数值传热学1

合集下载

数值传热学(课件)

数值传热学(课件)

02 数值传热学的基本原理
控制方程
控制方程
数值传热学的核心是求解控制方 程,这些方程描述了热量传递过 程中的物理规律。
偏微分方程
控制方程通常以偏微分方程的形 式给出,包含了温度、时间、空 间等变量的变化关系。
初始条件和边界条

为了求解控制方程,需要给出初 始条件和边界条件,这些条件限 定了问题的解的范围。
详细描述
传热过程模拟是数值传热学的另一重要应用,通过建立传热过程的数学模型,可以模拟物体内部的温 度分布和热量传递过程。这对于能源、化工、电子等领域中的热工设备设计和优化具有重要意义。
04 数值传热学面临的挑战与 解决方案
计算精度与稳定性问题
总结词
计算精度和稳定性是数值传热学中的核心问题,直接关系到模拟结果的准确性和可靠性。
详细描述
多尺度问题要求数值方法能够捕捉到不同尺度的物理现象,并准确地将它们联系起来。 这需要发展具有多尺度分辨率的数值方法,如多重网格法、谱方法和自适应网格法等。
非线性问题
总结词
非线性问题在传热过程中广泛存在,如 流动、相变和化学反应等,给数值模拟 带来很大难度。
VS
详细描述
非线性问题需要数值方法能够处理高度非 线性的物理方程,并能够准确地捕捉到非 线性现象。这需要发展高效的数值算法, 如有限元法和有限体积法等,同时还需要 考虑非线性问题的特殊性质,如初始条件 和边界条件等。
02
它涉及传热学的基本原理、数学 建模、数值计算和计算机技术等 多个领域,是计算流体动力学和 计算传热学的重要组成部分。
数值传热学的重要性
随着科技的发展,传热问题在能源、 环境、航空航天、化工等领域越来越 突出,数值传热学的应用也越来越广 泛。

数值传热学总结

数值传热学总结

1. 质量守恒方程:单位时间内微元体中流体质量的增加=同一时间间隔内流入该微元体的净质量2. 动量守恒方程:微元体中流体动量的增加率=作用在微元体上各种力之和3. 能量守恒方程:微元体内热力学能的增加率=进入微元体的净热量+体积力与表面力对微元体做的功4. 控制方程的通用形式:展开形式:5. 控制方程的守恒与非守恒形式对比:1.从微元体的角度,控制方程的守恒形式与非守恒形式是等价的,都是物理的守恒定律的数学表示。

2.从数值计算的观点,守恒型的方程有两个优点。

A 守恒型的控制方程可以使激波的计算结果光滑而且稳定,而应用非守恒型方程时激波的计算结果会在激波前及后引起解的振荡,并导致错误的激波位置。

B 只有守恒型的控制方程才可以保证对有限大小的控制容积内所研究的物理量的守恒定律仍然得到满足。

6. 初始条件是所研究现象在过程开始时刻的各个求解变量的空间分布,必须予以给定。

对于稳态问题不需要初始条件。

边界条件是在求解区域的边界上所求解的变量或其一阶导数随地点及时间的变化规律。

7. 二维稳态层流控制方程:质量守恒方程:0=∂∂+∂∂yv x u动量守恒方程:)(1)()(2222yu xu xpy vu x uu ∂∂+∂∂+∂∂-=∂∂+∂∂νρ)(1)()(2222yv xv ypyvv x uv ∂∂+∂∂+∂∂-=∂∂+∂∂νρ能量守恒方程:)()()(2222yT xT a yvT xuT ∂∂+∂∂=∂∂+∂∂8. 偏微分方程的三种类型:双曲型b2-4ac>0,过该点有两条实的特征线;抛物型b2-4ac=0过该点有一条实的特征线;椭圆型b2-4ac<0过该点没有实的特征线。

9. 椭圆型方程:描写物理学中一类稳态问题,这种物理问题的变量与时间无关而需要在空间的一个闭区域内来求解。

这类问题又称边值问题。

稳态导热过程,有回流的流动与对流换热都属于椭圆型问题,其控制方程都是椭圆型的。

抛物型方程描写物理学中一类步进问题,这类问题中因变量与时间有关,或问题中有类似于时间的变量。

数值传热学 -回复

数值传热学 -回复

数值传热学 -回复
数值传热学(Numerical Heat Transfer)是一门研究热传递现象的学科,通过数值模拟和计算方法来分析热传导、对流和辐射等传热过程。

