1隔振理论的要素及隔振设计方法
建筑减震与隔震设计

建筑减震与隔震设计地震是自然界最令人恐惧的自然灾害之一。
破坏力巨大的地震常常导致建筑结构的倒塌,给人们的生命财产造成巨大损失。
因此,建筑减震与隔震设计变得尤为重要,它们可以有效地减少地震对建筑物的破坏。
建筑减震设计主要是通过结构改良,降低建筑在地震中的震动响应。
这种设计方法可以从多个方面入手。
首先,在建筑设计阶段,就应该合理布置建筑的结构构造,并使用适当的材料。
一些高耗能材料如钢、混凝土等具有较好的抗震性能,所以在设计中要选择这些材料。
此外,合理设置剪力墙、悬挑结构、隔震层等都能够增加建筑的抗震能力。
其次,建筑减震设计还可以利用减震器的原理。
减震器是一种通过改变建筑结构刚度和阻尼来减少地震能量输入的装置。
常见的减震器有液体减震器和摆锤减震器等。
液体减震器利用在液体中传播的阻尼力来减小结构振动,而摆锤减震器则是通过改变建筑的重心位置来实现减震。
这些减震器可以通过数学模型计算出最佳设计参数,从而达到更好的减震效果。
隔震设计与减震设计相似,都是通过改变建筑结构的属性来减少地震对建筑物的破坏。
而隔震设计更加注重的是通过与地基的隔离来减少地震波传输到建筑结构中的能量。
隔震设计的主要工作是设计和应用隔震层或者隔震装置。
隔震层可以分为刚性隔震层和弹性隔震层。
刚性隔震层是通过刚性材料来限制地震能量的传播,而弹性隔震层则是通过使用弹性材料来吸收地震波的能量。
隔震装置一般使用隔震基础,将建筑与地基分离,从而达到隔震效果。
隔震设计的目标是减少地震活动对建筑物的影响,保护人们的生命安全。
在工程中,通常通过分析地震特性和建筑结构特性来选择适当的隔震层或装置。
而为了达到更好的效果,还可以采用多层隔震设计。
多层隔震设计即在建筑物的不同层面使用不同类型的隔震层或装置,从而在吸收地震能量、减小破坏力方面具有更好的效果。
总而言之,建筑减震与隔震设计是保护建筑物和人们生命安全的关键措施。
它们可以通过不同的设计方法和结构改良,降低建筑在地震中的响应和破坏。
橡胶隔振设计指导-精

橡胶隔振设计指导设计和选用的原则:优先选用标准产品,对于一些有特殊要求而又无标准的产品,则可根据需要自行隔振设计。
隔振设计主要流程:1)输入:隔振系统固有频率和减振装置刚度的要求,输出:减振装置的形状和几何尺寸;2)输入:系统通过共振区的振幅要求,输出:阻尼系数或阻尼比;3)输入:隔振系统所处的环境和使用期限,输出:橡胶的材料。
隔振设计原则:结构紧凑、材料适宜、形状合理、尺寸尽量小以及隔振效率高。
具体设计和选用时,还应注意以下因素:1)载荷特点:确保支撑物的重心与支撑点中心重合,载重后的支撑面与基础面平行。
很多零件支撑大多采用几何对称布置,而设备的重心却往往偏离几何对称轴,设计时需将该偏差考虑进去。
在设计和选用减振器时,不仅要考虑总重量,还应考虑各支撑部位的重力大小,以确定每个减振器的实际承载量,使产品安装减振器后,其安装平面与基础平行。
2)减振装置的总刚度应满足隔振系数的要求。
此外,无论产品的支撑布置是否与几何中心对称,均应使各支撑部位的减振装置刚度对称于系统的惯性主轴。
3)减振装置的总阻尼既要考虑系统通过共振区时对振幅的要求,也要考虑隔振区隔振效率,尤其是在频率较高时对振动衰减的要求。
减振装置设计:橡胶减振器是以橡胶作为减振器的弹性元件,以金属作为支撑骨架,故称为橡胶一金属减振器。
这种减振器由于使用橡胶材料,因而阻尼较大,对高频振动的能量吸收尤为显著,当振动频率通过共振区时,也不至产生过大的振幅。
橡胶能承受瞬时的较大形变,因此能承受冲击力,缓冲性能较好。
这种减振器采用天然橡胶,受温度变化大,当温度过高时,表面会产生裂纹并逐渐加深,最后失去强度。
此外,天然橡胶耐油性差,对酸性和光等反应敏感,容易老化。
