式,并用图形与impz 求得的结果相比较,取前10 个点作图。 b=[10,20,0,0];a=[1,8,19,12]; [r p c]=residuez(b,a) N=10;n=0:N-1; x=r(1)*p(1).^n+r(2)*p(2).^n+r(3)*p(3).^n; subplot(1,2,1),stem(n,x); title('用部分分式法求反变换x(n)'); x2=impz(b,a,N); subplot(1,2,2);stem(n,x2); title('用impz 求反变换x(n)'); 0510-7 -6-5-4-3-2-1012x 10 6用部分分式法求反变换x(n)0510 -7 -6-5-4-3-2-1012x 106 用impz 求反变换x(n)

b=[0,0,5];a=[1,1,-6]; [r p c]=residuez(b,a); N=10;n=0:N-1; x=r(1)*p(1).^n+r(2)*p(2).^n; subplot(1,2,1),stem(n,x); title('用部分分式法求反变换x(n)'); x2=impz(b,a,N); subplot(1,2,2);stem(n,x2); title('用impz 求反变换x(n)'); 5 10 -7000 -6000-5000-4000-3000-2000-100001000 20003000用部分分式法求反变换x(n)0 5 10 -7000 -6000-5000-4000 -3000-2000-100001000 20003000用impz 求反变换x(n) b=[1,0,0,0];a=[1,-0.9,-0.18,0.729]; [r p c]=residuez(b,a); N=10;n=0:N-1; x=r(1)*p(1).^n+r(2)*p(2).^n; subplot(1,2,1),stem(n,x); title('用部分分式法求反变换x(n)'); x2=impz(b,a,N);

相关文档
最新文档