本文将介绍数值传热学的基本原理、方法和应用。

1. 基本原理
数值传热学基于传热学原理和计算数学方法,将传热过程建模为数学方程,并通过数
值方法求解这些方程,从而得到热传递的数值解。

主要的传热模型包括热传导、对流和辐
射传热。

2. 数值方法
数值传热学常用的方法包括有限差分法、有限元法和边界元法等。

有限差分法是最常
用的方法之一,将传热区域离散化为网格,通过差分近似计算网格点上的温度或热流量。

有限元法则是另一种常用的方法,将传热区域划分为元素,通过建立元素之间的关系来计
算温度场或热流场。

边界元法则是将问题转化为边界上的积分方程,通过求解积分方程得
到温度场或热流场。

3. 应用领域
数值传热学在各个领域都有广泛的应用。

在工程领域,数值传热学用于优化热交换器
的设计、预测电子器件温度分布、模拟流体在管道内的传热过程等。

在材料科学领域,数
值传热学用于研究材料的导热性能、相变过程以及焊接和烧结等工艺。

在能源领域,数值
传热学用于分析太阳能热收集器的性能、燃烧过程中的传热机制等。

通过数值传热学的研究,我们可以更加深入地了解热传递过程,并可以通过数值模拟
方法来预测和优化热传递的效果。

数值传热学也为各个领域的工程和科学研究提供了重要
的工具和方法。

通过不断的发展和创新,数值传热学将进一步推动热传递理论和应用的发展。

数值传热学答案范文

数值传热学答案范文

数值传热学是热力学的重要分支之一,研究物质中热量的传递和分布规律。

与传统的实验方法相比,数值传热学采用计算机模拟技术,通过数学模型和计算实验方法,能够更加深入、系统地研究热传递现象的规律和特性,为工程设计和实际生产提供重要的技术支持。

数值传热学的本质是热传递方程的数值求解。

热传递方程是描述物质中热量传递和分布的方程,它包含了热传导、热对流和热辐射三种传热方式。

热传导是指热量沿着物质内部的温度梯度传递,主要发生在固体和液体中;热对流是指热量随物质的流动而传递,主要发生在液体和气体中;热辐射是指热量通过辐射传递,主要发生在光学和辐射热转换材料中。