近年来化工技术的发展,人工橡胶使其工作性能大大提高,如有多种可在油中使用的改性橡胶,出现了使用温度可在 1 00 ℃以上的改性橡胶。
常用的橡胶减振器有 JP 型和 JW 型,性能基本相同,仅结构外形上有区别。
减振与隔振的概念

一、减振与隔振的概念减振是工程上防止振动危害的主要手段。
减振可分为主动减振和被动减振。
主动减振是在设计时就考虑消除振源或减小振源的能量或频率,在精密仪器、航空航天设备、大型汽轮发电机组及高速旋转机械中应用较多,但费用昂贵,普通工程机械中应用较少。
被动减振有隔振和吸振等。
隔振又可分为主动隔振和被动隔振。
为了防止或限制振动带来的危害和影响,现代工程中采用了各种措施,归纳起来有以下几条原则:1.减弱或消除振源(主动减振)这是一项积极的治本措施。
如果振动的原因是由于转动部件的偏心所引起的,可以用提高动平衡精度的办法来减小不平衡的离心惯性力。
对往复式机械如空气压缩机等也需要注意惯性力的平衡。
2.远离振源(被动隔振)这是一种消极的防护措施。
如精密仪器或设备要尽可能远离具有大型动力机械、压力加工机械及振动机械的工厂或车间,以及运输繁忙的铁路、公路等。
3.提高机器本身的抗振能力(主动减振)衡量机器结构抗振能力的常用指标是动刚度,动刚度在数值上等于机器结构产生单位振幅所需的动态力。
动刚度越大,则机器结构在动态力作用下的振动量越小。
4.避开共振区根据实际情况尽可能改变系统的固有频率(主动减振)或改变机器的工作转速(被动减振),使机器不在共振区内工作。
5.适当增加阻尼(阻尼吸振)阻尼吸收系统振动的能量,使自由振动的振幅迅速衰减,对于强迫振动的振幅有抑制作用,尤其在共振区内甚为显著。
6.动力吸振(被动吸振)对某些设备上的测量或监控仪表,采用在仪表下安装动力吸振器的方法可稳定仪表的指针,提高测量精度。
7.采取隔振措施用具有弹性的隔振器,将振动的机器(振源)与地基隔离,以便减少振源通过地基影响周围的设备,这就是主动隔振或积极隔振;或将需要保护的精密设备与振动的地基隔离,使不受周围振源的影响,这就是被动隔振。
下面介绍隔振的基本理论。
被隔振的机器或设备与隔振器相比,可认为前者只有质量而不计弹性,后者是只有弹性和阻尼而不计质量,这样在只考虑单方向振动的情形下,可简化为单自由度隔振系统,如图14-16所示。
振动和隔振基础知识简介

A
F0
振幅:
K
1
w2 wn2
2
4
2
w2 wn2
不同设备其隔振控制目标不同,控制目
标包括隔振效率、振动最大位移、振动最
大速度、振动最大加速度,具体控制目标
可参考相关规范、试验及现场动力测试等
途径获取。
隔振产品
高阻尼橡胶隔振器
阻尼弹簧隔振器
多维隔震(振)装置
隔设备振动或外部工业振动; 材料本身既能提供刚度,又能提
振动和隔振基础知 识简介
振源分类
振动来源可以分为两类:天然振动、人工振动
天然振动:地震、海浪、风振、地面脉动等
低频振动
一般为随机振动或瞬态振动。振级较高时,具
有很大的破坏作用。
以大位移低频率振动为主的随机震动,地震加速
振动
度振动频率一般在10Hz以下
人工振动:主要来源于工厂生产、工地施工、
交通运输等。工厂中大型发电机、磨煤机、
设备
隔振装置
质量、刚度、阻尼
基础或支承结构
隔振原理
激振频率与隔振体系频率之比 w wn 2 时,具备隔振效果
隔震设计方法与流程
隔振设计资料: A. 隔振对象的型号、规格及轮廓尺寸; B. 隔振对象的质量中心位置、质量及其转动惯量。 C. 隔振对象基础台座的尺寸、质量,以及隔振对象
与隔振基础台座的相对位置。 D. 主动隔振时,动力机器设备的干扰力。干扰力为
供阻尼; 刚度与变形呈非线性变化; 结构简单,造价相对较低,安装
方便; 不适用于低频、过重设备,受温
度限制。
隔设备振动或外部工业振动; 弹簧提供刚度,阻尼器提供
