数值传热学(课件)-1

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热流问题的数值计算
Numerical Simulations of Thermal & Fluid Problems
第一章 绪论
主讲 陶文铨
西安交通大学能源与动力工程学院 热流中心 CFD-NHT-EHT CENTER 2007年10月16日, 西安
1/88

物理问题数值解的基本思想 把原来在空间与时间坐标中连续的物理量的场 (如速度场,温度场,浓度场等),用一系列有限 个离散点(称为节点,node)上的值的集合来代替; 通过一定的原则建立起这些离散点上变量值之间关 系的代数方程 (称为离散方程,discretization
equation);求解所建立起来的代数方程以获得所求
解变量的近似解.
2/88

大规模科学计算的重要性 传热与流动问题数值计算是应用计算机求解热量传 递过程中的速度场,温度场等的分支学科,是大规模 科学计算的重要组成部分,其重要性不言而喻. 2005年美国总统顾问委员会向美国总统提出要大 力发展计算科学以确保美国在世界上的竞争能力. 波音公司实现了对航空发动机的网格数达10亿量 级的直接数值模拟,以研究所设计发动机的性能.
3/88

现代科学研究的三大基本方法及其关系
理论分析
Analytical
实验研究
Experimental
数值模拟
Numerical
4/88

课程简介
1. 学时- 30学时理论教学;6学时计算机作业 2. 考核- 平时作业/计算机大作业/考试: 20/30/50 3. 方法- 理解,参与,应用 努力将与数学处理相对应的物理背景联系起来理解. 4. 助手- 于乐 5. 参考教材-《计算流体力学与传热学》,中国建筑 工业出版社,1991
5/88

学习方法建议
1. 善于从物理过程基本特性来掌握理解数值方法; 2. 对数值方法-明其全而析其微:明其全-了解基本
原理;析其微-掌握实施细节;
3. 努力上机实践; 4. 学会分析计算结果: 合理性,规律性; 5. 应用商业软件与自编程序相结合.
6/88

《热流问题的数值计算》 主要教学内容
第一章 绪论(物理与数学基础) 第二章 一维导热问题的数值解 第三章 多维导热问题的数值解 第四章 势流及管道内充分发展流动与换热的数值解 第五章 有回流的动与换热问题的数值解 第六章 二维涡量-流函数法通用程序介绍 第七章 原始变量法与湍流数值模拟简介
7/88

绪论
1.1 流动与传热问题控制方程的基本类型 1.2 流动与传热问题数值计算的基本步骤 1.3 建立离散方程的方法 1.4 离散方程数学与物理特性分析简介
8/88

1.1 流动与传热问题控制方程的基本类型
1.1.1 流动与传热问题完整的数学描写 1.1.2 控制方程 1. 质量守恒方程 3. 能量守恒方程 1.1.3 单值性条件 1.1.4 建立数学描写举例 1.1.5 控制方程式的分类
9/88
2. 动量守恒方程

1.1 流动与传热问题控制方程的基本类型
1.1.1 流动与传热问题完整的数学描写 1. 有关的守恒定律的偏微分方程(控制方程)
一切宏观的流动与传热问题都由三个守恒定律所 支配:质量,动量与能量守恒(conservation law).
2. 与表述守恒定律的偏微分方程相关的单值性条件.
不同问题的区别主要在于单值性条件 (conditions for unique solution) 的不同:初始条件以,边界条件 以及物性数据.
10/88

1.1.2 控制方程(Governing equations) Mass conservation
1. 质量守恒方程
r ( r u ) ( r v) ( r w) + + + =0 t x y z
单位时间 内质量的 增加 单位时间内流 进微元体的净 质量
物理意义:单位时间内空 间某一微元容积质量的增 加等于流入该微元容积的 净质量.
11/88

对不可压缩流体: r = const 对二维不可压缩流体:
u v + =0 x y
u v w + + =0 x y z
对二维问题,速度矢量:
ur u v 数学上称: + = div(U ) x y
ur r ur U =ui+v j
为速度矢量的散度,因此对二维不可压流体有:
ur div(U ) = 0
下面只讨论不可压缩流体(incompressible flow).
12/88

2. 动量守恒方程(Momentum conservation)
对上图所示的微元体分别在三个坐标方向上应用 Newton第2定律(F=ma)在流体中的表现形式: [微元体内动量的增加率]=[作用在微元体上各种力之和] 可得出三个坐标方向的动量方程:
u uu uv uw 1 p 2u 2u 2u + + + =+ n ( 2 + 2 + 2 ) + Fx t x y z r x x y z 1 p v vu vv vw 2v 2v 2v + + + =+ n ( 2 + 2 + 2 ) + Fy t x y z r y x y z 1 p w wu wv ww 2 w 2 w 2 w + + + =+ n ( 2 + 2 + 2 ) + Fz t x y z r z x y z
微元体内动 量的增加率
压力
粘性力
体积力
13/88

3. 能量守恒方程(Energy conservation)
[微元体内热力学能的增加率]=[通过流动与导热进入 微元体内的净热流量]+[体积力与表面力对微元体所做 的功率] 引入导热Fourier定律,假定热物性为常数,可得
T (uT ) (vT ) ( wT ) 2T 2T 2T rcp[ + + + ] = l( 2 + 2 + 2 ) + S t x y z x y z
微元体 内能增 加率 由于流动被带出 微元体的净功率 由于导热而进入 源项 微元体的净功率 生成 热
14/88
l =a rcp
流体的热扩散率(thermal diffusivity)

相关文档
最新文档