通过数值方法求解热传递方程,可以得到物体的温度分布、热传递速率和热流密度等参数,为材料和工程设计提供准确的数据支持。

数值传热学的核心是数值方法,主要包括有限差分、有限元和边界元等方法。

有限差分法是一种利用离散化方法求解微分方程的数值方法,它将微分方程中的连续变量离散化,将求解微分方程转化为求解线性方程组。

有限元法是一种利用有限元逼近方法解决偏微分方程的数值方法,采用对物体进行简单的几何划分,将问题离散化,通过数学建模来表示物体的温度分布和热流密度分布。

边界元法是一种较新的有限元法补充,它能够快速解决边界值问题,并且可以减少问题的维数。

数值传热学的应用范围广泛,包括热工和物理问题的研究、能源系统分析和设计、建筑工程中的热传递和能源效率研究等。

例如,在太阳能发电系统设计中,数值传热学可以帮助设计人员确定集热器表面温度和吸收率等参数,提高太阳能效率并减少系统成本。

在建筑工程中,数值传热学可以帮助设计师分析建筑物的保温性能,合理评估保温材料的性能和使用效果,确保建筑节能和环保。

在机械加工领域中,数值传热学可以帮助工程师分析材料切削过程中的热量和温度分布,挑选适合材料和刀具的加工工艺,提高机械切削效率。

数值传热学是现代科学技术的重要分支之一,是研究物质中热传递和分布规律的重要工具。

数值传热学(课件)-1

数值传热学(课件)-1

热流问题的数值计算Numerical Simulations of Thermal & Fluid Problems第一章 绪论主讲 陶文铨西安交通大学能源与动力工程学院 热流中心 CFD-NHT-EHT CENTER 2007年10月16日, 西安1/88物理问题数值解的基本思想 把原来在空间与时间坐标中连续的物理量的场 (如速度场,温度场,浓度场等),用一系列有限 个离散点(称为节点,node)上的值的集合来代替; 通过一定的原则建立起这些离散点上变量值之间关 系的代数方程 (称为离散方程,discretizationequation);求解所建立起来的代数方程以获得所求解变量的近似解.2/88大规模科学计算的重要性 传热与流动问题数值计算是应用计算机求解热量传 递过程中的速度场,温度场等的分支学科,是大规模 科学计算的重要组成部分,其重要性不言而喻. 2005年美国总统顾问委员会向美国总统提出要大 力发展计算科学以确保美国在世界上的竞争能力. 波音公司实现了对航空发动机的网格数达10亿量 级的直接数值模拟,以研究所设计发动机的性能.3/88现代科学研究的三大基本方法及其关系理论分析Analytical实验研究Experimental数值模拟Numerical4/88课程简介1. 学时- 30学时理论教学;6学时计算机作业 2. 考核- 平时作业/计算机大作业/考试: 20/30/50 3. 方法- 理解,参与,应用 努力将与数学处理相对应的物理背景联系起来理解. 4. 助手- 于乐 5. 参考教材-《计算流体力学与传热学》,中国建筑 工业出版社,19915/88学习方法建议1. 善于从物理过程基本特性来掌握理解数值方法; 2. 对数值方法-明其全而析其微:明其全-了解基本原理;析其微-掌握实施细节;3. 努力上机实践; 4. 学会分析计算结果: 合理性,规律性; 5. 应用商业软件与自编程序相结合.6/88《热流问题的数值计算》 主要教学内容第一章 绪论(物理与数学基础) 第二章 一维导热问题的数值解 第三章 多维导热问题的数值解 第四章 势流及管道内充分发展流动与换热的数值解 第五章 有回流的动与换热问题的数值解 第六章 二维涡量-流函数法通用程序介绍 第七章 原始变量法与湍流数值模拟简介7/88绪论1.1 流动与传热问题控制方程的基本类型 1.2 流动与传热问题数值计算的基本步骤 1.3 建立离散方程的方法 1.4 离散方程数学与物理特性分析简介8/881.1 流动与传热问题控制方程的基本类型1.1.1 流动与传热问题完整的数学描写 1.1.2 控制方程 1. 质量守恒方程 3. 能量守恒方程 1.1.3 单值性条件 1.1.4 建立数学描写举例 1.1.5 控制方程式的分类9/882. 动量守恒方程1.1 流动与传热问题控制方程的基本类型1.1.1 流动与传热问题完整的数学描写 1. 有关的守恒定律的偏微分方程(控制方程)一切宏观的流动与传热问题都由三个守恒定律所 支配:质量,动量与能量守恒(conservation law).2. 与表述守恒定律的偏微分方程相关的单值性条件.不同问题的区别主要在于单值性条件 (conditions for unique solution) 的不同:初始条件以,边界条件 以及物性数据.10/881.1.2 控制方程(Governing equations) Mass conservation1. 质量守恒方程r ( r u ) ( r v) ( r w) + + + =0 t x y z单位时间 内质量的 增加 单位时间内流 进微元体的净 质量物理意义:单位时间内空 间某一微元容积质量的增 加等于流入该微元容积的 净质量.11/88对不可压缩流体: r = const 对二维不可压缩流体:u v + =0 x yu v w + + =0 x y z对二维问题,速度矢量:ur u v 数学上称: + = div(U ) x yur r ur U =ui+v j为速度矢量的散度,因此对二维不可压流体有:ur div(U ) = 0下面只讨论不可压缩流体(incompressible flow).12/882. 动量守恒方程(Momentum conservation)对上图所示的微元体分别在三个坐标方向上应用 Newton第2定律(F=ma)在流体中的表现形式: [微元体内动量的增加率]=[作用在微元体上各种力之和] 可得出三个坐标方向的动量方程:u uu uv uw 1 p 2u 2u 2u + + + =+ n ( 2 + 2 + 2 ) + Fx t x y z r x x y z 1 p v vu vv vw 2v 2v 2v + + + =+ n ( 2 + 2 + 2 ) + Fy t x y z r y x y z 1 p w wu wv ww 2 w 2 w 2 w + + + =+ n ( 2 + 2 + 2 ) + Fz t x y z r z x y z微元体内动 量的增加率压力粘性力体积力13/883. 