阻尼; 刚度稳定,刚度与阻尼控制
精度高; 造价相对较高,安装相对复
隔振基本原理

隔振基本原理主动隔振和被动隔振的共同点是安装减振器(弹簧),但减振器安上去后,可能使要保护的电子产品的振动减小了。
也可能使振动比原来更大。
因此必须了解振动的基本原理,否则可能会得到相反的结果。
1.病动系统的组成机械振动时物体受交变力的作用,在莱一位置附近做往复运动。
如电动机放在一简支梁上,当电动机旋转时,由于转子的不平衡质量的惯性力引起电动机产生上下和左右方向的往复运动。
当限制其左右方向的运动时,就构成了最简单的上下方向的振动(单自由度系统的正弦振动),如图5—50(a)所示。
亿宾微电子电动机放在简支梁上,电动机的转动中心在0点,转子质量为mf,重心偏移在口点,偏心距为‘,转子转动的角速度为m,则转动时,转子产生的离心力为EJ,zJ的垂直分量为y2,水平分量为D:。
如果限制左右方向的运动,则电动机仅受yJ的交变作用。
如果只考虑简支梁的弹性,不计其质量,电动机连同底座的质量为m,视为一个集中质量,则电动机的振动模型可表示为图5—50(b),该图即为其力学模型。
研究机械振动时,往往把实际的复杂系统进行简化,抓主要因素,得出力学模型,然后用力学模型进行分析计算。
几种常见的振动力学模型如图5—5l所示,5—51(a)是单自由度系统自由振动;图5—51(b)是单自由度系统阻尼自由振动;图5—51(c)、5—51(d)是单自由度系统的强迫振动的两种形式。
固5—5l(c)中激振以交变力形式存在,图5—51(d)中激振以支承振动位移的形式加于系统。
物体呼弹性回复力和重力的作用,并只能在一个方向上振动的机械振动称为单自从图5—52(b)可以看出,这种振动只要一开始,就会不停地进行下去,这显然是不行的。
只要给振动系统加上阻尼f(常用阻尼比D表示),如图5—5l(b)所示,振动就很挟消失,这种振动称为阻尼自由振动。
3.单自由度系统的阻尼强迫振动实际产品的持续振动是取外来激振对弹性系统做功,即输入能量以弥补阻尼所消耗的能量来进行的。
建筑结构的隔震、减振和振动控制

建筑结构的隔震、减振和振动控制发布时间:2022-11-03T01:45:58.410Z 来源:《城镇建设》2022年6月12期作者:马波[导读] 人们对现代建筑物的要求不仅停留在舒适、美观上,还有躲避恶劣气候与自然灾害的原始功能需求。
马波中环城乡规划设计有限公司阿克苏分公司新疆阿克苏 843000摘要:人们对现代建筑物的要求不仅停留在舒适、美观上,还有躲避恶劣气候与自然灾害的原始功能需求。
近年来我国地震频发,作为最常见的地质灾害之一,地震具有严重的突发性与破坏性,一旦发生则会对地震灾害位置上的建筑物与地貌地形造成严重破坏,还会对人们的生命财产安全造成巨大威胁。
因此建筑结构的隔振、减震以及振动控制成为了摆在建筑行业面前的重要课题,在此背景下,本文将对建筑结构的隔振、减震和振动控制进行研究,希望可以为今后的建筑结构设计起到参考作用。
关键词:建筑结构;隔振;减震;振动控制引言:随着人们生活水平的不断提升,安全意识也在逐步提升,因此对建筑物安全性与耐久性提出了更高的要求。
对此,应从建筑物的减震结构入手,通过采用多项有效措施,提升建筑物的隔振、减震、抗震性能,从而提升建筑物的稳定性与耐久性,保障人们的生命财产安全。
一.建筑结构的隔振、减震概述传统建筑通常会采用严格的设计方法,利用结构的变形对地震能量进行吸收和消耗,这样的结构对于一些等级较低的地震可以实现一定的防震效果,但在等级较高的地震面前作用不大,无法吸收和消耗高等级地震带来的巨大能力,不能为人们与建筑结构提供充分的安全保障。
对于这样的情况,许多建筑专家都在积极探索抗震能力更强的建筑结构抗震体系,隔振、减震、振动控制技术也因此诞生。