能量守恒方程(Energy conservation)[微元体内热力学能的增加率]=[通过流动与导热进入 微元体内的净热流量]+[体积力与表面力对微元体所做 的功率] 引入导热Fourier定律,假定热物性为常数,可得T (uT ) (vT ) ( wT ) 2T 2T 2T rcp[ + + + ] = l( 2 + 2 + 2 ) + S t x y z x y z微元体 内能增 加率 由于流动被带出 微元体的净功率 由于导热而进入 源项 微元体的净功率 生成 热14/88l =a rcp流体的热扩散率(thermal diffusivity)4. 对于二维稳态对流换热问题控制方程汇总u v + =0 x yuu uv 2u 2u 1 p + =+ n ( 2 + 2 ) + Fx y z r x x yvu vv 2v 2v 1 p + =+ n ( 2 + 2 ) + Fy y z r y x y(uT ) (vT ) 2T 2T + = a( 2 + 2 ) + ST x y x y对流项扩散项源项数值计算中常用的术语.15/88不同的二维,稳态求解问题之间的区别在于: (1)边界条件不同; (2)源项与扩散系数不同.5. 二点说明1. 所导出的三维非稳态Navier-Stokes方程,无论对 层流或是湍流都是适用的. 2. 辐射换热需要用积分方程来描述,课程中将不涉及 这类问题.16/881.1.3 单值性条件 1. 初始条件 2. 边界条件 (1) 第一类 (Dirichlet):t = 0, T = f ( x, y, z )TB = Tgiven(2) 第二类 (Neumann): qB = -l (T ) B = qgiven n(3) 第三类 (Rubin):规定了边界上被求函数的一阶导数与函数之间的关系: -l ( T ) B = h(TB - T f )n数值计算中计算区域的出口边界条件常常最难 确定,要做近似处理.17/881.1.4 建立数学描写举例 1. 问题与假设条件突扩区域中的对流传热:二维,稳态,不可压缩, 常物性,不计重力与黏性耗散.18/882. 控制方程u v + =0 x y1 p u u u u u +v =+n ( 2 + 2 ) r x x y x y 2 2 v v 1 p v v u +v =+n ( 2 + 2 ) x y r y x y2 2T T T T u +v = a( 2 + 2 ) x y x y2 219/883. 边界条件 (1)进口边界条件:给定u,v,T随y 的分布; (3)中心线: u = T = 0; v = 0 y y(4)出口边y x界:数学上要 求给定u,v,T 或其导数随y 的分布;实际 上做不到;数 值上近似处理20/88(2)固体边界条件:速度无滑移,温度无跳跃1.1.5 传热与流动问题的数学描写的分类 1. 从数学角度分类-椭圆型与抛物型椭圆型 (Elliptic)椭圆型方程数学上的特点是:所求解的因变量对每个 空间自变量均存在二阶导数项: 导热方程-所求解的因变量为温度T ,空间自变量x,y; 动量方程-所求解的因变量为速度u ,空间自变量x,y.21/88抛物型(Parabolic)抛物型方程数学上的特点是:所求解的因变量对某个 个自变量只存在一阶导数项: 非稳态导热方程-因变量T 对时间t仅有一阶导数; 边界层动量方程-u对空间自变量x仅有一阶导数. 仅存在一阶导数的自变量在物理过程上的重要特 点:过程只能沿该坐标的单个方向进行而不能逆向进 行.22/88抛物型与椭圆型流动的例子椭圆型方程的求解必须全场联立进行,而抛物性 方程的求解可以沿坐标正向逐步推进, 大大节省时间.23/88(1)椭圆型问题: 流动有回流,必须 全场同时求解; (2)抛物型问题:流动无回流,可以沿主流方向步 步逼进,不必全场同时求解,大大节省时间.Marching method24/882. 从物理角度分类-守恒型与非守恒型守恒型( Conservative)-对任意大小容积守恒特性 都能得到满足的方程; 凡对流项表示成散度形式的方程具有守恒性 . 非守恒型方程+u v v u u v u ++ u = 0= 0 u ( + ) = 0 x x y y x y (uu ) (uv) 1 p 2u 2 v =+n ( 2 + 2 ) + r x x x y x守恒型方程凡是从守恒型控制方程推导得到的用于数值求解 的代数方程也具有守恒特性.25/881.2 流动与传热问题数值求解的基本步骤1.2.1 流动与传热问题数值求解步骤 1. 建立数理模型 3. 方程的离散化 5.代数方程求解 1.2.2 区域离散化方法 2.区域的离散化 4. 边界条件离散 6. 求解结果分析1.区域离散化的任务 2. 区域离散方法1.2.3 网格系统标记方法26/881) 外节点法2. 内节点法1.2.1 流动与传热问题数值求解步骤把原来在空间与时间坐标中连续的物理量的场 (如速度场,温度场,浓度场等),用一系列有限个 离散点(称为节点,node)上的值的集合来代替;通过 一定的原则建立起这些离散点上变量值之间关系的代 数方程(称为离散方程,discretization equation);求 解所建立起来的代数方程以获得所求解变量的近似解.27/88(1) 区域离散 (2) (3) (4) (5) 代数求解 (6)28/88方程离散结果分析1.2.2 区域离散化1.区域离散化的任务将所计算的区域分割成许多不重叠的子区域,确 定每个子区域中节点的位置以及所代表的控制容积. 离散结果得出四种几何要素: (1) 节点(node):所求解未知量的位置; (2) 控制容积(control volume):实施守恒定律的最 小几何单位; (3) 界面(interface):控制容积的分界位置; (4) 网格线(grid lines):沿坐标方向相邻节点连接 成的曲线簇.29/882. 区域离散方法 (a) 外节点法:节点位于子区域的角顶;控制容积界 面位于两节点之间;生成过程:先节点后界面;又 称 Practice A.子区域控制容积30/88YPractice A-外节点法 x31/88(b) 内节点法:节点位于子区域的中心;子区域即为 控制容积;生成过程:先界面,后节点,又称 Practice B.子区域即为控制容积32/88YPractice B-内节点法 x33/88 1.2.3 内接点与外节点法的比较 (a)边界节点所代表的控制容积不同 方法A 边界节点代表半个CV方法B 边界节点代表零个CV(b)网格非均分时,节点作为控制容积的代表方法B 更合理 方法A 方法B34/881.2.3 网格系统表示方法 网格线-节点间连线,用实线表示;界面为虚线; 节点间距离-dx;界面间距离-Dx .35/881.2.4 网格独立解 当网格足够细密以至于再进一步加密网格已对 数值计算结果基本上没有影响时所得到的数值解称 为网格独立解(grid-independent solution).Int. Journal Numerical Methods in Fluids, 1998, 28: 1371-1387.36/881.3 建立离散方程的方法 1.3.1 一维模型方程( 1-D model equation ) 1.3.2 由Taylor 展开法导出导数的差分表示式 1.3.3 控制容积积分法导出导数的差分表示式 1.3.4 讨论37/881.3 建立离散方程的方法 1.3.1 一维模型方程( 1-D model equation ) 一维模型方程是一维非稳态有源项的对流-扩 散方程,具有四个特征项,便于离散方法的研讨. 非守恒型 守恒型 ( rf ) f f + ru = (G ) + Sf t t x xFDM采用 ( rf ) ( r uf ) f + = (G ) + Sf FVM采用 t t x x 瞬态 对流 扩散 源项38/88"麻雀虽小,五脏俱全!"1.3.2 由Taylor 展开法导出导数的差分表示式 1. 一阶导数的差分表达式的导出 将函数f ( x, t ) 在(i+1,n)的值对(i,n)点做Taylor展开:f 2f Dx 2 2 f (i + 1, n) = f (i, n) + )i ,n Dx + 2 )i ,n Dx + ..... x x 2!f f (i + 1, n) - f (i, n) Dx 2f ) i ,n = - ( 2 )i ,n + ... x Dx 2 x39/88O ( Dx ) 称为截断误差, truncation error,表示:随 Dx 的趋于零,用 f (i + 1, n) - f (i, n) 代替 f )i ,n 的误差 x Dxf f (i + 1, n) - f (i, n) )i ,n = + O(Dx) x Dx KD x, K 与 Dx 无关.D x 的方次称为截差的阶数(order of TE).用数值计算的近似解 fin 代替精确解 f (i, n)fin 1 - fin f )i ,n @ + , O(Dx) 得向前差分: x Dx40/88f -f f )i ,n @ 向后差分: x Dxn in i -1, O (Dx )fin 1 - fin 1 f )i , n @ + , O(Dx 2 ) 中心差分: x 2Dx2. 一,二阶导数的各种差分表达式. 表达差分结构的格式图案o构筑差分表达式的位置; 构筑差分表达式所用到的节点.41/88一阶导数的 常用差分表达式42/88二阶导数的常用差分表达式定性判别导数的差分表达式正确与否的方法: (1)量纲是否正确-与导数本身一致; (2)均匀场的各阶导数应为零.43/883. 一维模型方程的有限差分显式离散表示式 微分方程形式: 假设 ( rf ) f f + ru = (G ) t t x xr , u, G均为常数,显式差分表达式:fin +1 - fin fin 1 - fin 1 r + ru + = Dt 2Dx fin 1 - 2fin + fin 1 G + , O (Dt , Dx 2 ) Dx 2差分方程 截断误差44/88显式(Explicit)-空间导数均以初 始时刻之值计算.1.3.3 控制容积积分法导出导数的差分表示式 1. 控制容积积分法实施步骤 1. 将守恒型的方程对控制容积做积分; 2. 选定被求函数及其一阶导数对时间,空间的变化 曲线-型线; 3. 完成积分,整理成相邻节点间未知量的代数方程. 2. 两种常用型线 型线-被求函数随自变量的局部变化方式,本是 所求内容,近似求解需先假定.45/88随空间自变量的变化型线 型线 型线分段线性阶梯逼近46/88piece-wise linear step-wise approximation随时间自变量的变化型线分段线性 piece-wise linear阶梯逼近 step-wise approximation47/883. 一维模型方程的控制容积积分法离散 将守恒型控制方程对控制容积P 在[t, t+ Dt ]内 做积分, ( rf ) ( r uf ) ft立即可得e+xt +Dt t=xe(Gx)r ò (ft +Dt -ft )dx +rwò [(uf)òt- (uf)w ]dt =t +Dt=Gf f [( )e - ( ) w ]dt x xf 以及 x48/88继续积分,需要知道:f对空间与时间的变化型线.1. 非稳态项假设 f 对空间呈阶梯型变化:t t r ò (f t +Dt - f t )dx = r (f P+Dt - f P )Dx w e2. 对流项假设 f 对时间呈显示阶梯型变化:rt +Dtòt[(uf )e - (uf ) w ]dt = r[(uf )te - (uf )tw ]Dt49/88假设 f 对空间呈分段线性变化:fE + fP fP + fW fE - fW r[(uf ) - (uf ) ]Dt = r uDt ( ) = r uDt 2 2 2t e t w均分网格3. 扩散项f 假设 对时间呈显式阶梯型变化: xt +DtGòtf f f t f t [( )e - ( ) w ]dt = G[( )e - ( ) w ]Dt x x x x50/88假设 f 对空间呈分段线性变化:。