1.建筑结构隔振工作原理建筑结构的防震体系是基于隔震层的设置而产生作用的,我们可以将建筑结构分为上部结构、隔震层以及下部结构三部分,在地震由下至上地释放能量时,所释放出的能量将从下部结构传递至中间的隔震层,此时隔震层会将大部分地震能量进行吸收和消耗,最后仅剩极小部分的地震能量会传递至上部结构,在隔震层的作用下,上部结构在接收地震能量后会产生一定的弹性,所以这小部分能量对上部结构产生的影响微乎其微,不会对建筑物与人们的生命安全造成威胁。
减振与隔振的概念

一、减振与隔振的概念减振是工程上防止振动危害的主要手段。
减振可分为主动减振和被动减振。
主动减振是在设计时就考虑消除振源或减小振源的能量或频率,在精密仪器、航空航天设备、大型汽轮发电机组及高速旋转机械中应用较多,但费用昂贵,普通工程机械中应用较少。
被动减振有隔振和吸振等。
隔振又可分为主动隔振和被动隔振。
为了防止或限制振动带来的危害和影响,现代工程中采用了各种措施,归纳起来有以下几条原则:1.减弱或消除振源(主动减振)这是一项积极的治本措施。
如果振动的原因是由于转动部件的偏心所引起的,可以用提高动平衡精度的办法来减小不平衡的离心惯性力。
对往复式机械如空气压缩机等也需要注意惯性力的平衡。
2.远离振源(被动隔振)这是一种消极的防护措施。
如精密仪器或设备要尽可能远离具有大型动力机械、压力加工机械及振动机械的工厂或车间,以及运输繁忙的铁路、公路等。
3.提高机器本身的抗振能力(主动减振)衡量机器结构抗振能力的常用指标是动刚度,动刚度在数值上等于机器结构产生单位振幅所需的动态力。
动刚度越大,则机器结构在动态力作用下的振动量越小。
4.避开共振区根据实际情况尽可能改变系统的固有频率(主动减振)或改变机器的工作转速(被动减振),使机器不在共振区内工作。
5.适当增加阻尼(阻尼吸振)阻尼吸收系统振动的能量,使自由振动的振幅迅速衰减,对于强迫振动的振幅有抑制作用,尤其在共振区内甚为显著。
6.动力吸振(被动吸振)对某些设备上的测量或监控仪表,采用在仪表下安装动力吸振器的方法可稳定仪表的指针,提高测量精度。
7.采取隔振措施用具有弹性的隔振器,将振动的机器(振源)与地基隔离,以便减少振源通过地基影响周围的设备,这就是主动隔振或积极隔振;或将需要保护的精密设备与振动的地基隔离,使不受周围振源的影响,这就是被动隔振。
下面介绍隔振的基本理论。
被隔振的机器或设备与隔振器相比,可认为前者只有质量而不计弹性,后者是只有弹性和阻尼而不计质量,这样在只考虑单方向振动的情形下,可简化为单自由度隔振系统,如图14-16所示。
隔振减震动画及设计原理

隔震垫
科技创新 造福于民
不规则平面---扭转破坏 不规则立面---层间剪切破坏
我国抗震设防标准偏低: 我国设计地面加速度大多为0.05-0.20g(6-8度) 我国地震常为突发超烈度大地震,常发生在中低烈度区 1976.7.28 唐山大地震 6 度 → 11度, 2008.5.12 四川 汶川地震 7度 → 11度 2010.4.14 青海 玉树大地震 7度 → 11度 2013.4.20 四川 芦山大地震 7度 → 9度 2014.8.03 云南 鲁甸 7度 → 9度-10度
政府支持
全国范围
减隔震市场数据:
技术原理 Principle
设计流程介绍
设计流程
隔 震 技 术 优 势
安全性 经济性 检修方便 耐久性好 设计自由 节约资源 增加卖点
1.可行性研究
短期经济性 长期经济性
隔震房屋VS非隔震房屋卖价增加200元/㎡以上
1.可行性研究 经济性分析:
减少投资部分:上部结构含钢 量、混凝土用量;
分析隔震技术的经济性不能只关注短期经济投入,应考虑地震 多发条件下建筑全寿命周期的费用/收益比,才能真实反映采用隔 震技术的综合经济效益。
不隔震建筑
隔震建筑
2.方案设计(确定隔震层位置)
隔震层位于地下室
隔震层位于地下室上部