数值传热学(课件)-1

数值传热学(课件)-1
i=2···L1, j=2···M1,XDIF(i)=X(i)−X(i-1),
YDIF(j)=Y(j)−Y(i-1)
(4)生成U,V各自控制容积宽度:XCVS(i), i=3···L2, YCVS(j), j=3···M2
(5)设置Y方向半径R(j), X方向
scaling factor SX(j)
11-1-3 亚松弛的迭代方式 为有利于非线性问题迭代的收敛,两个迭
代层次之间变量的变化不宜太大,亚松弛处理 可以控制这一变化速度.除了 p方程以外,其余
u 、v 、p及一般 变量的方程均把亚松弛处
理纳入到代数方程求解过程中,即由该代数方 程求解而得的结果就是已经经过亚松弛了的结 果:
0
11-3 网格系统
11-3-1 三种坐标系中的有关规定 1. 直角坐标系
(1)MODE=1; (2)Z 方向为单位
厚度; (3)坐标原点位于计
算区域的左下方。
YL XL
2. 圆柱轴对称坐标系
(1)MODE=2;
(2)计算对 =
1弧度进行; (3)R(J) 从对称周
起算; (4)R(1)应给定。
4.START (1)对非稳态问题规定初始条件; (2)对稳态问题规定迭代的初场;固定不变的边 界条件也可在此引入。 以上四个模块在一个工况计算中知执行一次。
5.DENSE 规定流体的密度场;对常物性问题可不写任何语
句,但应保留空块。
6.BOUND
设置各变量的边界条件。
7.OUTPUT (1)每做一个层次的迭代(代数方程系数变换一
⑴ 有灵活的前处理与输入系统
包括输入计算条件及生成网格;
⑵ 有完善的后处理系统,使计算结果的图形显示与 输出很方便;

数值传热学 习题答案

数值传热学 习题答案

数值传热学习题答案数值传热学习题答案数值传热学是热力学的一个重要分支,主要研究热量在物质中传递的机理和规律。

在实际工程中,我们经常会遇到各种与传热有关的问题,通过数值计算可以得到准确的答案。

下面我将为大家提供一些数值传热学习题的答案,希望能够帮助大家更好地理解和应用这门学科。

1. 一个铝制热交换器的表面积为10平方米,其表面温度为100摄氏度,环境温度为20摄氏度。

已知铝的导热系数为200 W/(m·K),求热交换器的传热速率。

答:根据传热定律,传热速率与传热面积、传热系数和温度差之间成正比。

传热速率 = 传热系数× 传热面积× 温度差。

将已知数据代入公式中,可得传热速率= 200 × 10 × (100 - 20) = 160,000 W。

2. 一个房间的尺寸为5米× 5米× 3米,墙壁和天花板的厚度为0.2米,墙壁和天花板的导热系数为0.5 W/(m·K),室内温度为25摄氏度,室外温度为10摄氏度。