2.方案设计(确定隔震层位置)
单独设置隔ห้องสมุดไป่ตู้层
隔震层位于地上
2.方案设计(相关隔震构造措施)
股票代码:300767
减隔震技术交流
主要内容
PART 1 PART 2 PART 3 PART 4
行业发展及技术原理 设计流程介绍 案例介绍分析 震安科技介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隔振理论的要素及隔振设计方法
采用隔振技术控制振动的传递就是消除振动危害的重要途径。
隔振分类
1、 主动隔振
对于本身就是振源的设备,为了减少它对周围的影响,使用隔振器将它与基础
隔离开来,减少设备传到基础的力称为主动隔振,也称为积极隔振。
2、 被动隔振
对于允许振幅很小,需要保护的设备,为了减少周围振动对它的影响,使用隔振
器将它与基础隔离开来,减少基础传到设备的振动称为被动隔振,也称消极隔振。
隔振理论的基本要素
1、 质量m(Kg)指作用在弹性元件上的力,也称需要隔离构件(设备装置)负载的
重量。
2、 弹性元件的静刚度K(N/mm)
在静态下作用在弹性元件上的力的增量T与相应位移的增量δ之比称为
刚度 K=T(N)/δ(m)。如果有多个弹性元件,隔振器安装在隔振装置下,其弹
性元件的总刚度计算方法如下:
如有静刚度分别为K1、K2、K3…Kn个弹性元件并联安装在装置下其总刚
度K=K1+K2+K3+…+Kn。
如有静刚度分别为K1、K2、K3…Kn个弹性元件串联安装在装置下其总刚
度1/K=(1/K1)+ (1/K2) + (1/K3) +(…) + (1/Kn)。
3、 弹性元件的动刚度Kd。对于橡胶隔振器,它的动刚度值与隔振器橡胶硬度的
高低,使用橡胶的品种有关,一般的计算办法就是该隔振器的静刚度乘以动态
系数d,动态系数d按下列选取:
当橡胶为天然胶,硬度值Hs=40-60,d=1、2-1、6
当橡胶为丁腈胶,硬度值Hs=55-70,d=1、5-2、5
当橡胶为氯丁胶,硬度值Hs=30-70,d=1、4-2、8
d的数值随频率、振幅、硬度及承载方式而异,很难获得正确数值,通常只考
虑橡胶硬度Hs=40°-70°。按上述范围选取,Hs小时取下限,否则相反。
4、激振圆频率ω(rad/s)
当被隔离的设备(装置)在激振力的作用下作简谐运动所产生的频率,激振力可
视为发动机或电动机的常用轴速n
其激振圆频率的计算公式为ω=(n/60)×2π
n—发动机(电动机)转速n转/分
5、固有圆频率ωn(rad/s)
质量m的物体作简谐运动的圆频率ωn称固有圆频率,其与弹性元件(隔振器)刚
度K的关系可由下式计算:ωn(rad/s)=√K(N/mm)÷m(Kg)
6、振幅A(cm)
当物体在激振力的作用下作简谐振动,其振动的峰值称为振幅,振幅的大小按下
列公式计算:A=V÷ω
V—振动速度cm/s
ω—激振圆频率,ω=2πn÷60(rad/s)
7、隔振系数η(绝对传递系数)
隔振系数指传到基础上的力FT与激振力FO之比,它就是隔振设计中一个主要
要素,隔振系数按不同的隔振类型分别选取,一般选择范围0、25-0、01,最佳选择范
围为0、11-0、04。
8、频率比(Z)
系统的激振频率ω与固有频率ωn之比称为频率比Z,它的大小可根据选取的
隔振效率来计算:Z≥1÷√η,在隔振系统中只有Z > √2,即η< 0、5才有隔振效
果。
9、阻尼系数C
当固体(弹性体)在外力作用下产生变形,以滞后形式消耗能量产生的阻尼称为
阻尼系数,作为橡胶隔离器来说,它的大小可按下列公式计算:C=βK÷ωn, β为力
学材料损耗固子。β值按橡胶硬度与胶料品种选取。
橡胶硬度 30° 50° 70°
β 0、05 0、1 0、15
胶料品种 氯丁橡胶 丁腈橡胶 苯乙烯橡胶
β 0、15-0、3 0、25-0、4 0、15-0、3
K—弹性体动刚度
ωn—弹性体固有频率
10、临界阻尼Ce
临界阻尼就是一个系统内粘滞阻尼的最低值,它允许系统偏离后回到初始位置
而不产生振动。
11、阻尼比ζ
在有粘滞阻尼系统中,实际的阻尼系数C与临界阻尼系数Ce之比称为阻尼比。
ζ=C/Ce,在橡胶隔离器中按胶料品种及硬度确定:
胶料为天然胶时,阻尼比为0、025-0、075
胶料为丁腈胶时,阻尼比为0、075-0、15
胶料为氯丁胶时,阻尼比为0、075-0、30
胶料为丁基橡胶时,阻尼比为0、12-0、50
阻尼比随着硬度H的增加而增加,H=40时,取下限,H=70时,取上限。
在有阻尼的隔振设计中,设ωd为有阻尼时的固有频率,ωn为无阻尼时的固有
频率,a为材料的衰减系数,ωd=√ωn²-a²
ζ(阻尼比)=C/Ce=a/ωn a=ζωn
ωd=√ωn²-(ζωn )²=ωn×√1-ζ²
当ζ=0、05时,ωd=0、99875ωn
当ζ=0、2时, ωd=0、98ωn
ωd≈ωn
因阻尼比在隔振设计中影响很小,所以在隔振设计中,一般对阻尼比不进行考
虑。
隔振系统的特性
1、 隔振效率(η)(绝对传递率)在主动隔振系统中为传到基础上的力FT与激振力
FO之比,在被动减振中为设备的振幅与基础振幅之比。
2、 相对传递率在被动隔振系统中,相对传递率为被隔振设备相对基础的位移,δ
o=A-U,与基础位移幅值U之比,即ηR=δo/U,δo影响隔振效果,就是隔振要
求的最小间隙。
3、 运动响应β,在主动隔振系统中,设备的位移振幅,A与静变位Ast之比,为运
动响应,即β=A/Ast,由于Ast=FO/K ,所以β=AK/FO ,为保证设备在隔振过程
中具有足够的活动空间,隔振器具有的间隙应大于设备的位移振幅A,运动响
应也称动力放大系数。
隔振设计的步骤
1、 通过计算,测量对比或调查统计等方法确定被隔离设备的原始数据,包括设备
及安装台座的尺寸,重量,重心与中间主惯轴的位置,以及振源的大小,方向频
率或频谱。
2、 根据隔振的具体要求,主动隔振时允许传到基础上的力,被动隔振时设备允许
的振幅确定隔振系统中的隔振效率η与运动响应β,按公式Z≥1÷√η,计
算频率比Z,按频率比Z=ω÷ωn计算系统的固有频率ωn,如果在设备上作用
着多个振源,在计算频率比Z时,应取激振频率ω的最小值,对于多自由度系
统,应取系统的最高固有频率,以保证各个激振频率与固有频率都能满足
Z=2、5-5的要求。
3、 根据公式K=1/Z²×m×ω²计算隔振器的总刚度,其中Z-频率比,m-隔振物体
的质量(Kg),ω-激振频率(rad/s),如果有n个隔振器并联安装,每个隔振器
的刚度为K1=K/n。
对多自由度的隔振系统可先估计隔振器的刚度,再验算固有频率。
4、 计算主动隔振时传递到基础的力,或被动隔振时设备的振幅,核算就是否符合
隔振要求,如果不满足要求,可适当增加设备底座的重量,进一步降低设备的
重心位置,或改变减震器的参数。
隔振就就是在振源与减振体之间安装隔振装置,以隔绝或减弱振
动能量的传递。隔振分为主动隔振与被动隔振。设备本身就是振
源,为了降低它对周围其它设备的 影响而采取隔振措施的,称主
动隔振;对于需要防振的设备,为了降低周围振源对它的影响而
采取的隔振措施,叫被动隔振。对于单自由度的隔振系统,主动隔
振与 被动隔振的力学模型见图1、图2。
隔振系统的隔振效果以隔振系数来表示。主动隔振的隔振系
数就是通过隔振器传到支承上、的力幅与激振力之比;被动隔振
的隔振系数则就是振动体的振幅与支承的振幅之比。其表达式均
为:
式中:η为隔振系统的隔振系数;ξ为隔振器阻尼比,为实
际阻尼C与临界阻尼Cc之比;λ为隔振系统频率比,为激振频率
f与隔振器固有频率fn之比。
隔振器的隔振效率ε以下式表示: ε=(1-η)×100%