求房间的传热损失。

答:房间的传热损失可以通过计算墙壁和天花板的传热速率来得到。

墙壁和天花板的传热速率 = 传热系数× 传热面积× 温度差。

墙壁和天花板的传热面积 = 2 × (5 × 5) + 2 × (5 × 3) = 70平方米。

将已知数据代入公式中,可得墙壁和天花板的传热速率= 0.5 × 70 × (25 - 10) = 525 W。

因此,房间的传热损失为525瓦特。

3. 一个水箱的体积为1立方米,初始温度为20摄氏度,水的密度为1000千克/立方米,比热容为4186 J/(千克·摄氏度),水箱的表面积为2平方米,表面温度为100摄氏度。

已知水的传热系数为0.6 W/(m^2·K),求水箱内水的温度随时间的变化。

数值传热学习题答案(汇总版)

数值传热学习题答案(汇总版)

2-4-9
= rP rS
式(2-4-9)也可以写成 a PTP = a E TE + aW TW + b 的形式。而且两种结果是一致的。
2—6:
n n TE −TW dT P , n = 解:将 , dx 2x n n TE −2TPn + TW d 2T P , n = , dx2 x 2
dk = f (x ) 代入原方程,得: dx

2-4-4
rk rk a E = , aW = , a P = a E + aW , b x w x e
= SrP r ,
式(2-4-4)可以写成 a PTP = a E TE + aW TW + b 的形式。 2. 再用 Taylor 展开法导出 k
2 2 uE + uP u = , 2 2 e
2 2 uW + uP u = 2 2 w
t u ut N − uP y = (y ) , n n
t
t ut u p − uS y = (y ) 。 s s
t
(y ) n = (y ) s = y
n n n n TE −TW TE −2TPn + TW k + f (x ) +S=0 整理得: 2x x 2
4kT P= 2k + xf ( x)T E+2k − xf ( x)T W +2x 2 S
− 2k 时, a E 会成为负值, x 2k 当 f(x)> 时, aW 会成为负值。 x
rk dr = rk r r dr dr dr
w
e
1 d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2/77
MOE KLTFSE
400 350 300 250 200 150 100 50 0
《数值传热学》被引用次数
引用次数
1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
《数值传热学》被引用情况
3/77
MOE KLTFSE
有关的主要国外期刊 1.Numerical Heat Transfer, Part A- Applications; Part BFundamentals 2.International Journal of Numerical Methods in Fluids. puter & Fluids 4.Journal of Computational Physics 5.International Journal of Numerical Methods in Engineering 6.International Journal of Numerical Methods in Heat and Fluid Flow puter Methods of Applied Mechanics and Engineering 8.Engineering Computations 9.Progress in Computational Fluid Dynamics 10. Computer Modeling in Engineering & Sciences (CMES) 11.ASME Journal of Heat Transfer 12.International Journal of Heat and Mass Transfer 13.ASME Journal of Fluids Engineering 14.International Journal of Heat and Fluid Flow 15.AIAA Journal
u v w p ) (divU ) Fz S w ( ) ( ) ( x z y z z z z z
常物性不可压缩流体动量方程源项中显含速度部分为零。
11/77
MOE KLTFSE
3. 能量守恒方程
[微元体内热力学能的增加率]=[进入微元体内的净热 流量]+[体积力与表面力对微元体所做的功] 引入导热Fourier定律,忽略力所作的功, 设hc
17/77
MOE KLTFSE
1.1.3 建立数学描写举例 1. 问题与假设条件
突扩区域中的对流传热:二维、稳态、不可压缩、 常物性、不计重力与黏性耗散。
18/77
MOE KLTFSE
2. 控制方程
u v 0 x y
(uu ) (vu ) 1 p u u ( 2 2 ) x y x x y 2 2 (uv) (vv) 1 p v v ( 2 2 ) x y y x y
MOE KLTFSE
(Numerical Heat Transfer) 第一章 绪论
数值传热学
主讲 陶文铨
西安交通大学能源与动力工程学院 热流科学与工程教育部重点实验室 CFD-NHT-EHT CENTER 2011年9月14日,西安
1/77
MOE KLTFSE
课程简介
1. 教材-《数值传热学》第二版,2001 2. 学时- 45学时理论教学;10学时程序教学 3. 考核- 平时作业/计算机大作业: 考试-40/60;考查-60/40 4. 方法- 开放,参与,应用 (Open, Participation and Application) 5. 助手- 宋晨希,姜国宝,李明杰, 郭少龙,李仲珍
为流体的动力粘度 , 称为流体的第2分子粘度。
9/77
MOE KLTFSE
v u p u u w (divU 2 ) [ ( )] [ ( )] Fx x x y x y z z x x u u u u v w ( ) ( ) ( ) ( ) ( ) ( ) (divU ) x x y y z z x x y x z x x p Fx u u u div ( gradu ) S grad ( u ) i j k u x x y z
2 2
(uT ) (vT ) T T a( 2 2 ) x y x y
2 2
19/77
MOE KLTFSE
3. 边界条件
定u,v,T随 y 的分布;
(1)进口边界条件:给
u T (3)中心线: 0; v 0 y y
y x
数学上要求给 定u,v,T或其导 数随 y 的分 布;实际上做 不到;数值上 近似处理。

1.2.5 无网格方法及本征正交分解 1.2.6 应用举例 1.2.7 数值传热学学习方法建议
21/77
MOE KLTFSE
1.2 传热与流动问题数值计算的基本思想及近期发展
1.2.1 数值解基本思想(基于连续介质假设)
把原来在空间与时间坐标中连续的物理量的场 (如速度场、温度场、浓度场等),用一系列有限 个离散点(称为节点,node)上的值的集合来代替; 通过一定的原则建立起这些离散点上变量值之间关 系的代数方程(称为离散方程,discretization equation);求解所建立起来的代数方程以获得所求 解变量的近似值。
pT ;
c p 为常数
( T ) div( T U ) div( gradT ) ST cp t

cp
c p
( ) c p

Pr
12/77
MOE KLTFSE
4. 通用控制方程
( ) div( U ) div( grad ) S t
8/77
div( U ) 0 t
称为流动无散(度)条件 (Zero divergence)。
MOE KLTFSE
2. 动量守恒方程
对上图所示的微元体分别在三个坐标方向上应用 Newton第2定律(F=ma)在流体中的表现形式: [微元体内动量的增加率]=[作用在微元体上各种力之和] u-动量方程
22/77
MOE KLTFSE
区域离散
方程离散
代数求解 结果分析
23/77
MOE KLTFSE
1.2.2 基于连续介质假设数值解方法分类 1. 有限差分(FDM) 2. 有限容积(FVM) 3. 有限元法(FEM) 4. 有限分析(FAM) 5. 边界元法(BEM) 6. 谱元分析(SAM)
(4)出口边界:
(2)固体边界条件:速度无滑移,温度无跳跃
20/77
MOE KLTFSE
1.2 传热与流动问题数值计算的基本思想及近期发展
1.2.1 数值解基本思想(基于连续介质假设) 1.2.2 基于连续介质假设数值解方法分类 1.2.3 科学研究的三大基本方法及其关系 1.2.4 数值方法的近代发展及应用举例:从宏观到微
10/77
MOE KLTFSE
源项为:
u v w p ) (divU ) Fx Su ( ) ( ) ( x x y x z x x x
类似地:
u v w p Sv ( ) ( ) ( ) (divU ) Fy x y y y z y y y
( u ) ( uu ) ( uv ) ( uw) p u (divU 2 ) t x y z x x x v u u w [ ( )] [ ( )] Fx y x y z z x
举 例
( V ) S
14/77
MOE KLTFSE
5. 四点说明
1. 所导出的三维非稳态Navier-Stokes方程,无论对 层流或是湍流都是适用的。 2. 当流动与换热过程伴随有质交换时,控制方程中还 应增加组份守恒定律。 3. 虽然假定了比热为常数,也可以近似应用于比热的 变化不是很剧烈的情况。 4. 辐射换热需要用积分方程来描述,本课程中将不涉 及这类问题。
4/77
MOE KLTFSE
绪论教学目录
1.1 传热与流动问题的数学描写 1.2 传热与流动问题数值计算的基本思想及近 期发展 1.3 传热与流动问题的数学描写的分类及其对 数值解的影响
5/77
MOE KLTFSE
Hale Waihona Puke 1.1 传热与流动问题的数学描写
1.1.1 控制方程及其通用形式 1. 质量守恒方程 2. 动量守恒方程 3. 能量守恒方程 4. 通用控制方程 1.1.2 单值性条件 1.1.3 建立数学描写举例
导出上式时引入了关于流体中切应力与正应力的 Stokes假定。上式右端部分可进一步转化:
于是
div( grad (u ))
u u u ( ) ( ) ( ) x x y y z z
( u ) div( uU ) div( gradu ) Su t
15/77
MOE KLTFSE
1.1.2 单值性条件(以温度场求解为例) 1. 初始条件 2. 边界条件 (1) 第一类 (Dirichlet):
t 0, T f ( x, y, z )
TB Tgiven
T (2) 第二类 (Neumann): qB ( ) B qgiven n
( u ) ( v) ( w) 0 t x y z
7/77
MOE KLTFSE
不可压缩流体: div(U ) 0
( u ) ( v) ( w) =div( U ) x y z
u v w 0 x y z
相关文档
最新文档